Skip to main content

Roles of Zinc Transporters in Cellular Transport of Cadmium and Manganese

  • Chapter
  • First Online:
Metallomics
  • 1010 Accesses

Abstract

As cadmium (Cd) is a nonessential metal, there is no specific transport system for cellular entry of Cd in the organisms. The establishment of Cd-resistant cells from metallothionein-null mouse cells, application of multi-tracer technique, and microarray analyses have revealed that Cd2+ shares the pathway for cellular incorporation with Mn2+, and the responsible transporters for this pathway were found to be ZIP8 (Zrt- and Irt-related protein 8) and ZIP14. Although other transport systems for iron or calcium are also utilized for cellular incorporation of Cd2+ and Mn2+, characterization of ZIP8 and ZIP14 has demonstrated important physiological and pathological roles of these transporters in metal transport. We show here the significant roles of ZIP8 in segment-specific transport of Cd in proximal tubule of the kidney and the roles of ZIP14 and ZnT10 in Mn transport in neuronal cells in the presence of cytokine. Recently, critical roles of Mn transport systems have been highlighted by the findings of human diseases related to the mutation in ZIP8 and ZnT10. This chapter summarized historical background and recent advances in the studies on the roles of ZIP8 and ZIP14 in the transport of Cd2+ and Mn2+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yanaga M, Enomoto S, Hirunuma R, Furuta R, Endo K, Tanaka A, Ambe S, Tozawa M, Ambe F (1996) Multitracer study on uptake and excretion of trace elements in rats. Appl Radiat Isot 47(2):235–240

    Article  CAS  PubMed  Google Scholar 

  2. Yanagiya T, Imura N, Enomoto S, Kondo Y, Himeno S (2000) Suppression of a high-affinity transport system for manganese in cadmium-resistant metallothionein-null cells. J Pharmacol Exp Ther 292(3):1080–1086

    CAS  PubMed  Google Scholar 

  3. Schneider SN, Liu Z, Wang B, Miller ML, Afton SE, Soleimani M, Nebert DW (2014) Oral cadmium in mice carrying 5 versus 2 copies of the Slc39a8 gene: comparison of uptake, distribution, metal content, and toxicity. Int J Toxicol 33(1):14–20

    Article  CAS  PubMed  Google Scholar 

  4. Fujishiro H, Doi M, Enomoto S, Himeno S (2011) High sensitivity of RBL-2H3 cells to cadmium and manganese: an implication of the role of ZIP8. Metallomics 3(7):710–718

    Article  CAS  PubMed  Google Scholar 

  5. Que Q, Helmann JD (2000) Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol 35(6):1454–1468

    Article  CAS  PubMed  Google Scholar 

  6. Hayden JA, Brophy MB, Cunden LS, Nolan EM (2013) High-affinity manganese coordination by human calprotectin is calcium-dependent and requires the histidine-rich site formed at the dimer interface. J Am Chem Soc 135(2):775–787

    Article  CAS  PubMed  Google Scholar 

  7. He L, Girijashanker K, Dalton TP, Reed J, Li H, Soleimani M, Nebert DW (2006) ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Mol Pharmacol 70(1):171–180

    CAS  PubMed  Google Scholar 

  8. Matzapetakis M, Karligiano N, Bino A, Dakanali M, Raptopoulou CP, Tangoulis V, Terzis A, Giapintzakis J, Salifoglou A (2000) Manganese citrate chemistry: syntheses, spectroscopic studies, and structural characterizations of novel mononuclear, water-soluble manganese citrate complexes. Inorg Chem 39(18):4044–4051

    Article  CAS  PubMed  Google Scholar 

  9. Boycott KM, Beaulieu CL, Kernohan KD, Gebril OH, Mhanni A, Chudley AE, Redl D, Qin W, Hampson S, Küry S, Tetreault M, Puffenberger EG, Scott JN, Bezieau S, Reis A, Uebe S, Schumacher J, Hegele RA, McLeod DR, Gálvez-Peralta M, Majewski J, Ramaekers VT, Care4Rare Canada Consortium, Nebert DW, Innes AM, Parboosingh JS, Abou Jamra R (2015) Autosomal-recessive intellectual disability with cerebellar atrophy syndrome caused by mutation of the manganese and zinc transporter gene SLC39A8. Am J Hum Genet 97(6):886–893

    Google Scholar 

  10. Fukada T, Kambe T (2011) Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3(7):662–674

    Article  CAS  PubMed  Google Scholar 

  11. Wang B, Schneider SN, Dragin N, Girijashanker K, Dalton TP, He L, Miller ML, Stringer KF, Soleimani M, Richardson DD, Nebert DW (2007) Enhanced cadmium-induced testicular necrosis and renal proximal tubule damage caused by gene-dose increase in a Slc39a8-transgenic mouse line. Am J Physiol Cell Physiol 292(4):C1523–C1535

    Article  CAS  PubMed  Google Scholar 

  12. Grady DL, Moyzis RK, Hildebrand CE (1987) Molecular and cellular mechanisms of cadmium resistance in cultured cells. Exp Suppl 52:447–456

    Article  CAS  Google Scholar 

  13. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482–488

    Article  CAS  PubMed  Google Scholar 

  14. Guilarte TR (2010) Manganese and Parkinson’s disease: a critical review and new findings. Environ Health Perspect 118(8):1071–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim J, Buckett PD, Wessling-Resnick M (2013) Absorption of manganese and iron in a mouse model of hemochromatosis. PLoS One 8(5):e64944

    Article  PubMed  PubMed Central  Google Scholar 

  16. Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238(3):215–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liuzzi JP, Lichten LA, Rivera S, Blanchard RK, Aydemir TB, Knutson MD, Ganz T, Cousins RJ (2005) Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci U S A 102(19):6843–6848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40(1):37–44

    Article  CAS  PubMed  Google Scholar 

  19. Quadri M, Federico A, Zhao T, Breedveld GJ, Battisti C, Delnooz C, Severijnen LA, Di Toro ML, Mignarri A, Monti L, Sanna A, Lu P, Punzo F, Cossu G, Willemsen R, Rasi F, Oostra BA, van de Warrenburg BP, Bonifati V (2012) Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet 90(3):467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suzuki T, Momoi K, Hosoyamada M, Kimura M, Shibasaki T (2007) Normal cadmium uptake in microcytic anemia mk/mk mice suggests that DMT1 is not the only cadmium transporter in vivo. Toxicol Appl Pharmacol 227(3):462–467

    Article  PubMed  Google Scholar 

  21. Hao Z, Chen S, Wilson DB (1999) Cloning, expression, and characterization of cadmium and manganese uptake genes from Lactobacillus plantarum. Appl Environ Microbiol 65(11):4746–4752

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu CW, Chen HC, Lin LY (1998) Transcription of metallothionein isoform promoters is differentially regulated in cadmium-sensitive and -resistant CHO cells. J Cell Biochem 68(2):174–185

    Article  CAS  PubMed  Google Scholar 

  23. Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci U S A 109(47):19166–19171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fujishiro H, Yano Y, Takada Y, Tanihara M, Himeno S (2012) Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells. Metallomics 4(7):700–708

    Article  CAS  PubMed  Google Scholar 

  25. Sabolic I, Ljubojevic M, Herak-Kramberger CM, Brown D (2002) Cd-MT causes endocytosis of brush-border transporters in rat renal proximal tubules. Am J Physiol Renal Physiol 283(6):F1389–F1402

    Article  CAS  PubMed  Google Scholar 

  26. Enomoto S (2005) Development of multitracer technology and application studies on biotrace element research. Biomed Res Trace Elements 16(3):233–240

    CAS  Google Scholar 

  27. Nebert DW, Gálvez-Peralta M, Hay EB, Li H, Johansson E, Yin C, Wang B, He L, Soleimani M (2012) ZIP14 and ZIP8 zinc/bicarbonate symporters in Xenopus oocytes: characterization of metal uptake and inhibition. Metallomics 4(11):1218–1225

    Article  CAS  PubMed  Google Scholar 

  28. Roth JA, Garrick MD (2003) Iron interactions and other biological reactions mediating the physiological and toxic actions of manganese. Biochem Pharmacol 66(1):1–13

    Article  CAS  PubMed  Google Scholar 

  29. Horiguchi H, Aoshima K, Oguma E, Sasaki S, Miyamoto K, Hosoi Y, Katoh T, Kayama F (2010) Latest status of cadmium accumulation and its effects on kidneys, bone, and erythropoiesis in inhabitants of the formerly cadmium-polluted Jinzu River Basin in Toyama, Japan, after restoration of rice paddies. Int Arch Occup Environ Health 83(8):953–970

    Article  CAS  PubMed  Google Scholar 

  30. Himeno S, Yanagiya T, Fujishiro H (2009) The role of zinc transporters in cadmium and manganese transport in mammalian cells. Biochimie 91(10):1218–1222

    Article  CAS  PubMed  Google Scholar 

  31. Bosomworth HJ, Adlard PA, Ford D, Valentine RA (2013) Altered expression of ZnT10 in Alzheimer’s disease brain. PLoS One 8(5):e65475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Park JH, Hogrebe M, Grüneberg M, DuChesne I, von der Heiden AL, Reunert J, Schlingmann KP, Boycott KM, Beaulieu CL, Mhanni AA, Innes AM, Hörtnagel K, Biskup S, Gleixner EM, Kurlemann G, Fiedler B, Omran H, Rutsch F, Wada Y, Tsiakas K, Santer R, Nebert DW, Rust S, Marquardt T (2015) SLC39A8 deficiency: A disorder of manganese transport and glycosylation. Am J Hum Genet 97(6):894–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Valberg LS, Sorbie J, Hamilton DL (1976) Gastrointestinal metabolism of cadmium in experimental iron deficiency. Am J Physiol 231(2):462–467

    CAS  PubMed  Google Scholar 

  34. Squibb KS, Pritchard JB, Fowler BA (1984) Cadmium-Metallothionein nephropathy: relationships between ultrastructural/biochemical alterations and intracellular cadmium binding. J Pharmacol Exp Ther 229(1):311–321

    CAS  PubMed  Google Scholar 

  35. Chen P, Chakraborty S, Mukhopadhyay S, Lee E, Paoliello MM, Bowman AB, Aschner M (2015) Manganese homeostasis in the nervous system. J Neurochem 134(4):601–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vallee BL (1995) The function of metallothionein. Neurochem Int 27:23–33

    Article  CAS  PubMed  Google Scholar 

  37. Fujishiro H, Yoshida M, Nakano Y, Himeno S (2014) Interleukin-6 enhances manganese accumulation in SH-SY5Y cells: implications of the up-regulation of ZIP14 and the down-regulation of ZnT10. Metallomics 6(4):944–949

    Article  CAS  PubMed  Google Scholar 

  38. Okabe M, Nakayama K, Kurasaki M, Yamasaki F, Aoyagi K, Yamanoshita O, Sato S, Okui T, Ohyama T, Kasai N (1996) Direct visualization of copper-metallothionein in LEC rat kidneys: application of autofluorescence signal of copper-thiolate cluster. J Histochem Cytochem 44(8):865–873

    Article  CAS  PubMed  Google Scholar 

  39. Kobayashi K, Kuroda J, Shibata N, Hasegawa T, Seko Y, Satoh M, Tohyama C, Takano H, Imura N, Sakabe K, Fujishiro H, Himeno S (2007) Induction of metallothionein by manganese is completely dependent on interleukin-6 production. J Pharmacol Exp Ther 320(2):721–727

    Article  CAS  PubMed  Google Scholar 

  40. Nordberg GF, Goyer R, Nordberg M (1975) Comparative toxicity of cadmium-metallothionein and cadmium chloride on mouse kidney. Arch Pathol 99(4):192–197

    CAS  PubMed  Google Scholar 

  41. Tabuchi M, Yoshimori T, Yamaguchi K, Yoshida T, Kishi F (2000) Human NRAMP2/DMT1, which mediates iron transport across endosomal membranes, is localized to late endosomes and lysosomes in HEp-2 cells. J Biol Chem 275(29):22220–22228

    Article  CAS  PubMed  Google Scholar 

  42. Schäfer SG, Schwegler U, Schümann K (1990) Retention of cadmium in cadmium-naive normal and iron-deficient rats as well as in cadmium-induced iron-deficient animals. Ecotoxicol Environ Saf 20(1):71–81

    Article  PubMed  Google Scholar 

  43. Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24(5):2155–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dalton TP, Miller ML, Wu X, Menon A, Cianciolo E, McKinnon RA, Smith PW, Robinson LJ, Nebert DW (2000) Refining the mouse chromosomal location of Cdm, the major gene associated with susceptibility to cadmium-induced testicular necrosis. Pharmacogenetics 10(2):141–151

    Article  CAS  PubMed  Google Scholar 

  45. Kondo Y, Yanagiya T, Himeno S, Yamabe Y, Schwartz D, Akimoto M, Lazo JS, Imura N (1999) Simian virus 40-transformed metallothionein null cells showed increased sensitivity to cadmium but not to zinc, copper, mercury or nickel. Life Sci 64(11):PL145–PL150

    Article  CAS  PubMed  Google Scholar 

  46. Fujishiro H, Okugaki S, Yasumitsu S, Enomoto S, Himeno S (2009) Involvement of DNA hypermethylation in down-regulation of the zinc transporter ZIP8 in cadmium-resistant metallothionein-null cells. Toxicol Appl Pharmacol 241(2):195–201

    Article  CAS  PubMed  Google Scholar 

  47. Michalke B, Lucio M, Berthele A, Kanawati B (2013) Manganese speciation in paired serum and CSF samples using SEC-DRC-ICP-MS and CE-ICP-DRC-MS. Anal Bioanal Chem 405(7):2301–2309

    Article  CAS  PubMed  Google Scholar 

  48. Filipov NM, Seegal RF, Lawrence DA (2005) Manganese potentiates in vitro production of proinflammatory cytokines and nitric oxide by microglia through a nuclear factor κB-dependent mechanism. Toxicol Sci 84(1):139–148

    Article  CAS  PubMed  Google Scholar 

  49. Yanagiya T, Imura N, Kondo Y, Himeno S (1999) Reduced uptake and enhanced release of cadmium in cadmium-resistant metallothionein null fibroblasts. Life Sci 65(14):PL177–PL182

    Article  CAS  PubMed  Google Scholar 

  50. Washko P, Cousins RJ (1977) Role of dietary calcium and calcium binding protein in cadmium toxicity in rats. J Nutr 107(5):920–928

    CAS  PubMed  Google Scholar 

  51. Min KS, Ueda H, Tanaka K (2008) Involvement of intestinal calcium transporter 1 and metallothionein in cadmium accumulation in the liver and kidney of mice fed a low-calcium diet. Toxicol Lett 176(1):85–92

    Article  CAS  PubMed  Google Scholar 

  52. Smith JA, Das A, Ray SK, Banik NL (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87(1):10–20

    Article  CAS  PubMed  Google Scholar 

  53. Fujishiro H, Okugaki S, Kubota K, Fujiyama T, Miyataka H, Himeno S (2009) The role of ZIP8 down-regulation in cadmium-resistant metallothionein-null cells. J Appl Toxicol 29(5):367–373

    Article  CAS  PubMed  Google Scholar 

  54. Park JD, Cherrington NJ, Klaassen CD (2002) Intestinal absorption of cadmium is associated with divalent metal transporter 1 in rats. Toxicol Sci 68(2):288–294

    Article  CAS  PubMed  Google Scholar 

  55. Dalton TP, He L, Wang B, Miller ML, Jin L, Stringer KF, Chang X, Baxter CS, Nebert DW (2005) Identification of mouse SLC39A8 as the transporter responsible for cadmium-induced toxicity in the testis. Proc Natl Acad Sci U S A 102(9):3401–3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu XF, Supek F, Nelson N, Culotta VC (1997) Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. J Biol Chem 272(18):11763–11769

    Article  CAS  PubMed  Google Scholar 

  57. Tuschl K, Clayton PT, Gospe SM Jr, Gulab S, Ibrahim S, Singhi P, Aulakh R, Ribeiro RT, Barsottini OG, Zaki MS, Del Rosario ML, Dyack S, Price V, Rideout A, Gordon K, Wevers RA, Chong WK, Mills PB (2012) Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet 90(3):457–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fujishiro H, Kubota K, Inoue D, Inoue A, Yanagiya T, Enomoto S, Himeno S (2011) Cross-resistance of cadmium-resistant cells to manganese is associated with reduced accumulation of both cadmium and manganese. Toxicology 280(3):118–125

    Article  CAS  PubMed  Google Scholar 

  59. Dantzler WH (2005) Challenges and intriguing problems in comparative renal physiology. J Exp Biol 208(Pt 4):587–594

    Article  CAS  PubMed  Google Scholar 

  60. Fujishiro H, Okugaki S, Nagao S, Satoh M, Himeno S (2006) Characterization of gene expression profiles of metallothionein-null cadmium-resistant cells. J Health Sci 52(3):292–299

    Article  CAS  Google Scholar 

  61. Wolff NA, Abouhamed M, Verroust PJ, Thévenod F (2006) Megalin-dependent internalization of cadmium-metallothionein and cytotoxicity in cultured renal proximal tubule cells. J Pharmacol Exp Ther 318(2):782–791

    Article  CAS  PubMed  Google Scholar 

  62. Elinder CG, Lind B, Kjellström T, Linnman L, Friberg L (1976) Cadmium in kidney cortex, liver, and pancreas from Swedish autopsies. Estimation of biological half time in kidney cortex, considering calorie intake and smoking habits. Arch Environ Health 31(6):292–302

    Article  CAS  PubMed  Google Scholar 

  63. Cigliano S, Remondelli P, Minichiello L, Mellone MC, Martire G, Bonatti S, Leone A (1996) Analysis of metal-regulated metallothionein and heat shock gene expression in HeLa-derived cadmium-resistant cells. Exp Cell Res 228(2):173–180

    Article  CAS  PubMed  Google Scholar 

  64. Jenkitkasemwong S, Wang CY, Coffey R, Zhang W, Chan A, Biel T, Kim JS, Hojyo S, Fukada T, Knutson MD (2015) SLC39A14 is required for the development of hepatocellular iron overload in murine models of hereditary hemochromatosis. Cell Metab 22(1):138–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Clark HL, Jhingran A, Sun Y, Vareechon C, de Jesus CS, Skaar EP, Chazin WJ, Calera JA, Hohl TM, Pearlman E (2016) Zinc and manganese chelation by neutrophil S100A8/A9 (calprotectin) limits extracellular Aspergillus fumigatus hyphal growth and corneal infection. J Immunol 196(1):336–344

    Article  CAS  PubMed  Google Scholar 

  66. Liu Z, Li H, Soleimani M, Girijashanker K, Reed JM, He L, Dalton TP, Nebert DW (2008) Cd2+ versus Zn2+ uptake by the ZIP8 HCO3 −-dependent symporter: kinetics, electrogenicity and trafficking. Biochem Biophys Res Commun 365(4):814–820

    Article  CAS  PubMed  Google Scholar 

  67. Fukada T, Kambe T (eds) (2014) Zinc signals in cellular functions and disorders. Springer, Tokyo

    Google Scholar 

  68. Fujishiro H, Ohashi T, Takuma M, Himeno S (2013) Down-regulation of S100A9 and S100A10 in manganese-resistant RBL-2H3 cells. J Toxicol Sci 38(5):753–757

    Article  CAS  PubMed  Google Scholar 

  69. Girijashanker K, He L, Soleimani M, Reed JM, Li H, Liu Z, Wang B, Dalton TP, Nebert DW (2008) Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol 73(5):1413–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fujishiro H, Ohashi T, Takuma M, Himeno S (2013) Suppression of ZIP8 expression is a common feature of cadmium-resistant and manganese-resistant RBL-2H3 cells. Metallomics 5(5):437–444

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiichiro Himeno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Himeno, S., Fujishiro, H. (2017). Roles of Zinc Transporters in Cellular Transport of Cadmium and Manganese. In: Ogra, Y., Hirata, T. (eds) Metallomics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56463-8_13

Download citation

Publish with us

Policies and ethics