Skip to main content

π-Stacking on Density Functional Theory: A Review

  • Chapter
  • First Online:
π-Stacked Polymers and Molecules

Abstract

In line with increasing use of density functional theory (DFT) in quantum chemistry, it is presently employed in more than 80 % of van der Waals calculations. Since most van der Waals calculations target at large-scale systems such as biomolecules and nanomaterials, it is natural to use DFT having features of both high speed and high accuracy. Nevertheless, it has been reported that DFT provides poor van der Waals bonds for many years [1]. For example, until recently, no exchange-correlation functional gives meaningful potential energy curves for the van der Waals bonds of rare gas dimers in Kohn–Sham calculations [1]. The main cause for the poor DFT results of van der Waals bonds is the neglect of van der Waals interactions in conventional exchange-correlation functionals [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamiya M, Tsuneda T, Hirao K (2002) J Chem Phys 117:6010

    Article  CAS  Google Scholar 

  2. Tsuneda T, Sato T (2009) Butsuri 64:291

    CAS  Google Scholar 

  3. Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  4. Kohn W, Sham LJ (1965) Phys Rev A 140:1133

    Google Scholar 

  5. London FW (1930) Z Phys 63:245

    Article  CAS  Google Scholar 

  6. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  7. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  8. Colle R, Salvetti O (1975) Theor Chim Acta 37:329

    Article  CAS  Google Scholar 

  9. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  10. Tsuneda T, Suzumura T, Hirao K (1999) J Chem Phys 110:10664

    Article  CAS  Google Scholar 

  11. Grimme S (2008) Angew Chem Int Ed 47:3430

    Article  CAS  Google Scholar 

  12. Hunter CA, Sanders JKM (1990) J Am Chem Soc 112:5525

    Article  CAS  Google Scholar 

  13. Hunter CA (1993) Angew Chem 105:1653

    CAS  Google Scholar 

  14. Sato T, Tsuneda T, Hirao K (2005) J Chem Phys 123:104307

    Article  Google Scholar 

  15. Dillon AC, Heben MJ (2001) Appl Phys A 72:133

    Article  CAS  Google Scholar 

  16. Dresselhaus MS, Dresselhaus G, Avouris P (2000) Carbon nanotubes: synthesis, structure, properties and applications. Springer, Berlin

    Google Scholar 

  17. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Angew Chem Int Ed 49:2114

    Article  CAS  Google Scholar 

  18. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Electroanalysis 22:1027

    Article  CAS  Google Scholar 

  19. Lerman LS (1961) J Mol Biol 3:18

    Article  CAS  Google Scholar 

  20. Zimm BH (1960) J Chem Phys 33:1349

    Article  CAS  Google Scholar 

  21. Burley SK, Patsko GA (1985) Science 229:23

    Article  CAS  Google Scholar 

  22. Hunter CA, Singh J, Thornton JM (1991) J Mol Biol 218:837

    Article  CAS  Google Scholar 

  23. Quiocho FA, Vyas NK (1984) Nature (London) 310:381

    Article  CAS  Google Scholar 

  24. Vyas NK, Vyas MN, Quiocho FA (1987) Nature (London) 327:635

    Article  CAS  Google Scholar 

  25. Vyas NK, Vyas MN, Quiocho FA (1988) Science 242:1290

    Article  CAS  Google Scholar 

  26. Jorgensen WL, Severance DL (1990) J Am Chem Soc 112:4768

    Article  CAS  Google Scholar 

  27. Hunter CA (1994) Chem Soc Rev 23:101

    Article  CAS  Google Scholar 

  28. Kryger G, Silman I, Sussman JL (1998) J Physiol (Paris) 92:191

    Article  CAS  Google Scholar 

  29. Cerny J, Kabelac M, Hobza P (2008) J Am Chem Soc 130:16055

    Article  CAS  Google Scholar 

  30. Hoeben FJM, Jonkheijm P, Meijer EW, Schenning PHJ (2005) Chem Rev 105:1491

    Article  CAS  Google Scholar 

  31. Wheeler SE, Houk KN (2008) J Am Chem Soc 130:10854

    Article  CAS  Google Scholar 

  32. Singh RK, Tsuneda T (2013) J Comput Chem 34:379

    Google Scholar 

  33. Becke AD, Johnson ER (2005a) J Chem Phys 123:154101

    Article  Google Scholar 

  34. Becke AD, Johnson ER (2005b) J Chem Phys 125:154105

    Google Scholar 

  35. McWeeny R (1992) Methods of molecular quantum mechanics, 2nd edn. Academic Press, San Diego

    Google Scholar 

  36. Williams HL, Chabalowski CF (2001) J Phys Chem A 105:646

    Article  CAS  Google Scholar 

  37. Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9:3397

    Article  CAS  Google Scholar 

  38. Grimme S (2006) J Chem Phys 124:034108

    Article  Google Scholar 

  39. Langreth DC, Perdew JP (1975) Solid State Comm 17:1425

    Article  Google Scholar 

  40. Zhu W, Toulouse J, Savin A, Angyan JG (2009) J Chem Phys 131:174105

    Article  Google Scholar 

  41. Andersson Y, Langreth DC, Lundqvist BI (1996) Phys Rev Lett 76:102

    Article  CAS  Google Scholar 

  42. Dobson JF, Dinte BP (1996) Phys Rev Lett 76:1780

    Article  CAS  Google Scholar 

  43. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  44. Vydrov OA, van Voorhis T (2009) J Chem Phys 130:104105

    Article  Google Scholar 

  45. Sato T, Nakai H (2009) J Chem Phys 131:224104

    Article  Google Scholar 

  46. Brooks RE, Bruccoleri BR, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187

    Article  CAS  Google Scholar 

  47. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TEI, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) Comput Phys Comm 91:1

    Article  CAS  Google Scholar 

  48. Antony J, Grimme S (2006) Phys Chem Chem Phys 8:5287

    Article  CAS  Google Scholar 

  49. Zhao Y, Truhlar DG (2008a) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  50. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  51. Casimir H, Polder D (1948) Phys Rev 73:360

    Article  CAS  Google Scholar 

  52. Starkschall G, Gordon R (1972) J Chem Phys 56:2801

    Article  CAS  Google Scholar 

  53. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540

    Article  CAS  Google Scholar 

  54. Savin A (1996) In: Seminario JJ (ed) Recent developments and applications of modern density functional theory. Elsevier, Amsterdam

    Google Scholar 

  55. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  56. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425

    Article  CAS  Google Scholar 

  57. Song J-W, Tsuneda T, Sato T, Hirao K (2010) Org Lett 12:1440

    Article  CAS  Google Scholar 

  58. Kamiya M, Sekino H, Tsuneda T, Hirao K (2005) J Chem Phys 122:234111(1)

    Article  Google Scholar 

  59. Kishi R, Bonness S, Yoneda K, Takahashi H, Nakano M, Botek E, Champagne B, Kubo T, Kamada K, Ohta K, et al (2010) J Chem Phys 132:094107

    Article  Google Scholar 

  60. Tsuneda T, Song J-W, Suzuki S, Hirao K (2010) J Chem Phys 133:174101

    Article  Google Scholar 

  61. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 91:51

    Article  Google Scholar 

  62. Vydrov OA, Heyd J, Krukau A, Scuseria GE (2006) J Chem Phys 125:074106(1)

    Google Scholar 

  63. Chai J-D, Head-Gordon M (2008a) J Chem Phys 128:084106(1)

    Article  Google Scholar 

  64. Giese TJ, Audette VM, York DM (2003) J Chem Phys 119:2618

    Article  CAS  Google Scholar 

  65. Sato T, Tsuneda T, Hirao K (2007) J Chem Phys 126:234114

    Article  Google Scholar 

  66. Chai J-D, Head-Gordon M (2008b) Phys Chem Chem Phys 10:6615

    Article  CAS  Google Scholar 

  67. Chai J-D, Head-Gordon M (2009) J Chem Phys 131:174105

    Article  Google Scholar 

  68. Ma SK, Brueckner KA (1968) Phys Rev 165:18

    Article  Google Scholar 

  69. Dreizler RM, Gross EKU (1990) Density-functional theory an approach to the quantum many-body problem. Springer, Berlin

    Book  Google Scholar 

  70. Meijer EJ, Sprik M (1996) J Chem Phys 105:8684

    Article  CAS  Google Scholar 

  71. Tsuzuki S, Lüthi H (2001) J Chem Phys 114:3949

    Article  CAS  Google Scholar 

  72. Ehrlich S, Moellmann J, Grimme S (2012) Acc Chem Res. doi:10.1021/ar3000844

    Google Scholar 

  73. Jurecka P, Sponer J, Cerny J, Hobza P (2006) Phys Chem Chem Phys 8:1985

    Article  CAS  Google Scholar 

  74. Riley KE, Pitonak M, Jurecka P, Hobza P (2010) Chem Rev 110:5023

    Article  CAS  Google Scholar 

  75. Pernal K, Podeszwa R, Patkowski K, Szalewicz K (2009) Phys Rev Lett 103:263201

    Article  Google Scholar 

  76. Vydrov OA, Van Voorhis T (2010) J Chem Phys 132:164113

    Google Scholar 

  77. Tournas F, Latil S, Heggie MI, Charlier J-C (2005) Phys Rev B 72:075431

    Article  Google Scholar 

  78. Park KA, Lee SM, Lee SH, Lee YH (2007) J Phys Chem C 111:1620

    Article  CAS  Google Scholar 

  79. Woods LM, Badescu SC, Reinecke TL (2007) Phys Rev B 75:155415

    Article  Google Scholar 

  80. Zhao J, Buldum A, Han J, Lu JP (2002) Nanotechnologoy 13:195

    Article  CAS  Google Scholar 

  81. Tada K, Furuya S, Watanabe K (2001) Phys Rev B 63:155405

    Article  Google Scholar 

  82. Grimme M, Steinmetz S, Korth M (2007) J Org Chem 72:2118

    Article  CAS  Google Scholar 

  83. Mackie ID, DiLabio GA (2008) J Phys Chem A 112:10968

    Article  CAS  Google Scholar 

  84. Björk J, Hanke F, Palma C-A, Samori P, Cecchini M, Persson M (2010) J Phys Chem Lett 1:3407

    Article  Google Scholar 

  85. Gowtham S, Scheicher RH, Ahuja R, Pandey R, Karna SP (2007) Phys Rev B 76:033401

    Article  Google Scholar 

  86. Panigrahi S, Bhattacharya A, Banerjee S, Bhattacharrya D (2012) J Phys Chem C 116:4374

    Article  CAS  Google Scholar 

  87. Zhang Z, Huang H, Yang X, Zang L (2011) J Phys Chem Lett 2:2897

    Article  CAS  Google Scholar 

  88. Gao H, Kong Y (2004) Annu Rev Mater Res 34:123

    Article  CAS  Google Scholar 

  89. Morgado C, Vincent MA, Hillier IH, Shan X (2007) Phys Chem Chem Phys 9:448

    Article  CAS  Google Scholar 

  90. Cooper VR, Thonhauser T, Puzder A, Schröder E, Lundqvist BI, Langreth DC (2007) J Am Chem Soc 130:1304

    Article  Google Scholar 

  91. Hesselmann A, Jansen G, Schütz M (2006) J Am Chem Soc 128:11730

    Article  CAS  Google Scholar 

  92. Lange AW, Rohrdanz MA, Herbert JM (2008) J Phys Chem B Lett 112:6304

    Article  CAS  Google Scholar 

  93. Santoro F, Barone V, Improta R (2009) J Am Chem Soc 131:15232

    Article  CAS  Google Scholar 

  94. Chakrabarti S, Ruud K (2009) J Phys Chem A 113:5485

    Article  CAS  Google Scholar 

  95. Zhao Y, Truhlar DG (2008b) Phys Chem Chem Phys 10:2813

    Article  CAS  Google Scholar 

  96. Sumpter BG, Meunier V, Valeev EF, Lampkins AJ, Li H, Castellano RK (2007) J Phys Chem C 111:18912

    Article  CAS  Google Scholar 

  97. Wong BM, Ye SH (2011) Phys Rev B 84:075115

    Article  Google Scholar 

  98. Choudhury SR, Gamez P, Robertazzi A, Chen C-Y, Lee HM, Mukhopadhyay S (2008) Cryst Growth Des 8:3773

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) (Grant: 23225001 and 24350005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Tsuneda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer

About this chapter

Cite this chapter

Tsuneda, T., Taketsugu, T. (2014). π-Stacking on Density Functional Theory: A Review. In: Nakano, T. (eds) π-Stacked Polymers and Molecules. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54129-5_5

Download citation

Publish with us

Policies and ethics