Skip to main content

Tunnel Vision: Insights from Biochemical and Biophysical Studies

  • Chapter
  • First Online:
Book cover Regulatory Nascent Polypeptides

Abstract

The ribosomal exit tunnel is a specialized microenvironment where peptide transit, folding, targeting, cofactor recruitment, and degradation of the nascent peptide occur in accordance with the chemistry of the nascent peptide and the needs of the cell. The physicochemical properties of the tunnel hosting a nascent chain underlie these functions. The dimensions of the tunnel dictate a tight squeeze for peptide, water, and dissolved ions, which has energetic consequences for elongation and folding of the nascent peptide. We consider here tunnel electrostatic potentials, confined water, peptide side chains, and the impact of these factors on tunnel–peptide interactions. We also discuss peptide folding in the tunnel, movement of the peptide along and through the tunnel, and regional discrimination along the tunnel. Whereas detailed processes at the peptidyl-transferase center and ribosome intersubunit motions have been the major focus for the past decade, the relatively unexplored biophysics and chemistry of the tunnel are likely to be the next coming-of-age story. This chapter is intended to help launch this exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In general, the frequency of action potential firing encodes the intensity of a signal, which can be detected by downstream respondents. Similarly, peptide pausing frequencies, amplitudes (dwell times), and patterns may encode information for anterograde and retrograde signaling along the tunnel.

References

  • Agmon IC (2012) A model for the role of isomerization in nascent peptide movement through the ribosomal tunnel. FASEB J 26:2277–2282

    CAS  PubMed  Google Scholar 

  • Akimitsu N, Tanaka J, Pelletier J (2007) Translation of nonSTOP mRNA is repressed post-initiation in mammalian cells. EMBO J 26:2327–2338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Auerbach A (2005) Gating of acetylcholine receptor channels: brownian motion across a broad transition state. Proc Natl Acad Sci USA 102:1408–1412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Ǻ resolution. Science 289:905–920

    CAS  PubMed  Google Scholar 

  • Berisio R, Schluenzen F, Harms J, Bashan A, Auerbach T, Baram D, Yonath A (2003) Structural insight into the role of the ribosomal tunnel in cellular regulation. Nat Struct Biol 10:366–370

    CAS  PubMed  Google Scholar 

  • Bernabeu C, Lake JA (1982) Nascent polypeptide chains emerge from the exit domain of the large ribosomal subunit: immune mapping of the nascent chain. Proc Natl Acad Sci USA 79:3111–3115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berndt U, Oellerer S, Zhang Y, Johnson AE, Rospert S (2009) A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc Natl Acad Sci USA 106:1398–1403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhushan S, Gartmann M, Halic M, Armache JP, Jarasch A, Mielke T, Berninghausen O, Wilson DN, Beckmann R (2010a) Alpha-helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnel. Nat Struct Mol Biol 17:313–317

    CAS  PubMed  Google Scholar 

  • Bhushan S, Hoffmann T, Seidelt B, Frauenfeld J, Mielke T, Berninghausen O, Wilson DN, Beckmann R (2011) SecM-stalled ribosomes adopt an altered geometry at the peptidyl transferase center. PLoS Biol 9:e1000581

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhushan S, Meyer H, Starosta AL, Becker T, Mielke T, Berninghausen O, Sattler M, Wilson DN, Beckmann R (2010b) Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide. Mol Cell 40:138–146

    CAS  PubMed  Google Scholar 

  • Blobel G, Sabatini DD (1970) Controlled proteolysis of nascent polypeptides in rat liver cell fractions. I. Location of the polypeptides within ribosomes. J Cell Biol 45:130–145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bornemann T, Jockel J, Rodnina MV, Wintermeyer W (2008) Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nat Struct Mol Biol 15:494–499

    CAS  PubMed  Google Scholar 

  • Brandman O, Stewart-Ornstein J, Wong D, Larson A, Williams CC, Li GW, Zhou S, King D, Shen PS, Weibezahn J, Dunn JG, Rouskin S, Inada T, Frost A, Weissman JS (2012) A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151:1042–1054

    CAS  PubMed Central  PubMed  Google Scholar 

  • Butkus ME, Prundeanu LB, Oliver DB (2003) Translocon “pulling” of nascent SecM controls the duration of its translational pause and secretion-responsive secA regulation. J Bacteriol 185:6719–6722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cabrita LD, Dobson CM, Christodoulou J (2010) Protein folding on the ribosome. Curr Opin Struct Biol 20:33–45

    CAS  PubMed  Google Scholar 

  • Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature (Lond) 437:640–647

    CAS  Google Scholar 

  • Chiba S, Lamsa A, Pogliano K (2009) A ribosome-nascent chain sensor of membrane protein biogenesis in Bacillus subtilis. EMBO J 28:3461–3475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chittum HS, Champney WS (1994) Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli. J Bacteriol 176:6192–6198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi KM, Brimacombe R (1998) The path of the growing peptide chain through the 23S rRNA in the 50S ribosomal subunit; a comparative cross-linking study with three different peptide families. Nucleic Acids Res 26:887–895

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cortazzo P, Cervenansky C, Marin M, Reiss C, Ehrlich R, Deana A (2002) Silent mutations affect in vivo protein folding in Escherichia coli. Biochem Biophys Res Commun 293:537–541

    CAS  PubMed  Google Scholar 

  • Creighton TE (1983) An empirical approach to protein conformation stability and flexibility. Biopolymers 22:49–58

    CAS  PubMed  Google Scholar 

  • Crowley KS, Liao S, Worrell VE, Reinhart GD, Johnson AE (1994) Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78:461–471

    CAS  PubMed  Google Scholar 

  • Crowley KS, Reinhart GD, Johnson AE (1993) The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73:1101–1115

    CAS  PubMed  Google Scholar 

  • Cruz-Vera LR, Gong M, Yanofsky C (2006) Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide. Proc Natl Acad Sci USA 103:3598–3603

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz-Vera LR, New A, Squires C, Yanofsky C (2007) Ribosomal features essential for tna operon induction: tryptophan binding at the peptidyl transferase center. J Bacteriol 189:3140–3146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz-Vera LR, Rajagopal S, Squires C, Yanofsky C (2005) Features of ribosome-peptidyl-tRNA interactions essential for tryptophan induction of tna operon expression. Mol Cell 19:333–343

    CAS  PubMed  Google Scholar 

  • Cymes GD, Grosman C (2011) Estimating the pK a values of basic and acidic side chains in ion channels using electrophysiological recordings: a robust approach to an elusive problem. Proteins 79:3485–3493

    CAS  PubMed  Google Scholar 

  • Daggett V, Fersht AR (2003) Is there a unifying mechanism for protein folding? Trends Biochem Sci 28:18–25

    CAS  PubMed  Google Scholar 

  • Daniel CJ, Conti B, Johnson AE, Skach WR (2008) Control of translocation through the Sec61 translocon by nascent polypeptide structure within the ribosome. J Biol Chem 283:20864–20873

    CAS  PubMed Central  PubMed  Google Scholar 

  • Devaraneni PK, Conti B, Matsumura Y, Yang Z, Johnson AE, Skach WR (2011) Stepwise insertion and inversion of a type II signal anchor sequence in the ribosome-Sec61 translocon complex. Cell 146:134–147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dimitrova LN, Kuroha K, Tatematsu T, Inada T (2009) Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome. J Biol Chem 284:10343–10352

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dixon MM, Nicholson H, Shewchuk L, Baase WA, Matthews BW (1992) Structure of a hinge-bending bacteriophage T4 lysozyme mutant, Ile3 → Pro. J Mol Biol 227:917–933

    CAS  PubMed  Google Scholar 

  • Dresios J, Derkatch IL, Liebman SW, Synetos D (2000) Yeast ribosomal protein L24 affects the kinetics of protein synthesis and ribosomal protein L39 improves translational accuracy, while mutants lacking both remain viable. Biochemistry 39:7236–7244

    CAS  PubMed  Google Scholar 

  • Elcock AH (2006) Molecular simulations of cotranslational protein folding: fragment stabilities, folding cooperativity, and trapping in the ribosome. PLoS Comput Biol 2:e98

    PubMed Central  PubMed  Google Scholar 

  • England PM (2004) Unnatural amino acid mutagenesis: a precise tool for probing protein structure and function. Biochemistry 43:11623–11629

    CAS  PubMed  Google Scholar 

  • Evans MS, Sander IM, Clark PL (2008) Cotranslational folding promotes beta-helix formation and avoids aggregation in vivo. J Mol Biol 383:683–692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fox GE, Tran Q, Yonath A (2012) An exit cavity was crucial to the polymerase activity of the early ribosome. Astrobiology 12:57–60

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frydman J, Erdjument-Bromage H, Tempst P, Hartl FU (1999) Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase. Nat Struct Biol 6:697–705

    CAS  PubMed  Google Scholar 

  • Fujita H, Yamagishi M, Kida Y, Sakaguchi M (2011) Positive charges on the translocating polypeptide chain arrest movement through the translocon. J Cell Sci 124:4184–4193

    CAS  PubMed  Google Scholar 

  • Gabashvili IS, Gregory ST, Valle M, Grassucci R, Worbs M, Wahl MC, Dahlberg AE, Frank J (2001) The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol Cell 8:181–188

    CAS  PubMed  Google Scholar 

  • Gerstein M, Lesk AM, Chothia C (1994) Structural mechanisms for domain movements in proteins. Biochemistry 33:6739–6749

    CAS  PubMed  Google Scholar 

  • Getzoff ED, Tainer JA, Weiner PK, Kollman PA, Richardson JS, Richardson DC (1983) Electrostatic recognition between superoxide and copper, zinc superoxide dismutase. Nature (Lond) 306:287–290

    CAS  Google Scholar 

  • Gong F, Yanofsky C (2002) Instruction of translating ribosome by nascent peptide. Science 297:1864–1867

    CAS  PubMed  Google Scholar 

  • Grimsley GR, Scholtz JM, Pace CN (2009) A summary of the measured pK values of the ionizable groups in folded proteins. Protein Sci 18:247–251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gumbart J, Schreiner E, Wilson DN, Beckmann R, Schulten K (2012) Mechanisms of SecM-mediated stalling in the ribosome. Biophys J 103:331–341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gunasekaran K, Ramakrishnan C, Balaram P (1996) Disallowed Ramachandran conformations of amino acid residues in protein structures. J Mol Biol 264:191–198

    CAS  PubMed  Google Scholar 

  • Hardesty B, Kramer G (2001) Folding of a nascent peptide on the ribosome. Prog Nucleic Acid Res Mol Biol 66:41–66

    CAS  PubMed  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Sunderland

    Google Scholar 

  • Hoffmann A, Becker AH, Zachmann-Brand B, Deuerling E, Bukau B, Kramer G (2012) Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding. Mol Cell 48:63–74

    CAS  PubMed  Google Scholar 

  • Hohsaka T, Kajihara D, Ashizuka Y, Murakami H, Sisido M (1999) Efficient incorporation of nonnatural amino acids with large aromatic groups into streptavidin in in vitro protein synthesizing systems. J Am Chem Soc 121:34–40

    Google Scholar 

  • Hsu ST, Fucini P, Cabrita LD, Launay H, Dobson CM, Christodoulou J (2007) Structure and dynamics of a ribosome-bound nascent chain by NMR spectroscopy. Proc Natl Acad Sci USA 104:16516–16521

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ismail N, Hedman R, Schiller N, von Heijne G (2012) A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration. Nat Struct Mol Biol 19:1018–1022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito K, Chiba S (2013) Arrest peptides: cis-acting modulators of translation. Annu Rev Biochem 82:171–202

    CAS  PubMed  Google Scholar 

  • Johansson M, Ieong KW, Trobro S, Strazewski P, Aqvist J, Pavlov MY, Ehrenberg M (2011) pH-sensitivity of the ribosomal peptidyl transfer reaction dependent on the identity of the A-site aminoacyl-tRNA. Proc Natl Acad Sci USA 108:79–84

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karp DA, Gittis AG, Stahley MR, Fitch CA, Stites WE, Garcia-Moreno EB (2007) High apparent dielectric constant inside a protein reflects structural reorganization coupled to the ionization of an internal Asp. Biophys J 92:2041–2053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klapper I, Hagstrom R, Fine R, Sharp K, Honig B (1986) Focusing of electric fields in the active site of Cu–Zn superoxide dismutase: effects of ionic strength and amino-acid modification. Proteins 1:47–59

    CAS  PubMed  Google Scholar 

  • Knight AM, Culviner PH, Kurt-Yilmaz N, Zou T, Ozkan SB, Cavagnero S (2013) Electrostatic effect of the ribosomal surface on nascent polypeptide dynamics. ACS Chem Biol 8:1195–1204

    Google Scholar 

  • Kolb VA, Makeyev EV, Spirin AS (1994) Folding of firefly luciferase during translation in a cell-free system. EMBO J 13:3631–3637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komar AA, Kommer A, Krasheninnikov IA, Spirin AS (1997) Cotranslational folding of globin. J Biol Chem 272:10646–10651

    CAS  PubMed  Google Scholar 

  • Komar AA, Lesnik T, Reiss C (1999) Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. FEBS Lett 462:387–391

    CAS  PubMed  Google Scholar 

  • Kosolapov A, Deutsch C (2003) Folding of the voltage-gated K+ channel T1 recognition domain. J Biol Chem 278:4305–4313

    CAS  PubMed  Google Scholar 

  • Kosolapov A, Deutsch C (2009) Tertiary interactions within the ribosomal exit tunnel. Nat Struct Mol Biol 16:405–411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kosolapov A, Tu L, Wang J, Deutsch C (2004) Structure acquisition of the T1 domain of Kv1.3 during biogenesis. Neuron 44:295–307

    CAS  PubMed  Google Scholar 

  • Kowarik M, Kung S, Martoglio B, Helenius A (2002) Protein folding during cotranslational translocation in the endoplasmic reticulum. Mol Cell 10:769–778

    CAS  PubMed  Google Scholar 

  • Kramer G, Ramachandiran V, Hardesty B (2001) Cotranslational folding: omnia mea mecum porto? Int J Biochem Cell Biol 33:541–553

    CAS  PubMed  Google Scholar 

  • Kudlicki W, Chirgwin J, Kramer G, Hardesty B (1995) Folding of an enzyme into an active conformation while bound as peptidyl-tRNA to the ribosome. Biochemistry 34:14284–14287

    CAS  PubMed  Google Scholar 

  • Lawrence MG, Lindahl L, Zengel JM (2008) Effects on translation pausing of alterations in protein and RNA components of the ribosome exit tunnel. J Bacteriol 190:5862–5869

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lehrman SR, Tuls JL, Lund M (1990) Peptide alpha-helicity in aqueous trifluoroethanol: correlations with predicted alpha-helicity and the secondary structure of the corresponding regions of bovine growth hormone. Biochemistry 29:5590–5596

    CAS  PubMed  Google Scholar 

  • Levy Y, Onuchic JN (2006) Water mediation in protein folding and molecular recognition. Annu Rev Biophys Biomol Struct 35:389–415

    CAS  PubMed  Google Scholar 

  • Liao S, Lin J, Do H, Johnson AE (1997) Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90:31–41

    CAS  PubMed  Google Scholar 

  • Lin KF, Sun CS, Huang YC, Chan SI, Koubek J, Wu TH, Huang JJ (2012) Cotranslational protein folding within the ribosome tunnel influences trigger-factor recruitment. Biophys J 102:2818–2827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin L, DeMartino GN, Greene WC (1998) Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome. Cell 92:819–828

    CAS  PubMed  Google Scholar 

  • Lin PJ, Jongsma CG, Liao S, Johnson AE (2011) Transmembrane segments of nascent polytopic membrane proteins control cytosol/ER targeting during membrane integration. J Cell Biol 195:41–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Long SB, Campbell EB, MacKinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    CAS  PubMed  Google Scholar 

  • Lovett PS, Rogers EJ (1996) Ribosome regulation by the nascent peptide. Microbiol Rev 60:366–385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu J, Deutsch C (2005a) Folding zones inside the ribosomal exit tunnel. Nat Struct Mol Biol 12:1123–1129

    CAS  PubMed  Google Scholar 

  • Lu J, Deutsch C (2005b) Secondary structure formation of a transmembrane segment in Kv channels. Biochemistry 44:8230–8243

    CAS  PubMed  Google Scholar 

  • Lu J, Deutsch C (2008) Electrostatics in the ribosomal tunnel modulate chain elongation rates. J Mol Biol 384:73–86

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu J, Hua Z, Kobertz WR, Deutsch C (2011) Nascent peptide side chains induce rearrangements in distinct locations of the ribosomal tunnel. J Mol Biol 411:499–510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu J, Kobertz WR, Deutsch C (2007) Mapping the electrostatic potential within the ribosomal exit tunnel. J Mol Biol 371:1378–1391

    CAS  PubMed  Google Scholar 

  • Lucent D, Snow CD, Aitken CE, Pande VS (2010) Non-bulk-like solvent behavior in the ribosome exit tunnel. PLoS Comput Biol 6:e1000963

    PubMed Central  PubMed  Google Scholar 

  • Lucent D, Vishal V, Pande VS (2007) Protein folding under confinement: a role for solvent. Proc Natl Acad Sci USA 104:10430–10434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Makeyev EV, Kolb VA, Spirin AS (1996) Enzymatic activity of the ribosome-bound nascent polypeptide. FEBS Lett 378:166–170

    CAS  PubMed  Google Scholar 

  • Malkin LI, Rich A (1967) Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. J Mol Biol 26:329–346

    CAS  PubMed  Google Scholar 

  • Mariappan M, Li X, Stefanovic S, Sharma A, Mateja A, Keenan RJ, Hegde RS (2010) A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature (Lond) 466:1120–1124

    CAS  Google Scholar 

  • Matlack KE, Walter P (1995) The 70 carboxyl-terminal amino acids of nascent secretory proteins are protected from proteolysis by the ribosome and the protein translocation apparatus of the endoplasmic reticulum membrane. J Biol Chem 270:6170–6180

    CAS  PubMed  Google Scholar 

  • Milligan RA, Unwin PN (1986) Location of exit channel for nascent protein in 80S ribosome. Nature (Lond) 319:693–695

    CAS  Google Scholar 

  • Mingarro I, Nilsson I, Whitley P, von Heijne G (2000) Different conformations of nascent polypeptides during translocation across the ER membrane. BMC Cell Biol 1:3

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minor DL, Kim PS (1996) Context-dependent secondary structure formation of a designed protein sequence. Nature (Lond) 380:730–734

    CAS  Google Scholar 

  • Morris DR, Geballe AP (2000) Upstream open reading frames as regulators of mRNA translation. Mol Cell Biol 20:8635–8642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakatogawa H, Ito K (2002) The ribosomal exit tunnel functions as a discriminating gate. Cell 108:629–636

    CAS  PubMed  Google Scholar 

  • Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930

    CAS  PubMed  Google Scholar 

  • O’Brien EP, Christodoulou J, Vendruscolo M, Dobson CM (2011) New scenarios of protein folding can occur on the ribosome. J Am Chem Soc 133:513–526

    PubMed  Google Scholar 

  • O’Brien EP, Hsu ST, Christodoulou J, Vendruscolo M, Dobson CM (2010) Transient tertiary structure formation within the ribosome exit port. J Am Chem Soc 132:16928–16937

    PubMed  Google Scholar 

  • Pace CN, Grimsley GR, Scholtz JM (2009) Protein ionizable groups: pK values and their contribution to protein stability and solubility. J Biol Chem 284:13285–13289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pal D, Chakrabarti P (2002) On residues in the disallowed region of the Ramachandran map. Biopolymers 63:195–206

    CAS  PubMed  Google Scholar 

  • Petrone PM, Snow CD, Lucent D, Pande VS (2008) Side-chain recognition and gating in the ribosome exit tunnel. Proc Natl Acad Sci USA 105:16549–16554

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pool MR (2009) A trans-membrane segment inside the ribosome exit tunnel triggers RAMP4 recruitment to the Sec61p translocase. J Cell Biol 185:889–902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Purohit P, Mitra A, Auerbach A (2007) A stepwise mechanism for acetylcholine receptor channel gating. Nature (Lond) 446:930–933

    CAS  Google Scholar 

  • Ramu H, Mankin A, Vazquez-Laslop N (2009) Programmed drug-dependent ribosome stalling. Mol Microbiol 71:811–824

    CAS  PubMed  Google Scholar 

  • Ramu H, Vazquez-Laslop N, Klepacki D, Dai Q, Piccirilli J, Micura R, Mankin AS (2011) Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center. Mol Cell 41:321–330

    CAS  PubMed  Google Scholar 

  • Robinson PJ, Findlay JE, Woolhead CA (2012) Compaction of a prokaryotic signal-anchor transmembrane domain begins within the ribosome tunnel and is stabilized by SRP during targeting. J Mol Biol 423:600–612

    CAS  PubMed  Google Scholar 

  • Sansom MS, Kerr ID, Breed J, Sankararamakrishnan R (1996) Water in channel-like cavities: structure and dynamics. Biophys J 70:693–702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sansom MS, Smith GR, Adcock C, Biggin PC (1997) The dielectric properties of water within model transbilayer pores. Biophys J 73:2404–2415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sato S, Ward CL, Kopito RR (1998) Cotranslational ubiquitination of cystic fibrosis transmembrane conductance regulator in vitro. J Biol Chem 273:7189–7192

    CAS  PubMed  Google Scholar 

  • Schlunzen F, Wilson DN, Tian P, Harms JM, McInnes SJ, Hansen HA, Albrecht R, Buerger J, Wilbanks SM, Fucini P (2005) The binding mode of the trigger factor on the ribosome: implications for protein folding and SRP interaction. Structure 13:1685–1694

    PubMed  Google Scholar 

  • Schmeing TM, Huang KS, Strobel SA, Steitz TA (2005) An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature (Lond) 438:520–524

    CAS  Google Scholar 

  • Scott JN, Nucci NV, Vanderkooi JM (2008) Changes in water structure induced by the guanidinium cation and implications for protein denaturation. J Phys Chem A 112:10939–10948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seidelt B, Innis CA, Wilson DN, Gartmann M, Armache JP, Villa E, Trabuco LG, Becker T, Mielke T, Schulten K, Steitz TA, Beckmann R (2009) Structural insight into nascent polypeptide chain-mediated translational stalling. Science 326:1412–1415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharp KA, Honig B (1990) Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem 19:301–332

    CAS  PubMed  Google Scholar 

  • Simonovic M, Steitz TA (2009) A structural view on the mechanism of the ribosome-catalyzed peptide bond formation. Biochim Biophys Acta 1789:612–623

    CAS  PubMed Central  PubMed  Google Scholar 

  • Snir Y, Kamien RD (2005) Entropically driven helix formation. Science 307:1067

    CAS  PubMed  Google Scholar 

  • Sorin EJ, Pande VS (2006) Nanotube confinement denatures protein helices. J Am Chem Soc 128:6316–6317

    CAS  PubMed  Google Scholar 

  • Sorin EJ, Rhee YM, Shirts MR, Pande VS (2006) The solvation interface is a determining factor in peptide conformational preferences. J Mol Biol 356:248–256

    CAS  PubMed  Google Scholar 

  • Tenson T, Ehrenberg M (2002) Regulatory nascent peptides in the ribosomal tunnel. Cell 108:591–594

    CAS  PubMed  Google Scholar 

  • Trabuco LG, Harrison CB, Schreiner E, Schulten K (2010) Recognition of the regulatory nascent chain TnaC by the ribosome. Structure 18:627–637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsalkova T, Odom OW, Kramer G, Hardesty B (1998) Different conformations of nascent peptides on ribosomes. J Mol Biol 278:713–723

    CAS  PubMed  Google Scholar 

  • Tu L, Wang J, Deutsch C (2007) Biogenesis of the T1–S1 linker of voltage-gated K+ channels. Biochemistry 46:8075–8084

    CAS  PubMed  Google Scholar 

  • Tu L, Khanna P, Deutsch C (2014) Transmembrane segments form tertiary hairpins in the folding vestibule of the ribosome. J Mol Biol 426:185–198

    Google Scholar 

  • Tu LW, Deutsch C (2010) A folding zone in the ribosomal exit tunnel for Kv1.3 helix formation. J Mol Biol 396:1346–1360

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vazquez-Laslop N, Ramu H, Klepacki D, Kannan K, Mankin AS (2010) The key function of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide. EMBO J 29:3108–3117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vazquez-Laslop N, Thum C, Mankin AS (2008) Molecular mechanism of drug-dependent ribosome stalling. Mol Cell 30:190–202

    CAS  PubMed  Google Scholar 

  • Voss NR, Gerstein M, Steitz TA, Moore PB (2006) The geometry of the ribosomal polypeptide exit tunnel. J Mol Biol 360:893–906

    CAS  PubMed  Google Scholar 

  • Wang Z, Sachs MS (1997a) Arginine-specific regulation mediated by the Neurospora crassa arg-2 upstream open reading frame in a homologous, cell-free in vitro translation system. J Biol Chem 272:255–261

    CAS  PubMed  Google Scholar 

  • Wang Z, Sachs MS (1997b) Ribosome stalling is responsible for arginine-specific translational attenuation in Neurospora crassa. Mol Cell Biol 17:4904–4913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiggins PM (1997) Hydrophobic hydration, hydrophobic forces and protein folding. Physica A 238:113–128

    CAS  Google Scholar 

  • Wilson DN, Beckmann R (2011) The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr Opin Struct Biol 21:274–282

    CAS  PubMed  Google Scholar 

  • Woolhead CA, Johnson AE, Bernstein HD (2006) Translation arrest requires two-way communication between a nascent polypeptide and the ribosome. Mol Cell 22:587–598

    CAS  PubMed  Google Scholar 

  • Woolhead CA, McCormick PJ, Johnson AE (2004) Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116:725–736

    CAS  PubMed  Google Scholar 

  • Wu C, Wei J, Lin PJ, Tu L, Deutsch C, Johnson AE, Sachs MS (2012) Arginine changes the conformation of the arginine attenuator peptide relative to the ribosome tunnel. J Mol Biol 416:518–533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yap MN, Bernstein HD (2009) The plasticity of a translation arrest motif yields insights into nascent polypeptide recognition inside the ribosome tunnel. Mol Cell 34:201–211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yonath A, Leonard KR, Wittmann HG (1987) A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. Science 236:813–816

    CAS  PubMed  Google Scholar 

  • Young JC, Andrews DW (1996) The signal recognition particle receptor alpha subunit assembles co-translationally on the endoplasmic reticulum membrane during an mRNA-encoded translation pause in vitro. EMBO J 15:172–181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang G, Hubalewska M, Ignatova Z (2009) Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol 16:274–280

    CAS  PubMed  Google Scholar 

  • Zhang G, Ignatova Z (2011) Folding at the birth of the nascent chain: coordinating translation with co-translational folding. Curr Opin Struct Biol 21:25–31

    PubMed  Google Scholar 

  • Zhou M, Fisher EA, Ginsberg HN (1998) Regulated co-translational ubiquitination of apolipoprotein B100. A new paradigm for proteasomal degradation of a secretory protein. J Biol Chem 273:24649–24653

    CAS  PubMed  Google Scholar 

  • Ziv G, Haran G, Thirumalai D (2005) Ribosome exit tunnel can entropically stabilize alpha-helices. Proc Natl Acad Sci USA 102:18956–18961

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol Deutsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Deutsch, C. (2014). Tunnel Vision: Insights from Biochemical and Biophysical Studies. In: Ito, K. (eds) Regulatory Nascent Polypeptides. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55052-5_4

Download citation

Publish with us

Policies and ethics