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Foreword

Our understanding of the roles of the essential metal zinc in health and disease

processes is advancing rapidly, as is evident from the remarkable studies presented

in this book on zinc signaling mechanisms. Certainly many excellent scientists have

contributed to the foundations of this field, and I trust that they will not be offended

if I cannot mention them all in this limited space. However, I find the pioneering

studies of several clinicians and molecular biologists particularly noteworthy of

mention. The clinicians Ananda Prasad and Harold Sandstead traveled to Iran in the

late 1950s and 1960s and found young adults who had failed to thrive and mature

and then deduced that this was due to dietary zinc deficiency (Prasad 1984). By the

early 1970s, Edward Moynahan identified acrodermatitis enteropathica as a genetic

disease of zinc deficiency in humans (Moynahan 1974). These findings led the

American National Academy of Sciences in the 1970s to realize that humans could,

in fact, become zinc deficient and that zinc deficiency could cause disease.

The molecular biologist Richard Palmiter first described the mammalian

metallothionein genes and demonstrated their dramatic transcriptional induction

by zinc and then created mouse models which over-express or lack metallo-

thioneins (MT-I and II) (Palmiter 1987; Masters et al. 1994). Subsequently Walter

Schaffner identified and cloned the transcription factor MTF-1, which regulates

metallothionein gene transcription in response to zinc (Radtke et al. 1993). These

pivotal studies paved the way for thousands of subsequent studies. Although my

group provided compelling data that the unique zinc-finger domain of MTF-1

functions as a zinc sensor (Laity and Andrews 2007), the structural basis for that

mechanism remains to be resolved in detail. Nonetheless the concept that substan-

tial changes in “available” zinc in higher eukaryotic cells and organisms are sensed

by the cell was fundamental to our understanding of zinc biology and zinc homeo-

stasis mechanisms. We now understand that zinc fluxes modify kinase signal

transduction cascades and control the localization and stability of several zinc

transporters. Using the MT over-expressing or knockout mice created by Richard

Palmiter, we presented some of the first evidence that the mouse metallothioneins

provide a biologically important labile pool of zinc (Dalton et al. 1996; Andrews

and Geiser 1999). These proteins are now considered to function as zinc

buffers. Richard Palmiter’s contribution did not end with the metallothioneins.
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He subsequently cloned the first mammalian zinc efflux transporter (ZnT1;

Slc30a1), described the ZnT gene family, and created mouse models that lacked

ZnTs (Palmiter and Findley 1995; Palmiter and Huang 2004). His ZnT3 knockout

mouse model has been and continues to be employed in hundreds of neurobiology

studies (Cole et al. 1999).

Another fundamental advance in the field was the identification of the first ZIP

family member IRT-1 in Mary Lou Guerinot’s laboratory (Eide et al. 1996). In

collaboration with David Eide they showed that Saccharomyces ZRT zinc trans-

porters (Zhao and Eide 1996) and Arabidopsis IRT1 iron transporters belong to a

structurally related family of metal ion transporters, thus the acronym Zrt-Irt-like

Proteins (Guerinot 2000). The ZIP proteins are found in all eukaryotes, and

orthologues are found in bacteria. Since the identification of this family of metal

ion transporters, there have been hundreds of publications on their structure,

regulation, and functions. Pioneering studies by Jane Gitschier (Wang et al. 2002)

and Sebastien Kury (Kury et al. 2002) identified Zip4 mutations in patients with

acrodermatitis enteropathica about 30 years after the description of this devastating

zinc deficiency disease by Moynahan (1974). Among the 14 known ZIP family

members, we now have mouse knockout models of over half of these genes. My

group created mouse knockout models of Zip1 through Zip5 which includes mouse

models of acrodermatitis enteropathica (Kambe et al. 2008; Dufner-Beattie

et al. 2007; Geiser et al. 2012, 2013). Our studies revealed that expression of the

Zip4 gene in intestinal enterocytes and embryonic visceral endoderm in mice is

essential for viability and that the loss of function of this gene causes a rapid shift

from anabolic to catabolic metabolism in the animal accompanied by a devastating

loss of intestinal integrity and impaired stem cell differentiation.

As you will see when you read this book, the field of zinc biology has matured

rapidly in the past decade. The current availability of zinc-sensing fluorescent

probes, zinc-transporter genes, and expression vectors, antibodies (still a weak

point), and genetic mouse models allows investigators to probe mechanistic aspects

of zinc metabolism in great depth. Evidence for functions of zinc and specific zinc

transporters in several diseases has emerged, including functions in cancer as well

as in normal growth and development. Studies of structure–function relationships in

zinc transport proteins are rapidly progressing, and an active field of investigation

involves understanding the biophysics of zinc–protein interactions in regulatory

proteins and the multiple mechanism of cellular and organismal zinc sensing.

We can look forward to many exciting and novel findings in this field over the

next few years.

Glen K. Andrews

University of Kansas Medical Center

Kansas City, KS, USA
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Preface

More than five decades ago, Dr. Ananda S. Prasad discovered zinc (Zn) as the

essential trace element for human life. Zn deficiency was the first discovery in Zn

imbalance-related abnormality that causes growth retardation, immunodeficiency,

hypogonadism, and neuronal and sensory dysfunctions. Human diseases including

cancer, diabetes, osteoporosis, dermatitis, and auto-immune and neurodegenerative

diseases have been shown to be associated with abnormal Zn status. Investigations

of the biological roles of Zn, however, had been challenging because Zn com-

pounds are normally colorless, and the natural status of Zn is stable as a divalent

cation, unlike other bioactive metals such as iron and copper.

Until now, there have been at least four issues that advanced our knowledge

about the significant roles of Zn in physiology and diseases. First: bioinformatics,

which revealed that approximately 10 % of all proteins in humans may bind with

Zn. Second: genetic approaches using animal models and human genetics, which

contributed to demonstrating the physiological roles of Zn in cells, tissues, and the

whole body. Third: investigation of Zn transporters and metallothioneins in vitro

and in vivo, which provided a variety of information on the importance of Zn

transportation within and between cells, which led us to the fourth issue: Zn indeed

acts as a signaling factor like calcium, called “Zn signaling”. Because this is a quite

new field, we were motivated to introduce the current status of the study of Zn

signaling and to review the whole scheme of this area to date.

The present book overviews up-to-date information on the study of Zn signaling,

describing not only the essence of Zn signaling including its history, the molecular

analysis of the structures and functions of Zn transporters and metallothioneins, and

detection techniques for Zn signals, but also the involvement of Zn signaling in

physiology and disease status as in brain function, immunity, inflammation,

skeletogenesis, diabetes, and cancer. Besides the introduction of new insights in

the study of Zn signaling, this book aims to address the many unsolved problems in

the field. For this reason, we made a great effort to furnish educational contexts that

will provide great introductions for students, young scientists, and clinical person-

nel. These contexts can also be valuable references for the pioneers and aficionados

among researchers involved with Zn. So that all these goals would mesh, we as

editors invited contributions from investigators who are world leaders in this field.
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We believe the publication of this book is timely for reviewing the nature of Zn

signaling, in which there is growing evidence that Zn signals regulate intra- and

extracellular events leading to biological homeostasis, as all the authors will

discuss. Also, we are confident that readers will find the book valuable for teaching,

lecturing, and other outreach activities that can help make known to the public the

importance of Zn itself. Finally, we express our heartfelt thanks to the splendid

contributions of all authors, which will lead us to our goal.

Yokohama, Kanagawa, Japan Toshiyuki Fukada, Ph.D.

Kyoto, Japan Taiho Kambe, Ph.D.
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