Skip to main content

Biomedical Application of Soft Nano-/Microparticles

  • Chapter
  • 890 Accesses

Abstract

In recent years, the soft hydrogel nano-/microparticles have been investigated intensively. Their great porosity, elasticity, and biocompatibility benefit their application, especially in the biomedical field as drug delivery system. Proteins, peptides, or other bioactive molecules can be entrapped inside of these particles with less bioactivity loss and released slowly through the pores of hydrogel. After modifying with targeting molecules or using stimuli-responsive materials, these particles can deliver entrapped drugs to targeting tissues or cells. Recently, hydrogel nano-/microparticles have also been proposed as vaccine adjuvant. The introduction of hydrogel particles in vaccine formulations not only protects the bioactivity of antigens but also increases the immune response. However, due to the high viscosity and water content and weak mechanical strength of hydrogel, there exist many difficulties in preparation and characterization of hydrogel particles. In order to conquer these problems, several novel techniques have been promoted, which are introduced in this review. After reviewing the development of preparation and characterization of hydrogel nano-/microparticles, the application study of these particles on drug delivery systems and on vaccine adjuvants is summarized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aketagawa K, Hirama H, Torii T (2013) Hyper-miniaturisation of monodisperse Janus hydrogel beads with magnetic anisotropy based on coagulation of Fe3O4 nanoparticles. J Mater Sci Chem Eng 1:1–5

    CAS  Google Scholar 

  2. Ao Z, Yang Z, Wang JF et al (2009) Emulsion-templated liquid core-polymer shell microcapsule formation. Langmuir 25:2572–2574

    CAS  PubMed  Google Scholar 

  3. Bal SM, Slütter B, Verheul R et al (2012) Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: adjuvant- and site-dependent immunogenicity in mice. Eur J Pharm Sci 45:475–481

    CAS  PubMed  Google Scholar 

  4. Bardajee GR, Pourjavadi A, Soleyman R (2011) Novel nano-porous hydrogel as a carrier matrix for oral delivery of tetracycline hydrochloride. Colloids Surf A Physicochem Eng Asp 392:16–24

    CAS  Google Scholar 

  5. Barrande M, Beurroies I, Denoyel R et al (2009) Characterisation of porous materials for bioseparation. J Chromatogr A 1216(41):6906–6916

    CAS  PubMed  Google Scholar 

  6. Best JP, Cui JW, Müllner M et al (2013) Tuning the mechanical properties of nanoporous hydrogel particles via polymer cross-linking. Langmuir 29(31):9824–9831

    CAS  PubMed  Google Scholar 

  7. Binks BP, Murakami R, Armes SP et al (2006) Effects of pH and salt concentration on oil-in-water emulsions stabilized solely by nanocomposite microgel particles. Langmuir 22:2050–2057

    CAS  PubMed  Google Scholar 

  8. Cai X, Tong X, Shen XY et al (2009) Preparation and characterization of homogeneous chitosan-polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomater 5(7):2693–2703

    CAS  PubMed  Google Scholar 

  9. Caldorera-Moore M, Kang MK, Moore Z et al (2011) Swelling behavior of nanoscale, shape- and size-specific, hydrogel particles fabricated using imprint lithography. Soft Matter 7:2879–2887

    CAS  Google Scholar 

  10. Chen J, Vogel R, Werner S et al (2011) Influence of the particle type on the rheological behavior of Pickering emulsions. Colloids Surf A Physicochem Eng Asp 382:238–245

    CAS  Google Scholar 

  11. Chen QH, Li QQ, Lin JH (2011) Synthesis of Janus composite particles by the template of dumbbell-like silica/polystyrene. Mater Chem Phys 128(3):377–382

    CAS  Google Scholar 

  12. Chu LY, Utada AS, Shah RK et al (2007) Controllable monodisperse multiple emulsions. Angew Chem Int Ed 119(47):9128–9132

    Google Scholar 

  13. Chuah AM, Kuroiwa T, Kobayashi I et al (2009) Preparation of uniformly sized alginate microspheres using the novel combined methods of microchannel emulsification and external gelation. Colloids Surf A Physicochem Eng Asp 351:9–17

    CAS  Google Scholar 

  14. Chung BG, Lee KH, Khademhosseini A et al (2012) Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 12:45–59

    CAS  PubMed  Google Scholar 

  15. Csaba N, Köping-Höggård M, Alonso MJ (2009) Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. Int J Pharm 382:205–214

    CAS  PubMed  Google Scholar 

  16. Desmarais SM, Haagsman HP, Barron AE (2012) Microfabricated devices for biomolecule encapsulation. Electrophoresis 33:2639–2649

    CAS  PubMed  Google Scholar 

  17. Díez-Pascual AM, Wong JE (2010) Effect of layer-by-layer confinement of polypeptides and polysaccharides onto thermoresponsive microgels: A comparative study. J Colloid Interface Sci 347:79–89

    PubMed  Google Scholar 

  18. Dinsmore AD, Hsu MF, Nikolaides MG et al (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298:1006–1009

    CAS  PubMed  Google Scholar 

  19. Dohnal J, Štěpánek F (2010) Inkjet fabrication and characterization of calcium alginate microcapsules. Powder Technol 200:254–259

    CAS  Google Scholar 

  20. Du KF, Bai S, Dong XY et al (2010) Fabrication of superporous agarose beads for protein adsorption: effect of CaCO3 granules content. J Chromatogr A 1217:5808–5816

    CAS  PubMed  Google Scholar 

  21. Eldridge JH, Hammond CJ, Meulbroek JA (1990) Controlled vaccine release in the gut-associated lymphoid tissues: orally administered biodegradable microspheres target the Peyer’s patches. J Control Release 11:205–214

    CAS  Google Scholar 

  22. Franco CL, Price J, West JL (2011) Development and optimization of a dual-photoinitiator, emulsion-based technique for rapid generation of cell-laden hydrogel microspheres. Acta Biomater 7(9):3267–3276

    CAS  PubMed  Google Scholar 

  23. Frith WJ, Pichot R, Kirkland M et al (2008) Formation, stability, and rheology of particle stabilized emulsions: influence of multivalent cations. Ind Eng Chem Res 47(17):6434–6444

    CAS  Google Scholar 

  24. Gan Q, Wang T, Cochrane C et al (2005) Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids Surf B: Biointerfaces 44:65–73

    CAS  PubMed  Google Scholar 

  25. Gan Q, Wang T (2007) Chitosan nanoparticle as protein delivery carrier – systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B: Biointerfaces 59(1):24–34

    CAS  PubMed  Google Scholar 

  26. Gao D, Liu JJ, Wei HB et al (2010) A microfluidic approach for anticancer drug analysis based on hydrogel encapsulated tumor cells. Anal Chim Acta 665(1):7–14

    CAS  PubMed  Google Scholar 

  27. Gottschalk I, Gustavsson PE, Ersson B et al (2003) Improved lectin-mediated immobilization of human red blood cells in superporous agarose beads. J Chromatogr B 784:203–208

    CAS  Google Scholar 

  28. Hsiao MH, Larsson M, Larsson A et al (2012) Design and characterization of a novel amphiphilic chitosan nanocapsule-based thermo-gelling biogel with sustained in vivo release of the hydrophilic anti-epilepsy drug ethosuximide. J Control Release 161(2012):942–948

    CAS  PubMed  Google Scholar 

  29. Hu XH, Zhou J, Zhang N et al (2008) Preparation and properties of an injectable scaffold of poly(lactic-co-glycolic acid) microparticles/chitosan hydrogel. J Mech Behav Biomed Mater 1(4):352–359

    PubMed  Google Scholar 

  30. Hwang DK, Dendukuri D, Doyle PS (2008) Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles. Lab Chip 8:1640–1647

    CAS  PubMed  Google Scholar 

  31. Ikkai F, Iwamoto S, Adachi E et al (2005) New method of producing mono-sized polymer gel particles using microchannel emulsification and UV irradiation. Colloid Polym Sci 283:1149–1153

    CAS  Google Scholar 

  32. Iwamoto S, Nakagawa K, Sugiura S et al (2002) Preparation of gelatin microbeads with a narrow size distribution using microchannel emulsification. AAPS Pharm Sci Technol 3(3):72–76

    Google Scholar 

  33. Iwanaga S, Saito N, Sanae H et al (2013) Facile fabrication of uniform size-controlled microparticles and potentiality for tandem drug delivery system of micro/nanoparticles. Colloids Surf B: Biointerfaces 109:301–306

    CAS  PubMed  Google Scholar 

  34. Jiang GQ, Wang YJ, Ding FX (2013) Thermosensitive hydrogel incorporating microspheres for injectable implant delivery of naltrexone. Adv Mater Res 647:71–79

    Google Scholar 

  35. Kawazoe A, Kawaguchi M (2011) Characterization of silicone oil emulsions stabilized by TiO2 suspensions pre-adsorbed SDS. Colloids Surf A Physicochem Eng Asp 392:283–287

    CAS  Google Scholar 

  36. Khodaverdi E, Tafaghodi M, Ganji F et al (2012) In vitro insulin release from thermosensitive chitosan hydrogel. AAPS Pharm Sci Technol 13(2):460–466

    CAS  Google Scholar 

  37. Kim K, Cheng J, Liu Q et al (2009) Investigation of mechanical properties of soft hydrogel microcapsules in relation to protein delivery using a MEMS force sensor. J Biomed Mater Res A 92A(1):103–113

    Google Scholar 

  38. Kobayashi I, Mukataka S, Nakajima M (2005) Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions. Langmuir 21:7629–7632

    CAS  PubMed  Google Scholar 

  39. Koppolu B, Zaharoff DA (2013) The effect of antigen encapsulation in chitosan particles on uptake, activation and presentation by antigen presenting cells. Biomaterials 34:2359–2369

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Kovacsovics-Bankowski M, Clark K, Benacerraf B et al (1993) Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc Natl Acad Sci U S A 90:4942–4946

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Latterini L, Tarpani L (2012) AFM measurements to investigate particulates and their interactions with biological macromolecules. In: Frewin C (ed) Atomic force microscopy investigations into biology – from cell to protein. InTech, Rijeka, pp 87–98

    Google Scholar 

  42. Lau TT, Ho LW, Wang DA (2013) Hepatogenesis of murine induced pluripotent stem cells in 3D micro-cavitary hydrogel system for liver regeneration. Biomaterials 34(28):6659–6669

    CAS  PubMed  Google Scholar 

  43. Li T, Shi XW, Du YM et al (2007) Quaternized chitosan/alginate nanoparticles for protein delivery. J Biomed Mater Res A 83(2):283–290

    Google Scholar 

  44. Li J, Huang QR (2012) Rheological properties of chitosan – tripolyphosphate complexes: from suspensions to microgels. Carbohydr Polym 87(2):1670–1677

    CAS  Google Scholar 

  45. Li PC, Xu K, Tan Y et al (2013) A novel fabrication method of temperature-responsive poly(acrylamide) composite hydrogel with high mechanical strength. Polymer 54:5830–5838

    CAS  Google Scholar 

  46. Liang YY, Jeong J, DeVolder RJ et al (2011) A cell-instructive hydrogel to regulate malignancy of 3D tumor spheroids with matrix rigidity. Biomaterials 32(35):9308–9315

    CAS  PubMed  Google Scholar 

  47. Liu L, Wang W, Ju XJ et al (2010) Smart thermo-triggered squirting capsules for nanoparticle delivery. Soft Matter 6:3759–3763

    CAS  Google Scholar 

  48. Liu L, Wu F, Ju XJ et al (2013) Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions. J Colloid Interface Sci 404:85–90

    CAS  PubMed  Google Scholar 

  49. Liu Z, Shum HC (2013) Fabrication of uniform multi-compartment particles using microfluidic electrospray technology for cell co-culture studies. Biomicrofluidics. doi:10.1063/1.4817769

    Google Scholar 

  50. Liu Y, Yin Y, Wang LY et al (2013) Engineering biomaterial-associated complement activation to improve vaccine efficacy. Biomacromolecules 14:3321–3328

    CAS  PubMed  Google Scholar 

  51. Lv PP, Wei W, Yue H et al (2011) Porous quaternized chitosan nanoparticles containing paclitaxel nanocrystals improved therapeutic efficacy in non-small-cell lung cancer after oral administration. Biomacromolecules 12:4230–4239

    CAS  PubMed  Google Scholar 

  52. Lv PP, Ma YF, Yu R et al (2012) Targeted delivery of insoluble cargo (paclitaxel) by PEGylated chitosan nanoparticles grafted with Arg-Gly-Asp (RGD). Mol Pharmaceutics 9:1736–1747

    CAS  Google Scholar 

  53. Masotti A, Marino F, Ortaggi G et al (2007) Fluorescence and scanning electron microscopy of chitosan/DNA nanoparticles for biological applications. In: Méndez-Vilas A, Díaz J (eds) Modern research and educational topics in microscopy, vol 2. Formatex, Badajoz, pp 690–696

    Google Scholar 

  54. Meng QQ, Wang JX, Ma GH et al (2009) Lyophilization of CNBr-activated agarose beads with lactose and PEG. Process Biochem 44:562–571

    CAS  Google Scholar 

  55. Mohanan D, Slütter B, Henriksenn-Lacey M et al (2010) Administration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systems. J Control Release 147:342–349

    CAS  PubMed  Google Scholar 

  56. Morris GA, Castile J, Smith A et al (2011) The effect of prolonged storage at different temperatures on the particle size distribution of tripolyphosphate (TPP) – chitosan nanoparticles. Carbohydr Polym 84(4):1430–1434

    CAS  Google Scholar 

  57. Nakano K, Tozuka Y, Yamamoto H et al (2008) A novel method for measuring rigidity of submicron-size liposomes with atomic force microscopy. Int J Pharm 355:203–209

    CAS  PubMed  Google Scholar 

  58. Nayak AK, Pal D (2011) Development of pH-sensitive tamarind seed polysaccharide-alginate composite beads for controlled diclofenac sodium delivery using response surface methodology. Int J Biol Macromol 49:784–793

    CAS  PubMed  Google Scholar 

  59. Nie L, Liu SY, Shen WM et al (2007) One-pot synthesis of amphiphilic polymeric Janus particles and their self-assembly into supermicelles with a narrow size distribution. Angew Chem Int Ed 46:6321–6324

    CAS  Google Scholar 

  60. Oerlemans C, Seevinck PR, van de Maat GH et al (2013) Alginate–lanthanide microspheres for MRI-guided embolotherapy. Acta Biomater 9:4681–4687

    CAS  PubMed  Google Scholar 

  61. Pal K, Banthia AK, Majumdar DK (2009) Polymeric hydrogels: characterization and biomedical applications – a mini review. Des Monomers Polym 12:197–220

    CAS  Google Scholar 

  62. Paques JP, van der Linden E, van Rijn CJM et al (2013) Alginate submicron beads prepared through w/o emulsification and gelation with CaCl2 nanoparticles. Food Hydrocoll 31:428–434

    CAS  Google Scholar 

  63. Park BJ, Brugarolas T, Lee D (2011) Janus particles at an oil-water interface. Soft Matter 7:6413–6417

    CAS  Google Scholar 

  64. Park MR, Chun CJ, Cho CS et al (2010) Enhancement of sustained and controlled protein release using polyelectrolyte complex-loaded injectable and thermosensitive hydrogel. Eur J Pharm Biopharm 76(2):179–188

    CAS  PubMed  Google Scholar 

  65. Pereira R, Carvalho A, Vaz DC et al (2013) Development of novel alginate based hydrogel films for wound healing applications. Int J Biol Macromol 52:221–230

    CAS  PubMed  Google Scholar 

  66. Quinn CAP, Connor RE, Heller A (1997) Biocompatible, glucose-permeable hydrogel for in situ coating of implantable biosensors. Biomaterials 18(24):1665–1670

    CAS  PubMed  Google Scholar 

  67. Rampino A, Borgogna M, Blasi P et al (2013) Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm 455(1–2):219–228

    CAS  PubMed  Google Scholar 

  68. Ribeiro CC, Barrias CC, Barbosa MA (2003) Calcium phosphate-alginate microspheres as enzyme delivery matrices. Biomaterials 25:4363–4373

    Google Scholar 

  69. Rondeau E, Cooper-White JJ (2008) Biopolymer microparticle and nanoparticle formation within a microfluidic device. Langmuir 24:6937–6945

    CAS  PubMed  Google Scholar 

  70. Sahiner N, Butun S, Ilgin P (2011) Soft hydrogel particles with high functional value. Colloids Surf A Physicochem Eng Asp 381:74–84

    CAS  Google Scholar 

  71. Sajeesh S, Sharma CP (2006) Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery. J Biomed Mater Res B Appl Biomater 76(2):298–305

    CAS  PubMed  Google Scholar 

  72. Sakaguchi G, Tambara K, Sakakibara Y et al (2005) Control-released hepatocyte growth factor prevents the progression of heart failure in stroke-prone spontaneously hypertensive rats. Ann Thorac Surg 79(5):1627–1634

    PubMed  Google Scholar 

  73. Sakai S, Hashimoto I, Kawakami K (2008) Production of cell-enclosing hollow-core agarose microcapsules via jetting in water-immiscible liquid paraffin and formation of embryoid body-like spherical tissues from mouse ES cells enclosed within these microcapsules. Biotechnol Bioeng 99(1):235–243

    CAS  PubMed  Google Scholar 

  74. Schoubben A, Blasi P, Giovagnoli S et al (2009) Novel composite microparticles for protein stabilization and delivery. Eur J Pharm Sci 36:226–234

    CAS  PubMed  Google Scholar 

  75. Scott EA, Nichols MD, Cordova LH et al (2008) Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels. Biomaterials 29:4481–4493

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Seeber M, Zdyrko B, Burtovvy R et al (2011) Surface grafting of thermoresponsive microgel nanoparticles. Soft Matter 7:9962–9971

    CAS  Google Scholar 

  77. Shah RK, Kim JW, Agresti JJ et al (2008) Fabrication of monodisperse thermosensitive microgels and gel capsules in microfluidic devices. Soft Matter 4:2303–2309

    CAS  Google Scholar 

  78. Shah RK, Kim JW, Weitz DA (2010) Monodisperse stimuli-responsive colloidosomes by self-assembly of microgels in droplets. Langmuir 26(3):1561–1565

    CAS  PubMed  Google Scholar 

  79. Shi QH, Zhou X, Sun Y (2005) A novel superporous agarose medium for high-speed protein chromatography. Biotechnol Bioeng 92(5):643–651

    CAS  PubMed  Google Scholar 

  80. Siegel RA, Gu YD, Lei M et al (2010) Hard and soft micro- and nanofabrication: an integrated approach to hydrogel-based biosensing and drug delivery. J Control Release 141:303–313

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Silan C, Akcali A, Otkun MT et al (2012) Novel hydrogel particles and their IPN films as drug delivery systems with antibacterial properties. Colloids Surf B: Biointerfaces 89:248–253

    CAS  PubMed  Google Scholar 

  82. Simon S, Theiler S, Knudsen A et al (2010) Rheological properties of particle-stabilized emulsions. J Dispers Sci Technol 31(5):632–640

    CAS  Google Scholar 

  83. Singh B, Pal L (2012) Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: Mechanical, mucoadhesive, biocompatible and permeability properties. J Mech Behav Biomed Mater 9:9–21

    CAS  PubMed  Google Scholar 

  84. Singh B, Sharma S, Dhiman A (2013) Design of antibiotic containing hydrogel wound dressings: biomedical properties and histological study of wound healing. Int J Pharm 457(1):82–91

    CAS  PubMed  Google Scholar 

  85. Slütter B, Plapied L, Fievez V et al (2009) Mechanistic study of the adjuvant effect of biodegradable nanoparticles in mucosal vaccination. J Control Release 138:113–121

    PubMed  Google Scholar 

  86. Smidsrod O, Skjakbraek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    CAS  PubMed  Google Scholar 

  87. Soane RJ, Frier M, Perkins AC (1999) Evaluation of the clearance characteristics of bioadhesive systems in humans. Int J Pharm 178(1):55–65

    CAS  PubMed  Google Scholar 

  88. Son KD, Yang DJ, Kim MS (2012) Effect of alginate as polymer matrix on the characteristics of hydroxyapatite nanoparticles. Mater Chem Phys 132(2–3):1041–1047

    CAS  Google Scholar 

  89. Sugita N, Nomura S, Kawaguchi M (2008) Rheological and interfacial properties of silicone oil emulsions stabilized by silica particles. J Dispers Sci Technol 29(7):931–936

    CAS  Google Scholar 

  90. Suzuki T, Morishita C, Kawaguchi M (2010) Effects of surface properties on rheological and interfacial properties of Pickering emulsions prepared by fumed silica suspensions pre-adsorbed poly(N-Isopropylacrylamide). J Dispers Sci Technol 31(11):1479–1488

    CAS  Google Scholar 

  91. Tzoumaki MV, Moschakis T, Kiosseoglou V et al (2011) Oil-in-water emulsions stabilized by chitin nanocrystal particles. Food Hydrocoll 25(6):1521–1529

    CAS  Google Scholar 

  92. Vaghani SS, Patel MM, Satish CS (2012) Synthesis and characterization of pH-sensitive hydrogel composed of carboxymethyl chitosan for colon targeted delivery of ornidazole. Carbohydr Res 347:76–82

    CAS  PubMed  Google Scholar 

  93. Velev OD, Furusawa K, Nagayama K (1996) Assembly of latex particles by using emulsion droplets as templates. 1. Microstructured hollow spheres. Langmuir 12:2374–2384

    CAS  Google Scholar 

  94. Verheul RJ, Slütter B, Bal SM et al (2011) Covalently stabilized trimethyl chitosan-hyaluronic acid nanoparticles for nasal and intradermal vaccination. J Control Release 156:46–52

    CAS  PubMed  Google Scholar 

  95. Verheul RJ, Hagenaars N, van Es T et al (2012) A step-by-step approach to study the influence of N-acetylation on the adjuvanticity of N, N, N-trimethyl chitosan (TMC) in an intranasal nanoparticulate influenza virus vaccine. Eur J Pharm Sci 45:467–474

    CAS  PubMed  Google Scholar 

  96. Vladisavljević GT, Kobayashi I, Nakajima M (2012) Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluid Nanofluid 13:151–178

    Google Scholar 

  97. Walther A, Müller AHE (2013) Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 113:5194–5261

    CAS  PubMed  Google Scholar 

  98. Wang N, Wu XS (1998) A novel approach to stabilization of protein drugs in poly(lactic-co-glycolic acid) microspheres using agarose hydrogel. Int J Pharm 166:1–14

    CAS  Google Scholar 

  99. Wang LY, Ma GH, Su ZG (2005) Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug. J Control Release 106:62–75

    CAS  PubMed  Google Scholar 

  100. Wang Y, Chen DJ (2012) Preparation and characterization of a novel stimuli-responsive nanocomposite hydrogel with improved mechanical properties. J Colloid Interface Sci 372:245–251

    CAS  PubMed  Google Scholar 

  101. Wang YX, Qin J, Wei Y et al (2013) Preparation strategies of thermo-sensitive P(NIPAM-co-AA) microspheres with narrow size distribution. Powder Technol 236:107–113

    CAS  Google Scholar 

  102. Wang W, Zhang MJ, Chu LY (2013) Functional polymeric microparticles engineered from controllable microfluidic emulsions. Acc Chem Res. doi:10.1021/ar4001263

    Google Scholar 

  103. Wang YQ, Wu J, Fan QZ et al (2013) Novel vaccine delivery system induces robust humoral and cellular immune responses based on multiple mechanisms. Adv Healthcare Mater. doi:10.1002/adhm.201300335

    Google Scholar 

  104. Wang W, Zhang MJ, Xie R et al (2013) Hole-shell microparticles from controllably evolved double emulsions. Angew Chem Int Ed 52:8084–8087

    CAS  Google Scholar 

  105. Wang JY, Hu YD, Deng RH et al (2013) Multiresponsive hydrogel photonic crystal microparticles with inverse-opal structure. Langmuir 29(28):8825–8834

    CAS  PubMed  Google Scholar 

  106. Wei W, Wang LY, Yuan L et al (2007) Preparation and application of novel microspheres possessing autofluorescent properties. Adv Funct Mater 17:3153–3158

    CAS  Google Scholar 

  107. Wei W, Yuan L, Hu G et al (2008) Monodisperse chitosan microspheres with interesting structures for protein drug delivery. Adv Mater 9999:1–5

    Google Scholar 

  108. Wei W, Wang LY, Yuan L et al (2008) Bioprocess of uniform-sized crosslinked chitosan microspheres in rats following oral administration. Eur J Pharm Biopharm 69:878–886

    CAS  PubMed  Google Scholar 

  109. Wei ZJ, Wang CY, Zou SW et al (2012) Chitosan nanoparticles as particular emulsifier for preparation of novel pH-responsive Pickering emulsions and PLGA microcapsules. Polymer 53:1229–1235

    CAS  Google Scholar 

  110. Wei W, Lv PP, Chen XM et al (2013) Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression. Biomaterials 34:3912–3923

    CAS  PubMed  Google Scholar 

  111. Wu J, Wei W, Wang LY et al (2008) Preparation of uniform-sized pH-sensitive quaternized chitosan microsphere by combining membrane emulsification technique and thermal-gelation method. Colloids Surf B: Biointerfaces 63:164–175

    CAS  PubMed  Google Scholar 

  112. Xu K, Tan Y, Chen Q et al (2010) A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rate. J Colloid Interface Sci 345(2):360–368

    CAS  PubMed  Google Scholar 

  113. Yan Y, Zhang ZB, Stokes JR et al (2009) Mechanical characterization of agarose micro-particles with a narrow size distribution. Powder Technol 192:122–130

    CAS  Google Scholar 

  114. Yang CH, Huang KS, Chang JY (2007) Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip. Biomed Microdevices 9(2):253–259

    CAS  PubMed  Google Scholar 

  115. Yang Y, Nam SW, Lee NY et al (2008) Superporous agarose beads as a solid support for microfluidic immunoassay. Ultramicroscopy 108:1384–1389

    CAS  PubMed  Google Scholar 

  116. Yao KD, Liu WG, Lin Z et al (1999) In situ atomic force microscopy measurement of the dynamic variation in the elastic modulus of swollen chitosan/gelatin hybrid polymer network gels in media of different pH. Polym Int 48:794–798

    CAS  Google Scholar 

  117. You JO, Peng CA (2005) Calcium-alginate nanoparticles formed by reverse microemulsion as gene Carriers. Macromol Symp 219(1):147–153

    Google Scholar 

  118. You JO, Rafat M, Auguste DT (2011) Cross-linked, heterogeneous colloidosomes exhibit pH-induced morphogenesis. Langmuir 27:11282–11286

    CAS  PubMed  Google Scholar 

  119. Yue H, Wei W, Yue ZG et al (2010) Particle size affects the cellular response in macrophages. Eur J Pharm Sci 41:650–657

    CAS  PubMed  Google Scholar 

  120. Yue ZG, Wei W, Lv PP et al (2011) Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules 12:2440–2446

    CAS  PubMed  Google Scholar 

  121. Zhang YL, Jia XY, Wang LY et al (2011) Preparation of Ca-alginate microparticles and its application for phenylketonuria oral therapy. Ind Eng Chem Res 50:4106–4112

    CAS  Google Scholar 

  122. Zhang YL, Wei W, Lv PP et al (2011) Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin. Eur J Pharm Biopharm 77:11–19

    CAS  PubMed  Google Scholar 

  123. Zhang MJ, Wang W, Xie R et al (2013) Microfluidic fabrication of monodisperse microcapsules for glucose-response at physiological temperature. Soft Matter 9:4150–4159

    CAS  Google Scholar 

  124. Zhao LL, Zhu LJ, Liu FY et al (2011) pH triggered injectable amphiphilic hydrogel containing doxorubicin and paclitaxel. Int J Pharm 410(1–2):83–91

    CAS  PubMed  Google Scholar 

  125. Zhou QZ, Wang LY, Ma GH et al (2007) Preparation of uniform-sized agarose beads by microporous membrane emulsification technique. J Colloid Interface Sci 311:118–127

    CAS  PubMed  Google Scholar 

  126. Zhou QZ, Liu XY, Liu SJ et al (2008) Preparation of uniformly sized agarose microcapsules by membrane emulsification for application in sorting bacteria. Ind Eng Chem Res 47(17):6386–6390

    CAS  Google Scholar 

  127. Zhou QZ, Wang LY, Ma GH et al (2008) Multi-stage premix membrane emulsification for preparation of agarose microbeads with uniform size. J Membr Sci 322:98–104

    CAS  Google Scholar 

  128. Zhou QZ, Ma GH, Su ZG (2009) Effect of membrane parameters on the size and uniformity in preparing agarose beads by premix membrane emulsification. J Membr Sci 326:694–700

    CAS  Google Scholar 

  129. Zhou GC, Lu Y, Zhang H et al (2013) A novel pulsed drug-delivery system: polyelectrolyte layer-by-layer coating of chitosan–alginate microgels. Int J Nanomedicine 8:877–887

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Hui Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Wu, J., Zhao, X., Wang, YQ., Ma, GH. (2015). Biomedical Application of Soft Nano-/Microparticles. In: Kita, R., Dobashi, T. (eds) Nano/Micro Science and Technology in Biorheology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54886-7_11

Download citation

Publish with us

Policies and ethics