Skip to main content

Cell-Free Protein Production for Structural Biology

  • Protocol
  • First Online:
Advanced Methods in Structural Biology

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Cell-free protein synthesis using E. coli cell extracts has successfully been applied to protein sample preparation for structure determination by X-ray crystallization and NMR spectroscopy. The standard reaction solution for E. coli cell-free protein synthesis by coupled transcription-translation contains the S30 extract of E. coli cells, T7 RNA polymerase, and the DNA template (either plasmid or PCR-amplified linear DNA). Milligram quantities of proteins can be synthesized by the dialysis mode of the cell-free reaction in several hours. The E. coli cell-free protein synthesis method is suitable for the production of mammalian proteins, heteromultimeric protein complexes, and integral membrane proteins and features numerous advantages over the recombinant protein expression methods with bacterial and eukaryotic host cells. We present examples of structure determinations of mammalian and bacterial heteromultimeric protein complexes prepared by the cell-free production method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zubay G (1973) In vitro synthesis of protein in microbial systems. Annu Rev Genet 7:267–287

    Article  CAS  PubMed  Google Scholar 

  2. Pratt JM (1984) Coupled transcription-translation in prokaryotic cell-free system. In: Hames BD, Higgins SJ (eds) Transcription and translation. IRL Press, Washington, DC, pp 179–209

    Google Scholar 

  3. Spirin AS, Baranov VI, Ryabova LA et al (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242:1162–1164

    Article  CAS  PubMed  Google Scholar 

  4. Kigawa T, Yokoyama S (1991) A continuous cell-free protein synthesis system for coupled transcription-translation. J Biochem 110:166–168

    CAS  PubMed  Google Scholar 

  5. Kigawa T, Muto Y, Yokoyama S (1995) Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis. J Biomol NMR 6:129–134

    Article  CAS  PubMed  Google Scholar 

  6. Kim DM, Kigawa T, Choi C-Y et al (1996) A highly efficient cell-free protein synthesis system from Escherichia coli. Eur J Biochem 239:881–886

    Article  CAS  PubMed  Google Scholar 

  7. Yabuki T, Kigawa T, Dohmae N et al (1998) Dual amino acid-selective and site-directed stable-isotope labeling of the human c-Ha-Ras protein by cell-free synthesis. J Biomol NMR 11:295–306

    Article  CAS  PubMed  Google Scholar 

  8. Kigawa T, Yabuki T, Yoshida Y et al (1999) Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett 442:15–19

    Article  CAS  PubMed  Google Scholar 

  9. Kigawa T, Yabuki T, Matsuda N et al (2004) Preparation of Escherichia coli cell extract for highly productive cell-free protein expression. J Struct Funct Genomics 5:63–68

    Article  CAS  PubMed  Google Scholar 

  10. Kigawa T (2010) Cell-free protein preparation through prokaryotic transcription-translation methods. Methods Mol Biol 607:1–10

    Article  CAS  PubMed  Google Scholar 

  11. Madin K, Sawasaki T, Ogasawara T et al (2000) A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc Natl Acad Sci U S A 97:559–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takai K, Endo Y (2010) The cell-free protein synthesis system from wheat germ. Methods Mol Biol 607:23–30

    Article  CAS  PubMed  Google Scholar 

  13. Takai K, Sawasaki T, Endo Y (2010) Practical cell-free protein synthesis system using purified wheat embryos. Nat Protoc 5(2):227–238

    Article  CAS  PubMed  Google Scholar 

  14. Tarui H, Imanishi S, Hara T (2000) A novel cell-free translation/glycosylation system prepared from insect cells. J Biosci Bioeng 90:508–514

    Article  CAS  PubMed  Google Scholar 

  15. Wakiyama M, Kaitsu Y, Yokoyama S (2006) Cell-free translation system from Drosophila S2 cells that recapitulates RNAi. Biochem Biophys Res Commun 343:1067–1071

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki T, Ezure T, Ito M et al (2009) An insect cell-free system for recombinant protein expression using cDNA resources. Methods Mol Biol 577:97–108

    Article  CAS  PubMed  Google Scholar 

  17. Mikami S, Masutani M, Sonenberg N et al (2006) An efficient mammalian cell-free translation system supplemented with translation factors. Protein Expr Purif 46:348–357

    Article  CAS  PubMed  Google Scholar 

  18. Mikami S, Kobayashi T, Masutani M et al (2008) A human cell-derived in vitro coupled transcription/translation system optimized for production of recombinant proteins. Protein Expr Purif 62:190–198

    Article  CAS  PubMed  Google Scholar 

  19. Kim DM, Choi CH (1996) A semicontinuous prokaryotic coupled transcription/translation system using a dialysis membrane. Biotechnol Prog 12:645–649

    Article  CAS  PubMed  Google Scholar 

  20. Kigawa T, Yamaguchi-Nunokawa E, Kodama K et al (2002) Selenomethionine incorporation into a protein by cell-free synthesis. J Struct Funct Genomics 2:29–35

    Article  CAS  PubMed  Google Scholar 

  21. Matsuda T, Koshiba S, Tochio N et al (2007) Improving cell-free protein synthesis for stable-isotope labeling. J Biomol NMR 37:225–229

    Article  CAS  PubMed  Google Scholar 

  22. Kigawa T, Matsuda T, Yabuki T, et al (2008) Bacterial cell-free system for highly efficient protein synthesis. In: Spirin AS, Swartz JR (eds) Cell-free protein synthesis. Wiley-VCH, pp 83–97

    Google Scholar 

  23. Kigawa T, Inoue M, Aoki M, et al (2008) The use of the Escherichia coli cell-free protein synthesis for structural biology and structural proteomics. In: Spirin AS, Swartz JR (eds) Cell-free protein synthesis. Wiley-VCH, pp 99–109

    Google Scholar 

  24. Kigawa T (2010) Cell-free protein production system with the E. coli crude extract for determination of protein folds. Methods Mol Biol 607:101–111

    Article  CAS  PubMed  Google Scholar 

  25. Jackson AM, Boutell J, Cooley N et al (2003) Cell-free protein synthesis for proteomics. Brief Funct Genomic Proteomic 2:308–319

    Article  Google Scholar 

  26. Carlson ED, Gan R, Hodgman CE et al (2012) Cell-free protein synthesis: applications come of age. Biothechnol Adv 30:1185–1194

    Article  CAS  Google Scholar 

  27. Yabuki T, Motoda Y, Hanada K et al (2007) A robust two-step PCR method of template DNA production for high-throughput cell-free protein synthesis. J Struct Funct Genomics 8:173–191

    Article  CAS  PubMed  Google Scholar 

  28. Aoki M, Matsuda T, Tomo Y et al (2009) Automated system for high-throughput protein production using the dialysis cell-free method. Protein Expr Purif 68:128–136

    Article  CAS  PubMed  Google Scholar 

  29. Seki E, Matsuda N, Yokoyama S et al (2008) Cell-free protein synthesis system from Escherichia coli cells cultured at decreased temperatures improves productivity by decreasing DNA template degradation. Anal Biochem 377:156–161

    Article  CAS  PubMed  Google Scholar 

  30. Terada T, Murata T, Shirouzu M et al (2014) Cell-free expression of protein complexes for structural biology. Methods Mol Biol 1091:151–159

    Article  CAS  PubMed  Google Scholar 

  31. Matsuda T, Kigawa T, Koshiba S et al (2006) Cell-free synthesis of zinc-binding proteins. J Struct Funct Genomics 7:93–100

    Article  CAS  PubMed  Google Scholar 

  32. Wada T, Shirouzu M, Terada T et al (2003) Structure of a conserved CoA-binding protein synthesized by a cell-free system. Acta Crystallogr D Biol Crystallogr 59:1213–1218

    Article  PubMed  Google Scholar 

  33. Yokoyama J, Matsuda T, Koshiba S et al (2010) An economical method for producing stable-isotope labeled proteins by the E. coli cell-free system. J Biomol NMR 48(4):193–201

    Article  CAS  PubMed  Google Scholar 

  34. Yokoyama J, Matsuda T, Koshiba S et al (2011) A practical method for cell-free protein synthesis to avoid stable isotope scrambling and dilution. Anal Biochem 411(2):223–229

    Article  CAS  PubMed  Google Scholar 

  35. Hirao I, Ohtsuki T, Fujiwara T et al (2002) An unnatural base pair for incorporating amino acid analogs into proteins. Nat Biotechnol 20:177–182

    Article  CAS  PubMed  Google Scholar 

  36. Kiga D, Sakamoto K, Kodama K et al (2002) An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Proc Natl Acad Sci U S A 99:9715–9720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kodama K, Fukuzawa S, Nakayama H et al (2006) Regioselective carbon-carbon bond formation in proteins with palladium catalysis; new protein chemistry by organometallic chemistry. Chembiochem 7:134–139

    Article  CAS  PubMed  Google Scholar 

  38. Mukai T, Yanagisawa T, Ohtake K et al (2011) Genetic-code evolution for protein synthesis with non-natural amino acids. Biochem Biophys Res Commun 411:757–761

    Article  CAS  PubMed  Google Scholar 

  39. Mukai T, Hayashi A, Iraha F et al (2010) Codon reassignment in the Escherichia coli genetic code. Nucleic Acids Res 38:8188–8195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yokoyama S, Hirota H, Kigawa T et al (2000) Structural genomics project in Japan. Nat Struct Biol 7(Suppl):943–945

    Article  CAS  PubMed  Google Scholar 

  41. Yokoyama S (2003) Protein expression systems for structural genomics and proteomics. Curr Opin Chem Biol 7:39–43

    Article  CAS  PubMed  Google Scholar 

  42. Yokoyama S, Terwilliger TC, Kuramitsu S et al (2007) RIKEN aids international structural genomics efforts. Nature 445:21

    Article  CAS  PubMed  Google Scholar 

  43. URL: http://www.genomics.agilent.com/article.jsp?pageId=484

  44. Davanloo P, Rosenberg AH, Dunn JJ et al (1984) Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 81:2035–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thomas JG, Ayling A, Baneyx F (1997) Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. To fold or to refold. Appl Biochem Biotechnol 66:197–238

    Article  CAS  PubMed  Google Scholar 

  46. Kadokura H, Katzen F, Beckwith J (2003) Protein disulfide bond formation in prokaryotes. Annu Rev Biochem 72:111–135

    Article  CAS  PubMed  Google Scholar 

  47. Muller M, Koch HG, Beck K et al (2001) Protein traffic in bacteria: multiple routes from the ribosome to and across the membrane. Prog Nucleic Acid Res Mol Biol 66:107–157

    Article  CAS  PubMed  Google Scholar 

  48. Weski J, Ehrmann M (2012) Genetic analysis of 15 protein folding factors and proteases of the Escherichia coli cell envelope. J Bacteriol 194:3225–3233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sakamoto K, Murayama K, Oki K et al (2009) Genetic encoding of 3-iodo-L-tyrosine in Escherichia coli for single-wavelength anomalous dispersion phasing in protein crystallography. Structure 17:335–344

    Article  CAS  PubMed  Google Scholar 

  50. Kainosho M, Torizawa T, Iwashita Y et al (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57

    Article  CAS  PubMed  Google Scholar 

  51. Hanawa-Suetsugu K, Kukimoto-Niino M, Mishima-Tsumagari C et al (2012) Structural basis for mutual relief of the Rac guanine nucleotide exchange factor DOCK2 and its partner ELMO1 from their autoinhibited forms. Proc Natl Acad Sci U S A 109:3305–3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kukimoto-Niino M, Sakamoto A, Kanno E et al (2008) Structural basis for the exclusive specificity of Slac2-a/melanophilin for the Rab27 GTPases. Structure 16:1478–1490

    Article  CAS  PubMed  Google Scholar 

  53. Arai S, Saijo S, Suzuki K et al (2013) Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures. Nature 493:703–707

    Article  CAS  PubMed  Google Scholar 

  54. Arai S, Yamato I, Shiokawa A et al (2009) Reconstitution in vitro of the catalytic portion (NtpA3-B3-D-G complex) of Enterococcus hirae V-type Na+-ATPase. Biochem Biophys Res Commun 390:698–702

    Article  CAS  PubMed  Google Scholar 

  55. Saijo S, Arai S, Hossain KM et al (2011) Crystal structure of the central axis DF complex of the prokaryotic V-ATPase. Proc Natl Acad Sci U S A 108:19955–19960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Creighton TE (1988) Toward a better understanding of protein folding pathways. Proc Natl Acad Sci U S A 85:5082–5086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Paget MS, Buttner MJ (2003) Thiol-based regulatory switches. Annu Rev Genet 37:91–121

    Article  CAS  PubMed  Google Scholar 

  58. Sevier CS, Kaiser CA (2002) Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol 3:836–847

    Article  CAS  PubMed  Google Scholar 

  59. Kusano S, Kukimoto-Niino M, Hino N et al (2012) Structural basis for extracellular interactions between calcitonin receptor-like receptor and receptor activity-modifying protein 2 for adrenomedullin-specific binding. Protein Sci 21:199–210

    Article  CAS  PubMed  Google Scholar 

  60. Kusano S, Kukimoto-Niino M, Hino N et al (2012) Structural basis of interleukin-5 dimer recognition by its α receptor. Protein Sci 21:850–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Goerke AR, Swartz JR (2008) Development of cell-free protein synthesis platforms for disulfide bonded proteins. Biotechnol Bioeng 99:351–367

    Article  CAS  PubMed  Google Scholar 

  62. Michel E, Wüthrich K (2012) Cell-free expression of disulfide-containing eukaryotic proteins for structural biology. FEBS J 279:3176–3184

    Article  CAS  PubMed  Google Scholar 

  63. Kawasaki T, Gouda MD, Sawasaki T et al (2003) Efficient synthesis of a disulfide-containing protein through a batch cell-free system from wheat germ. Eur J Biochem 270:4780–4786

    Article  CAS  PubMed  Google Scholar 

  64. Ezure T, Suzuki T, Shikata M et al (2007) Expression of proteins containing disulfide bonds in an insect cell-free system and confirmation of their arrangements by MALDI-TOF MS. Proteomics 7:4424–4434

    Article  CAS  PubMed  Google Scholar 

  65. Stech M, Merk H, Schenk JA et al (2012) Production of functional antibody fragments in a vesicle-based eukaryotic cell-free translation system. J Biotechnol 164:220–231

    Article  CAS  PubMed  Google Scholar 

  66. Yin G, Garces ED, Yang J, et al (2012) Aglycosylated antibodies and antibody fragments produced in a scalable in vitro transcription-translation system. MAbs 4(2)

    Google Scholar 

  67. Matsuda T, Furumoto S, Higuchi K et al (2012) Rapid biochemical synthesis of 11C-labeled single chain variable fragment antibody for immuno-PET by cell-free protein synthesis. Bioorg Med Chem 20(22):6579–6582

    Article  CAS  PubMed  Google Scholar 

  68. Frey S, Haslbeck M, Hainzl O et al (2008) Synthesis and characterization of a functional intact IgG in a prokaryotic cell-free expression system. Biol Chem 389:37–45

    Article  CAS  PubMed  Google Scholar 

  69. Matsuda T, Watanabe S, Kigawa T (2013) Cell-free synthesis system suitable for disulfide-containing proteins. Biochem Biophys Res Commun 431:296–301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr. K. Ake, Ms. T. Imada, and Ms. T. Nakayama for their assistance in the manuscript preparation. This work was supported by the RIKEN Structural Genomics/Proteomics Initiative (RSGI), the National Project on Protein Structural and Functional Analyses, the Targeted Proteins Research Program, and the Platform for Drug Discovery, Informatics, and Structural Life Science, of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (to S.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyuki Yokoyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this protocol

Cite this protocol

Terada, T., Kusano, S., Matsuda, T., Shirouzu, M., Yokoyama, S. (2016). Cell-Free Protein Production for Structural Biology. In: Senda, T., Maenaka, K. (eds) Advanced Methods in Structural Biology. Springer Protocols Handbooks. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56030-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56030-2_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56028-9

  • Online ISBN: 978-4-431-56030-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics