Skip to main content

Abstract

Vocal fold paralysis is a pathological finding of motion impairment of varying degrees caused by nervous system disorders. In this chapter, the detailed anatomy of the laryngeal nerves and their varying anastomotic patterns within the larynx are described. Regeneration of nerve fibers after damage varies among patients. Significant misdirected regeneration occurs in some, whereas others show little synkinesis, which is a major cause of considerable inconsistencies of the vibratory pattern of the vocal folds among patients with unilateral vocal fold paralysis. Second, the effects of changes in the physical properties of the affected vocal fold on the production of the mucosal wave are summarized. Third, the factors that must be considered before surgical treatment of paralytic dysphonia are highlighted. Finally, reacquisition of the thyroarytenoid muscle tonus by reinnervation is important in recovering the preinjury voice with a dynamic mucosal wave.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Paralysis” means loss or impairment of motor function due in part to a lesion of the neural or muscular mechanism (cited from Dorland’s illustrated Medical Dictionary).

  2. 2.

    The activities of the cricothyroid muscle are assumed to be responsible for the preponderance of the median position among paralyzed vocal fold positions [22].

References

  1. Vogel PH. The innervations of the larynx of man and the dog. Am J Anat. 1952;90:427–47.

    Article  CAS  PubMed  Google Scholar 

  2. Sanudo JR, Maranillo E, Leon X, Mirapeix RM, Orus C, Quer M. An anatomical study of anastomoses between the laryngeal nerves. Laryngoscope. 1999;109:983–7.

    Article  CAS  PubMed  Google Scholar 

  3. Boles R, Fritzell B. Injury and repair of the recurrent laryngeal nerves in dogs. Laryngoscope. 1969;79:1405–18.

    Article  CAS  PubMed  Google Scholar 

  4. Shindo ML, Herzon GD, Hanson DG, Cain DJ, Sahgal V. Effects of denervation on laryngeal muscles: a canine model. Laryngoscope. 1992;102:663–9.

    Article  CAS  PubMed  Google Scholar 

  5. Woodson GE. Spontaneous laryngeal reinnervation after recurrent laryngeal or vagus nerve injury. Ann Otol Rhinol Laryngol. 2007;116:57–65.

    Article  PubMed  Google Scholar 

  6. Woodson G. Configuration of the glottis in laryngeal paralysis. II: animal experiments. Laryngoscope. 1993;103:1235–41.

    Article  CAS  PubMed  Google Scholar 

  7. Aronson AE, DeSanto LW. Adductor spastic dysphonia: three years after recurrent laryngeal nerve resection. Laryngoscope. 1983;93:1–8.

    Article  CAS  PubMed  Google Scholar 

  8. Schratzki H, Fritzell B. Treatment of spasmodic dysphonia by means of resection of the recurrent laryngeal nerve. Acta Otolaryngol. 1988;449:115–7.

    Article  Google Scholar 

  9. Netterville JL, Stone RE, Rainey C, Zealear DL, Ossoff RH. Recurrent laryngeal nerve avulsion for treatment of spatic dysphonia. Ann Otol Rhinol Laryngol. 1991;100:10–4.

    Article  CAS  PubMed  Google Scholar 

  10. Crumley RL. Unilateral recurrent laryngeal nerve paralysis. J Voice. 1994;1:70–83.

    Google Scholar 

  11. Koufman JA, Walker FO, Joharji GM. The cricothyroid muscle does not influence vocal fold position in laryngeal paralysis. Laryngoscope. 1995;105:368–72.

    Article  CAS  PubMed  Google Scholar 

  12. Nomoto M, Yoshihara T, Kanda T, Kaneko T. Synapse formation by autonomic nerves in the previously denervated neuromuscular junctions of the feline intrinsic laryngeal muscles. Brain Res. 1991;539:276–86.

    Article  CAS  PubMed  Google Scholar 

  13. Nomoto M, Yoshihara T, Kanda T, Konno A, Kaneko T. Misdirected reinnervation in the feline intrinsic laryngeal muscles after long-term denervation. Acta Otolaryngol Suppl. 1993;506:71–4.

    Article  CAS  PubMed  Google Scholar 

  14. Sanders I, Wu B, Mu L, Li Y, Biller HF. The innervations of the human larynx. Arch Otolaryngol Head Neck Surg. 1993;119:934–9.

    Article  CAS  PubMed  Google Scholar 

  15. Wu BL, Sanders I, Mu L, Biller HF. The human communicating nerve. An extension of the external superior laryngeal nerve that innervates the vocal cord. Arch Otolaryngol Head Neck Surg. 1994;120:1321–8.

    Article  CAS  PubMed  Google Scholar 

  16. Crumley RC. Laryngeal synkinesis revisited. Ann Otol Rhinol Laryngol. 2000;109:365–71.

    Article  CAS  PubMed  Google Scholar 

  17. Gacek RR. Morphologic correlates for laryngeal reinnervation. Laryngoscope. 2001;111:1871–7.

    Article  CAS  PubMed  Google Scholar 

  18. Maranillo E, Vazquez T, Quer M, Niedenfuhr MR, Leon X, Viejo F, Parkin I, Sanudo JR. Potential structures that could be confused with a nonrecurrent inferior laryngeal nerve: an anatomical study. Laryngoscope. 2008;118:56–60.

    Article  PubMed  Google Scholar 

  19. Nasri S, Beizai P, Ye M, Sercarz JA, Kim YM, Berke GS. Cross-innervation of the thyroarytenoid muscle by a branch from the external division of the superior laryngeal nerve. Ann Otol Rhinol Laryngol. 1997;106:594–8.

    Article  CAS  PubMed  Google Scholar 

  20. Semon F. Clinical remarks. On the proclivity of the abductor fibers of the recurrent laryngeal nerve to become affected sooner than the adductor fibers or even exclusively; in cases of undoubted central or peripheral injury or disease of the roots or trunks of the pneumogastric, spinal accessory or recurrent nerves. Arch Laryngol. 1881;2:197–222.

    Google Scholar 

  21. Faaborg-Andersen K. The position of paretic vocal cords. Acta Otolaryngol. 1964;57:50–4.

    Article  CAS  PubMed  Google Scholar 

  22. Grossman M. Contribution to the mutural functional relationships of the muscles of the larynx. Arch Laryngol Rhinol. 1906;18:463–71.

    Google Scholar 

  23. Woodson GE. Configuration of the glottis in laryngeal paralysis. I: clinical study. Laryngoscope. 1993;103:1227–34.

    Article  CAS  PubMed  Google Scholar 

  24. Blitzer A, Jahn AF, Keider A. Semon’s law revisited: an electromyographic analysis of laryngeal synkinesis. Ann Otol Rhinol Laryngol. 1996;105:764–9.

    Article  CAS  PubMed  Google Scholar 

  25. Maranillo E, Leon X, Orus C, Quer M, Sanudo JR. Variability in nerve patterns of the adductor muscle group supplied by the recurrent laryngeal nerve. Laryngoscope. 2005;115:358–62.

    Article  PubMed  Google Scholar 

  26. Brown MC, Holland RL, Hopkins WG. Motor nerve sprouting. Ann Rev Neurosci. 1981;4:17–42.

    Article  CAS  PubMed  Google Scholar 

  27. Damrose EJ, Huang RY, Blumin JH, Blackwell KE, Sercarz JA, Berke GS. Lack of evoked laryngeal electromyography response in patients with a clinical diagnosis of vocal cord paralysis. Ann Otol Rhinol Laryngol. 2001;110:815–9.

    Article  CAS  PubMed  Google Scholar 

  28. Siribodhi C, Sunderland W, Atkins JP, Bonner FJ. Electromyographic studies of laryngeal paralysis and regeneration of laryngeal motor nerves in dogs. Laryngoscope. 1963;73:148–63.

    Article  Google Scholar 

  29. Hiroto I, Hirano M, Tomita H. Electromyographic investigations of human vocal cord paralysis. Ann Otol Rhinol Laryngol. 1968;77:296–304.

    Article  Google Scholar 

  30. Tashiro T. Experimental studies of the reinnervation of larynx after accurate neurorrhaphy. Laryngoscope. 1972;82:225–36.

    Article  CAS  PubMed  Google Scholar 

  31. Ohyama M, Ueda N, Harvey JE, Mogi G, Ogura JH. Electrophysiologic study of reinnervated laryngeal motor units. Laryngoscope. 1972;82:237–51.

    Article  CAS  PubMed  Google Scholar 

  32. Satoh I, Harvey JH, Ogura JH. Impairment of function of the intrinsic laryngeal muscles after regeneration of the recurrent laryngeal nerve. Laryngoscope. 1974;84:53–66.

    Article  Google Scholar 

  33. Crumley RL. Laryngeal synkinesis: its significance to the laryngologists. Ann Otol Rhinol Laryngol. 1989;98:87–92.

    Article  CAS  PubMed  Google Scholar 

  34. Flint PW, Downs DH, Coltrera MD. Laryngeal synkinesis following reinnervation in the rat: neuroanatomic and physiologic study using retrograde fluorescent tracers and electromyography. Ann Otol Rhinol Laryngol. 1991;100:797–806.

    Article  CAS  PubMed  Google Scholar 

  35. Nahm I, Shin T, Watanabe H, Maeyama T. Misdirected regeneration of injured recurrent laryngeal nerve in the cat. Am J Otolaryngol. 1993;14:43–8.

    Article  CAS  PubMed  Google Scholar 

  36. Min YB, Finnegan EM, Hoffman HT, Luschei ES, McCulloch TM. A preliminary study of the prognostic role of electromyography in laryngeal paralysis. Otolaryngol Head Neck Surg. 1994;111:770–5.

    Article  CAS  PubMed  Google Scholar 

  37. Wani MK, Woodson GE. Paroxysmal laryngospasm after laryngeal nerve injury. Laryngoscope. 1999;109:694–7.

    Article  CAS  PubMed  Google Scholar 

  38. Diamond J, Cooper E, Turner C, Macintyre L. Trophic regulation of nerve sprouting. Science. 1976;193:371–7.

    Article  CAS  PubMed  Google Scholar 

  39. Sunderland S, Swaney WE. The intraneural topography of the recurrent laryngeal nerve in man. Anat Rec. 1952;114:411–26.

    Article  CAS  PubMed  Google Scholar 

  40. Gacek RR, Malmgren LT, Lyon MJ. Localization of adductor and abductor motor nerve fibers to the larynx. Ann Otol Rhinol Laryngol. 1977;86:770–6.

    Article  Google Scholar 

  41. Malmgren LT, Gacek RR. Acetylcholineesterase staining of fiber components in feline and human recurrent laryngeal nerve: topography of laryngeal motor fiber regions. Acta Otolaryngol. 1981;91:337–52.

    Article  CAS  PubMed  Google Scholar 

  42. Hisa Y, Koike S, Tadaki N, Bamba H, Shogaki K, Uno T. Neurotransmitters and neuromodulators involved in laryngeal innervation. Ann Otol Rhinol Laryngol. 1999;108:3–14.

    Google Scholar 

  43. Gordon JH, McCabe BF. The effect of accurate neurorrhaphy on reinnervation and return of laryngeal function. Laryngoscope. 1968;78:236–50.

    Article  CAS  PubMed  Google Scholar 

  44. Morledge DR, Lauvstad WA, Calcaterra TC. Delayed reinnervation of the paralyzed larynx. An experimental study in the dog. Arch Otolaryngol. 1973;37:291–3.

    Article  Google Scholar 

  45. Eibling DE, Gross RD. Subglottic air pressure: a key component of swallowing efficiency. Ann Otol Rhinol Laryngol. 1996;105:253–8.

    Article  CAS  PubMed  Google Scholar 

  46. Carrau RL, Pou A, Eibling DE, Murry T. Laryngeal framework surgery for the management of aspiration. Head Neck. 1999;21:139–45.

    Article  CAS  PubMed  Google Scholar 

  47. Tabaee A, Murry T, Zschommler A, Desloge RB. Flexible endoscopic evaluation of swallowing with sensory testing in patients with unilateral vocal fold immobility: incidence and pathophysiology of aspiration. Laryngoscope. 2005;115:565–9.

    Article  PubMed  Google Scholar 

  48. Heitmiller RF, Tseng E, Jones B. Prevalence of aspiration and laryngeal penetration in patients with unilateral vocal fold motion impairment. Dysphagia. 2000;15:184–7.

    Article  CAS  PubMed  Google Scholar 

  49. Bhattacharyya N, Kotz T, Shapiro J. Dysphagia and aspiration with unilateral vocal cord immobility: incidence, characterization and response to surgical treatment. Ann Otol Rhinol Laryngol. 2002;111:672–9.

    Article  PubMed  Google Scholar 

  50. Smith E, Taylor M, Mendoza M, Barkmeier J, Lemke J, Hoffman H. Spasmodic dysphonia and vocal fold paralysis: outcomes of voice problems on work-related functioning. J Voice. 1998;12:223–32.

    Article  CAS  PubMed  Google Scholar 

  51. Benninger MS, Ahuja AS, Gardner G, Grywalski C. Assessing outcomes for dysphonic patients. J Voice. 1998;12:540–50.

    Article  CAS  PubMed  Google Scholar 

  52. Baba M, Natsugoe S, Shimada M, Nakano S, Noguchi Y, Kawachi K, Kusano C, Aikou T. Does hoarseness of voice from recurrent nerve paralysis after esophagectomy for carcinoma influence patient quality of life? J Am Coll Surg. 1999;188:231–6.

    Article  CAS  PubMed  Google Scholar 

  53. Fang TJ, Li HY, Glicklich RE, Chen YH, Wang PC, Chuang HF. Quality of life measures and predictors for adults with unilateral vocal cord paralysis. Laryngoscope. 2008;118:1837–41.

    Article  PubMed  Google Scholar 

  54. Isshiki N. Vocal efficiency index. In: Stevens KN, Hirano M, editors. Vocal fold physiology. Tokyo: University of Tokyo Press; 1981. p. 193–207.

    Google Scholar 

  55. Hirano M. Clinical examination of voice. Wien: Springer; 1981.

    Google Scholar 

  56. Lucero JC. Optimal glottal configuration for ease of phonation. J Voice. 1998;12:151–8.

    Article  CAS  PubMed  Google Scholar 

  57. Kobayashi J, Yumoto E, Hyodo M, Gyo K. Two-dimensional analysis of vocal fold vibration in unilaterally atrophied larynges. Laryngoscope. 2000;110:440–6.

    Article  CAS  PubMed  Google Scholar 

  58. Hirano M. Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniatr. 1974;26:89–94.

    Article  CAS  Google Scholar 

  59. Yumoto E, Kadota Y, Kurokawa H. Thyroarytenoid muscle activity and infraglottic aspect of canine vocal fold vibration. Arch Otolaryngol Head Neck Surg. 1995;121:759–64.

    Article  CAS  PubMed  Google Scholar 

  60. Yanagi E, Slavit DH, McCaffrey TV. Study of phonation in the excised canine larynx. Otolaryngol Head Neck Surg. 1991;105:586–95.

    CAS  PubMed  Google Scholar 

  61. Choi HS, Berke GS, Ye M, Kreiman J. Function of the thyroarytenoid muscle in a canine laryngeal model. Ann Otol Rhinol Laryngol. 1993;102:769–76.

    Article  CAS  PubMed  Google Scholar 

  62. Sloan SH, Berke GS, Gerratt BR, Kreiman J, Ye M. Determination of vocal fold mucosal wave velocity in an in vivo canine model. Laryngoscope. 1993;103:947–53.

    Article  CAS  PubMed  Google Scholar 

  63. Yumoto E, Kadota Y. Quantitative evaluation of the effects of thyroarytenoid muscle activity upon pliability of vocal fold mucosa in an in vivo canine model. Laryngoscope. 1997;107:266–72.

    Article  CAS  PubMed  Google Scholar 

  64. Sercarz JA, Berke GS, Ming YM, Gerratt BR, Natividad MN. Videostroboscopy of human vocal fold paralysis. Ann Otol Rhinol Laryngol. 1992;101:567–77.

    Article  CAS  PubMed  Google Scholar 

  65. Tanabe M, Isshiki N, Kitajima K. Vibratory pattern of the vocal cord in unilateral paralysis of the cricothyroid muscle. An experimental study. Acta Otolaryngol. 1972;74:339–45.

    Article  CAS  PubMed  Google Scholar 

  66. Isshiki N, Tanabe M, Ishizaka K, Broad D. Clinical significance of asymmetrical vocal cord tension. Ann Otol Rhinol Laryngol. 1977;86:58–66.

    Article  CAS  PubMed  Google Scholar 

  67. Maunsell R, Ouaknine M, Giovanni A, Crespo A. Vibratory pattern of vocal folds under tension asymmetry. Otolaryngol Head Neck Surg. 2006;135:438–44.

    Article  PubMed  Google Scholar 

  68. Yumoto E, Kurokawa H, Okamura H. Vocal fold vibration of the canine larynx: observation from an infraglottic view. J Voice. 1991;5:299–303.

    Article  Google Scholar 

  69. Yumoto E, Kadota Y, Kurokawa H. Tracheal view of vocal fold vibration in excised canine larynx. Arch Otolaryngol Head Neck Surg. 1993;119:73–8.

    Article  CAS  PubMed  Google Scholar 

  70. Yumoto E, Kadota Y, Kurokawa H. Infraglottic aspect of canine vocal fold vibration: effect of increase of mean airflow rate and lengthening of vocal fold. J Voice. 1993;7:311–8.

    Article  CAS  PubMed  Google Scholar 

  71. Yumoto E, Kadota Y, Kurokawa H, Sasaki Y. Effects of vocal fold tension and thyroarytenoid activity on the infraglottic aspect of vocal fold vibration and glottal source sound quality. In: Fujimura O, Hirano M, editors. Vocal fold physiology: voice quality control. San Diego: Singular Publishing Group; 1995. p. 127–45.

    Google Scholar 

  72. Yumoto E, Kadota Y. Pliability of the vocal fold mucosa in relation to the mucosal upheaval during phonation. Arch Otolaryngol Head Neck Surg. 1998;124:897–902.

    Article  CAS  PubMed  Google Scholar 

  73. Hirano M, Yoshida T, Tanaka S. Vibratory behavior of human vocal folds viewed from below. In: Gauffin J, Hammarberg B, editors. Vocal fold physiology. Acoustic, perceptual, and physiological aspects of voice mechanism. San Diego: Singular Publishing Group; 1991. p. 1–6.

    Google Scholar 

  74. Yumoto E, Kadota Y, Mori T. Vocal fold vibration viewed from the tracheal side in living human beings. Otolaryngol Head Neck Surg. 1996;115:329–34.

    Article  CAS  PubMed  Google Scholar 

  75. Sanders I, Rai S, Han Y, Biller HF. Human vocalis contains distinct superior and inferior subcompartments: possible candidates for the two masses of vocal fold vibration. Ann Otol Rhinol Laryngol. 1998;107:826–33.

    Article  CAS  PubMed  Google Scholar 

  76. Sanders I, Han Y, Wang J, Biller H. Muscle spindles are concentrated in the superior vocalis subcompartment of the human thyroarytenoid muscle. J Voice. 1998;12:7–16.

    Article  CAS  PubMed  Google Scholar 

  77. Gray SD, Bielamowicz SA, Titze IR, Dove H, Ludlow C. Experimental approaches to vocal fold alteration: introduction to the minithyrotomy. Ann Otol Rhinol Laryngol. 1999;108:1–9.

    Article  CAS  PubMed  Google Scholar 

  78. Isshiki N, Ishikawa T. Diagnostic value of tomography in unilateral vocal cord paralysis. Laryngoscope. 1976;86:1573–8.

    Article  CAS  PubMed  Google Scholar 

  79. Yamada M, Hirano M. Recurrent laryngeal nerve paralysis. A 10-year review of 564 patients. Auris Nasus Larynx. 1983;10(Suppl):1–15.

    Article  Google Scholar 

  80. Hirano M. Phonosurgery. Basic and clinical investigations. Otologia (Fukuoka). 1975;21:239–442.

    Google Scholar 

  81. Yumoto E, Nakano K, Oyamada Y. Relationship between 3D behavior of the unilaterally paralyzed larynx and aerodynamic vocal function. Acta Otolaryngol. 2003;123:274–8.

    Article  PubMed  Google Scholar 

  82. Yumoto E, Sanuki T, Minoda R, Kumai Y, Nishimoto K, Kodama N. Over-adduction of the unaffected vocal fold during phonation in the unilaterally paralyzed larynx. Acta Otolaryngol. 2014;134:744–52.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Yumoto, E. (2015). Basic Knowledge of Vocal Fold Paralysis. In: Pathophysiology and Surgical Treatment of Unilateral Vocal Fold Paralysis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55354-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55354-0_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55353-3

  • Online ISBN: 978-4-431-55354-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics