Skip to main content

Changes in Human Brain Networks and Spontaneous Activity Caused by Motor and Cognitive Learning

  • Chapter
  • First Online:
Clinical Systems Neuroscience

Abstract

Recent studies have shown that individual experiences during motor and cognitive learning immediately affect and modify intrinsic functional connectivity and networks, which manifest as correlations in spontaneous brain activities. Resting-state functional magnetic resonance imaging (rs-fMRI) is a powerful tool for investigating such changes in humans. It has been suggested that changes in rs-fMRI after learning reflect (1) a consolidation or encoding process of acquired memory and/or (2) plastic changes in intrinsic connectivity and networks induced by learning. Because these changes are thought to construct brain networks in individuals while interacting with genetic factors, it has been demonstrated that individual differences in behavioral or cognitive performance can be predicted from the states of connectivity and networks observed in rs-fMRI. This chapter reviews studies on changes in resting-state connectivity caused by learning in humans. Possible applications of their results to rehabilitation are suggested, including evaluation of training effects and development of tailor-made programs for rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ringach DL (2009) Spontaneous and driven cortical activity: implications for computation. Curr Opin Neurobiol 19(4):439–444. doi:10.1016/j.conb.2009.07.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  CAS  PubMed  Google Scholar 

  3. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682. doi:10.1073/pnas.98.2.676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711. doi:10.1038/nrn2201

    Article  CAS  PubMed  Google Scholar 

  5. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103(37):13848–13853. doi:10.1073/pnas.0601417103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A 106(31):13040–13045. doi:10.1073/pnas.0905267106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Dragoi G, Tonegawa S (2011) Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469(7330):397–401. doi:10.1038/nature09633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Berkes P, Orban G, Lengyel M, Fiser J (2011) Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331(6013):83–87. doi:10.1126/science.1195870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gordon EM, Stollstorff M, Devaney JM, Bean S, Vaidya CJ (2012) Effect of dopamine transporter genotype on intrinsic functional connectivity depends on cognitive state. Cereb Cortex 22(9):2182–2196. doi:10.1093/cercor/bhr305

    Article  PubMed Central  PubMed  Google Scholar 

  10. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kotter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SARB, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP (2010) Toward discovery science of human brain function. Proc Natl Acad Sci U S A 107(10):4734–4739. doi:10.1073/pnas.0911855107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Rilling JK, Barks SK, Parr LA, Preuss TM, Faber TL, Pagnoni G, Bremner JD, Votaw JR (2007) A comparison of resting-state brain activity in humans and chimpanzees. Proc Natl Acad Sci U S A 104(43):17146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447(7140):83–86. doi:10.1038/nature05758

    Article  CAS  PubMed  Google Scholar 

  13. Lu H, Zou Q, Gu H, Raichle ME, Stein EA, Yang Y (2012) Rat brains also have a default mode network. Proc Natl Acad Sci U S A 109(10):3979–3984. doi:10.1073/pnas.1200506109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci U S A 104(24):10240–10245. doi:10.1073/pnas.0701519104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL (2010) Prediction of individual brain maturity using fMRI. Science 329(5997):1358–1361. doi:10.1126/science.1194144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Albert NB, Robertson EM, Miall RC (2009) The resting human brain and motor learning. Curr Biol 19(12):1023–1027. doi:10.1016/j.cub.2009.04.028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Vahdat S, Darainy M, Milner TE, Ostry DJ (2011) Functionally specific changes in resting-state sensorimotor networks after motor learning. J Neurosci 31(47):16907–16915. doi:10.1523/jneurosci.2737-11.2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ostry DJ, Darainy M, Mattar AAG, Wong J, Gribble PL (2010) Somatosensory plasticity and motor learning. J Neurosci 30(15):5384–5393. doi:10.1523/JNEUROSCI.4571-09.2010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Taubert M, Lohmann G, Margulies DS, Villringer A, Ragert P (2011) Long-term effects of motor training on resting-state networks and underlying brain structure. NeuroImage 57(4):1492–1498. doi:10.1016/j.neuroimage.2011.05.078

    Article  PubMed  Google Scholar 

  20. Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M (2009) Learning sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci U S A 106(41):17558–17563. doi:10.1073/pnas.0902455106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Tambini A, Ketz N, Davachi L (2010) Enhanced brain correlations during rest are related to memory for recent experiences. Neuron 65(2):280–290. doi:10.1016/j.neuron.2010.01.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R, Birbaumer N (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. NeuroImage 19(3):577–586. doi:10.1016/s1053-8119(03)00145-9

    Article  PubMed  Google Scholar 

  23. deCharms RC (2007) Reading and controlling human brain activation using real-time functional magnetic resonance imaging. Trends Cogn Sci 11(11):473–481. doi:10.1016/j.tics.2007.08.014, pii: S1364-6613(07)00247-1

    Article  PubMed  Google Scholar 

  24. Sulzer J, Haller S, Scharnowski F, Weiskopf N, Birbaumer N, Blefari ML, Bruehl AB, Cohen LG, deCharms RC, Gassert R, Goebel R, Herwig U, LaConte S, Linden D, Luft A, Seifritz E, Sitaram R (2013) Real-time fMRI neurofeedback: progress and challenges. NeuroImage 76:1–14. doi:10.1016/j.neuroimage.2013.03.033

    Article  Google Scholar 

  25. deCharms RC, Maeda F, Glover GH, Ludlow D, Pauly JM, Soneji D, Gabrieli JD, Mackey SC (2005) Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci U S A 102(51):18626–18631. doi:10.1073/pnas.0505210102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Shibata K, Watanabe T, Sasaki Y, Kawato M (2011) Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science 334(6061):1413–1415. doi:10.1126/science.1212003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ruiz S, Lee S, Soekadar SR, Caria A, Veit R, Kircher T, Birbaumer N, Sitaram R (2011) Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Hum Brain Mapp 34(1):200–212. doi:10.1002/hbm.21427

    Article  PubMed  Google Scholar 

  28. Scheinost D, Stoica T, Saksa J, Papademetris X, Constable RT, Pittenger C, Hampson M (2013) Orbitofrontal cortex neurofeedback produces lasting changes in contamination anxiety and resting-state connectivity. Transl Psychiatry 3:e250. doi:10.1038/tp.2013.24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Harmelech T, Preminger S, Wertman E, Malach R (2013) The day-after effect: long term, Hebbian-like restructuring of resting-state fMRI patterns induced by a single epoch of cortical activation. J Neurosci 33(22):9488–9497. doi:10.1523/JNEUROSCI.5911-12.2013

    Article  CAS  PubMed  Google Scholar 

  30. Fukuda M, Kawato M, Imamizu H (2011) Unconscious operant conditioning of neural activity with real-time fMRI neurofeedback training and its long-term effect on resting state activity. Soci Neurosci Abstr Online 723:706

    Google Scholar 

  31. Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT (2006) Brain connectivity related to working memory performance. J Neurosci 26(51):13338–13343. doi:10.1523/JNEUROSCI.3408-06.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356. doi:10.1523/JNEUROSCI.5587-06.2007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Baldassarre A, Lewis CM, Committeri G, Snyder AZ, Romani GL, Corbetta M (2012) Individual variability in functional connectivity predicts performance of a perceptual task. Proc Natl Acad Sci U S A 109(9):3516–3521. doi:10.1073/pnas.1113148109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56(1):171–184. doi:10.1016/j.neuron.2007.08.023

    Article  CAS  PubMed  Google Scholar 

  35. Birn RM, Diamond JB, Smith MA, Bandettini PA (2006) Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage 31(4):1536–1548. doi:10.1016/j.neuroimage.2006.02.048

    Article  PubMed  Google Scholar 

  36. Shmueli K, van Gelderen P, de Zwart JA, Horovitz SG, Fukunaga M, Jansma JM, Duyn JH (2007) Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. NeuroImage 38(2):306–320. doi:10.1016/j.neuroimage.2007.07.037

    Article  PubMed Central  PubMed  Google Scholar 

  37. Figee M, Luigjes J, Smolders R, Valencia-Alfonso CE, van Wingen G, de Kwaasteniet B, Mantione M, Ooms P, de Koning P, Vulink N, Levar N, Droge L, van den Munckhof P, Schuurman PR, Nederveen A, van den Brink W, Mazaheri A, Vink M, Denys D (2013) Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder. Nat Neurosci 16(4):386–387. doi:10.1038/nn.3344

    Article  CAS  PubMed  Google Scholar 

  38. Perrin JS, Merz S, Bennett DM, Currie J, Steele DJ, Reid IC, Schwarzbauer C (2012) Electroconvulsive therapy reduces frontal cortical connectivity in severe depressive disorder. Proc Natl Acad Sci U S A 109(14):5464–5468. doi:10.1073/pnas.1117206109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Adelstein JS, Shehzad Z, Mennes M, Deyoung CG, Zuo XN, Kelly C, Margulies DS, Bloomfield A, Gray JR, Castellanos FX, Milham MP (2011) Personality is reflected in the brain’s intrinsic functional architecture. PLoS One 6(11):e27633. doi:10.1371/journal.pone.0027633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by (1) a contract with the Ministry of Internal Affairs and Communications entitled, “Novel and innovative R&D making use of brain structures,” and (2) the Strategic Research Program for Brain Sciences of the Ministry of Education, Culture, Sports, Science and Technology of Japan. I would like to thank Megumi Fukuda, Masahiro Yamashita, Masaki Maruyama, and Mitsuo Kawato for helpful discussions and comments on resting-state and spontaneous brain activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Imamizu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Imamizu, H. (2015). Changes in Human Brain Networks and Spontaneous Activity Caused by Motor and Cognitive Learning. In: Kansaku, K., Cohen, L., Birbaumer, N. (eds) Clinical Systems Neuroscience. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55037-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55037-2_18

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55036-5

  • Online ISBN: 978-4-431-55037-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics