Skip to main content

Brain–Machine Interfaces Based on Computational Model

  • Conference paper
Systems Neuroscience and Rehabilitation
  • 816 Accesses

Abstract

The research about brain computer interface or brain machine interface has been widely developed in this decade. Implant methods are already used for eye or ear as retinal implant or cochlear implant, these devices stimulate peripheral nerve. In this case, the stimulus site is peripheral and the information from each sensor is input signal of the brain. Brain Machine Interface measure or stimulate neuron in the brain directly and decode neuronal firings to generate information. It is impossible to measure all neuron activities from brain, because of enormous quantity of neurons and also the function is unknown. So anatomical knowledge, such as a cortical homunculus of the primary motor cortex and the primary somatosensory cortex, or neural scientific knowledge is used.

The process of movement from the primary motor cortex to muscle is forward direction, and the number of neurons are decrease in this process. The generation of muscle activities are straightforward. In the field of motor control, motor command generation is still open problem. There are many theories are proposed. In order to evaluate or verify these theories, the technique of BMI is also useful. In this chapter, we introduce musculo-skeletal model and computational model for movement, and also some examples of BMI/BCI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chapin JK, Moxon KA, Markowitz RS, Nicolelis MAL (1999) Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 2:664–670

    Article  PubMed  CAS  Google Scholar 

  2. Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, Dimitrov DF, Patil PG, Henriquez CS, Nicolelis MAL (2003) Learning to control a brain–machine interface for reaching and grasping by primates. PLoS Biol 1(2):1–16

    Article  Google Scholar 

  3. Musallam S, Corneil BD, Greger B, Scherberger H, Andersen RA (2004) Cognitive control signals for neural prosthetics. Science 305(5681):258–262

    Article  PubMed  CAS  Google Scholar 

  4. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171

    Article  PubMed  CAS  Google Scholar 

  5. Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2(11):1527–1537

    PubMed  CAS  Google Scholar 

  6. Fetz EE, Cheney PD, German DC (1976) Corticomotoneuronal connections of precentral cells detected by postspike averages of emg activity in behaving monkeys. Brain Res 114(3):505–510

    Article  PubMed  CAS  Google Scholar 

  7. Kalaska JF, Cohen DA, Hyde ML, Prud’homme M (1989) A comparison of movement ­direction-related versus load direction-related activity in primate motor cortex, using a ­two-dimensional reaching task. J Neurosci 9(6):2080–2102

    PubMed  CAS  Google Scholar 

  8. Koike Y, Kawato M (1994) Estimation of arm posture in {3D}-space from surface EMG ­signals using a neural network model. IEICE Trans Fundam E77-D, No. 4:368–375

    Google Scholar 

  9. Koike Y, Kawato M (1995) Estimation of dynamic joint torques and trajectory formation from surface electromyography signals using a neural network model. Biol Cybern 73:291–300

    Article  PubMed  CAS  Google Scholar 

  10. Kim J, Sato M, Koike Y (2002) Human arm posture control using the impedance controllability of the musculo-skeletal system against the alteration of the environments. Trans Control Autom Syst Eng 4(1):43–48

    Google Scholar 

  11. Feldman AG, Adamovich SV, Ostry DJ, Flanagan JR (1990) The origin of electromyograms – explanations based on the equilibrium point hypotheses. In: Winters JM, Woo SL-Y (eds) Multiple muscle systems. Springer, New York, pp 195–213

    Chapter  Google Scholar 

  12. Flanagan JR, Ostry DJ, Feldman AG (1993) Control of trajectory modifications in target-directed reaching. J Mot Behav 25(3):140–152

    Article  PubMed  Google Scholar 

  13. Katayama M, Kawato M (1993) Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models. Biol Cybern 69(5/6):353–362

    PubMed  CAS  Google Scholar 

  14. Gribble PL, Ostry DJ, Sanguineti V, Laboissiere R (1998) Are complex control signals required for human arm movement? J Neurophysiol 79(3):1409–1424

    PubMed  CAS  Google Scholar 

  15. Osu R, Gomi H (1999) Multijoint muscle regulation mechanisms examined by measured human arm stiffness and emg signals. J Neurophysiol 81:1458–1468

    PubMed  CAS  Google Scholar 

  16. Prilutsky BI (2000) Coordination of two- and one-joint muscles: functional consequences and implications for motor control. Mot Control 4(1):1–44

    CAS  Google Scholar 

  17. Ghez C (2000) Principles of neural science, chapter Muscles: effectors of the motor systems. McGraw-Hill, New York

    Google Scholar 

  18. Özkaya N, Nordin M (1991) Fundamentals of biomechanics: equilibrium, motion, and deformation. Van Nostrand Reinhold, New York

    Google Scholar 

  19. Kawato M, Gomi H (1993) The cerebellum and VOR/OKR learning models. Trends Neurosci 16(11):177–178

    Article  Google Scholar 

  20. Inman VT, Ralston HJ, Saunders JB, Feinstein B, Wright EW Jr (1952) Relation of human electromyogram to muscular tension. Electroencephalogr Clin Neurophysiol 4(2):187–194

    Article  PubMed  CAS  Google Scholar 

  21. Gottlieb GL, Agarwal GC (1971) Dynamic relationship between isometric muscle tension and the electromyogram in man. J Appl Physiol 30(3):345–351

    PubMed  CAS  Google Scholar 

  22. Basmajian JV, De Luca CJ (1985) Description and analysis of the EMG signal. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  23. Maton B, Peres G, Landjerit B (1987) Relationships between individual isometric muscle forces, emg activity and joint torque in monkeys. Eur J Appl Physiol Occup Physiol 56(4):487–494

    Article  PubMed  CAS  Google Scholar 

  24. Clancy EA, Hogan N (1991) Estimation of joint torque from the surface EMG. Annu Int Conf IEEE Eng Med Biol Soc 13(2):0877–0878

    Google Scholar 

  25. Choi K, Hirose H, Sakurai Y, Iijima T, Koike Y (2009) Prediction of arm trajectory from the neural activities of the primary motor cortex with modular connectionist architecture. Neural Netw 22(9):1214–1223

    Article  PubMed  Google Scholar 

  26. Jacobs RA, Jordan MI (1991) A competitive modular connectionist architecture. In: Moody JM, Hanson SJ, Lippmann RP (eds) Advances in neural information processing systems 3. Morgan Kaufmann, San Meteo, pp 767–773

    Google Scholar 

  27. Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9(6):718–727

    Article  PubMed  CAS  Google Scholar 

  28. Cohen YE, Andersen RA (2002) A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci 3(7):553–562

    Article  PubMed  CAS  Google Scholar 

  29. Matsumura M, Kubota K (1979) Cortical projection of hand-arm motor area from post-arcuate area in macaque monkey: a histological study of retrograde transport of horseradish peroxidase. Neurosci Lett 11:241–246

    Article  PubMed  CAS  Google Scholar 

  30. Muakkassa KF, Strick PL (1979) Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized premotor areas. Brain Res 177:176–182

    Article  PubMed  CAS  Google Scholar 

  31. Kakei S, Hoffman DS, Strick PL (1999) Muscle and movement representations in the primary motor cortex. Science 285(5436):2136–2139

    Article  PubMed  CAS  Google Scholar 

  32. Kakei S, Hoffman DS, Strick PL (2001) Direction of action is represented in the ventral premotor cortex. Nat Neurosci 4(10):1020–1025

    Article  PubMed  CAS  Google Scholar 

  33. Fried I, Katz A, McCarthy G, Sass KJ, Williamson P, Spencer SS, Spencer DD (1991) Functional organization of human supplementary motor cortex studied by electrical stimulation. J Neurosci 11:3656–3666

    PubMed  CAS  Google Scholar 

  34. Shima K, Tanji J (1994) Role for supplementary motor area cells in planning several movements ahead. Nature 371:413–416

    Article  PubMed  Google Scholar 

  35. Roland PE, Larsen B, Lassen NA, Skinhoj E (1980) Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiol 43(1):118–136

    PubMed  CAS  Google Scholar 

  36. Halsband U, Matsuzaka Y, Tanji J (1994) Neuronal activity in the primate supplementary, pre-supplementary and premotor cortex during externally and internally instructed sequential movements. Neurosci Res 20(2):149–155

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuharu Koike .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this paper

Cite this paper

Koike, Y., Kambara, H., Yoshimura, N., Shin, D. (2011). Brain–Machine Interfaces Based on Computational Model. In: Kansaku, K., Cohen, L.G. (eds) Systems Neuroscience and Rehabilitation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54008-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54008-3_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53998-8

  • Online ISBN: 978-4-431-54008-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics