Skip to main content

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Methods for separation and characterization of PEGylated proteins are reviewed in this chapter. It is explained that these methods are challenging because PEG itself is a relatively inert, neutral, hydrophilic polymer and the starting point for PEGylation is a pure protein. Other than changes to molecular weight and size, differences between the properties of the PEGylated forms of a pure protein are relatively small, since they arise only from the addition to the protein of relatively inert, neutral polymer chains, which tend to shield interactions. Physicochemical properties that are routinely used to characterize and purify proteins are discussed with regard to their applications for PEGylated proteins, including molecular mass, size and shape (mass spectrometry, size exclusion chromatography, membranes, capillary electrophoresis, gel electrophoresis), electrostatic charge (cation and anion exchange chromatography, isoelectric point gel electrophoresis, capillary electrophoresis) and relative hydrophobicity (hydrophobic interaction, reversed phase).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fee, C.J., Size comparison between proteins PEGylated with branched and linear poly(ethylene glycol) molecules. Biotechnology and Bioengineering, 2007. 98(4): p. 725–31.

    Article  CAS  PubMed  Google Scholar 

  2. Watson, E., Shah, B., DePrince, R., Hendren, R.W., and Nelson, R., Matrix-assisted laser desorption mass spectrometric analysis of a pegylated recombinant protein. Biotechniques, 1994. 16(2): p. 278–80.

    CAS  PubMed  Google Scholar 

  3. Basu, A., Yang, K., Wang, M., Liu, S., Chintala, R., Palm, T., Zhao, H., Peng, P., Wu, D., Zhang, Z. et al., Structure-function engineering of interferon-α-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjugate Chem., 2006. 17(3): p. 618–30.

    Article  CAS  Google Scholar 

  4. Foser, S., Schacher, A., Weyer, K.A., Brugger, D., Dietel, E., Marti, S., and Schreitmüller, T., Isolation, structural characterization, and antiviral activity of positional isomers of monopegylated interferon [alpha]-2a (PEGASYS). Protein Expression and Purification, 2003. 30(1): p. 78–87.

    Article  CAS  PubMed  Google Scholar 

  5. Lee, K.C., Moon, S.C., Park, M.O., Lee, J.T., Na, D.H., Yoo, S.D., Lee, H.S., and DeLuca, P.P., Isolation, characterization, and stability of positional isomers of mono-PEGylated salmon calcitonins. Pharmaceutical Research, 1999. 16(6): p. 813–18.

    Article  CAS  PubMed  Google Scholar 

  6. Li, X.-Q., Lei, J.-D., Su, Z.-G., and Ma, G.-H., Comparison of bioactivities of monopegylated rhG-CSE with branched and linear mPEG. Process Biochemistry, 2007. 42(12): p. 1625–31.

    Article  CAS  Google Scholar 

  7. Youn, Y.S., Na, D.H., Yoo, S.D., Song, S.-C, and Lee, K.C., Chromatographic separation and mass spectrometric identification of positional isomers of polyethylene glycol-modified growth hormone-releasing factor (1–29). Journal of Chromatography A, 2004. 1061(1): p. 45–49.

    Article  CAS  PubMed  Google Scholar 

  8. Fee, C.J. and Van Alstine, J.M., Prediction of viscosity radius and size exclusion chromatography behavior of PEGylated proteins. Bioconjugate Chemistry, 2004. 15(6): p. 1304–13.

    Article  CAS  PubMed  Google Scholar 

  9. Hagel, L., Gel Filtration, in Protein Purification, J.-C. Janson and Rydén, L., Editors. 1998, John Wiley & Sons: New York.

    Google Scholar 

  10. Zheng, C.Y., Ma, G.H., and Su, Z.G., Native PAGE eliminates the problem of PEG-SDS interaction in SDS-PAGE and provides an alternative to HPLC in characterization of protein PEGylation. Electrophoresis, 2007. 28(16): p. 2801–7.

    Article  CAS  PubMed  Google Scholar 

  11. Fee, C.J. and Van Alstine, J.M., PEG-proteins: Reaction engineering and separation issues. Chemical Engineering Science, 2006. 61(3): p. 924–39.

    Article  CAS  Google Scholar 

  12. Bailon, P. and Berthold, W., Polyethylene glycol-conjugated pharmaceutical proteins. Pharmaceutical Science & Technology Today, 1998. 1(8): p. 352–56.

    Article  CAS  Google Scholar 

  13. Edwards, CK., Martin, S.W., Seely, J., Kinstler, O.B., Buckel, S., Bendele, A.M., Cosenza, M.E., Feige, U., and Kohno, T., Design of PEGylated soluble tumour necrosis factor receptor type I (PEG STNF-RI) for chronic inflammatory diseases. Advanced Drug Delivery Reviews, 2003. 55: p. 1315–36.

    Article  CAS  PubMed  Google Scholar 

  14. Maeda, N., Kimura, M., Sasaki, I., Hirose, Y., and Konno, T., Toxicity of bilirubin and detoxification by PEG-bilirubin oxidase conjugate, in Poly(ethylene glycol) chemistry: Biotechical and biomedical applications, J.M. Harris, Editor. 1992, Plenum Press: New York. p. 153–69.

    Google Scholar 

  15. Tan, Y., Sun, X., Xu, M., An, Z., Tan, X., Han, Q., Miljkovic, D.A., Yang, M., and Hoffman, R.M., Polyethylene glycol conjugation of recombinant methioninase for cancer therapy. Protein Expression and Purification, 1998. 12(1): p. 45–52.

    Article  CAS  PubMed  Google Scholar 

  16. Molek, J.R. and Zydney, A.L., Ultrafiltration characteristics of pegylated proteins. Biotechnology and Bioengineering, 2006. 95(3): p. 474–82.

    Article  CAS  PubMed  Google Scholar 

  17. Molek, J.R. and Zydney, A.L., Separation of PEGylated alpha-lactalbumin from unreacted precursors and byproducts using ultrafiltration. Biotechnology Progress, 2007. 23(6): p. 1417–24.

    Article  CAS  PubMed  Google Scholar 

  18. Li, W., Zhong, Y., Lin, B., and Su, Z., Characterization of polyethylene glycol-modified proteins by semi-aqueous capillary electrophoresis. Journal of Chromatography A, 2001. 905(1–2): p. 299–307.

    Article  CAS  PubMed  Google Scholar 

  19. Na, D.H., Park, E.J., Jo, Y.W., and Lee, K.C., Capillary electrophoretic separation of high-molecular-weight poly(ethylene glycol)-modified proteins. Analytical Biochemistry, 2008. 373(2): p. 207–12.

    Article  CAS  PubMed  Google Scholar 

  20. Na, D.H. and Lee, K.C., Capillary electrophoretic characterization of PEGylated human parathyroid hormone with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analytical Biochemistry, 2004. 331(2): p. 322–28.

    Article  CAS  PubMed  Google Scholar 

  21. Brumeanu, T.-D., Zaghouani, H., and Bona, C., Purification of antigenized immunoglobulins derivatized with monomethoxypolyethylene glycol. Journal of Chromatography A, 1995. 696: p. 219–25.

    Article  CAS  PubMed  Google Scholar 

  22. Esposito, P., Barbero, L., Caccia, P., Caliceti, P., D’Antonio, M., Piquet, G., and Veronese, F., Pegylation of growth hormone-releasing hormone GRF analogues. Advanced Drug Delivery Reviews, 2003. 55(10): p. 1279–91.

    Article  CAS  PubMed  Google Scholar 

  23. He, X.H., Shaw, P.C., and Tarn, S.C., Reducing the immunogenicity and improving the in vivo activity of trichosanthin by site-directed pegylation. Life Sciences, 1999. 65(4): p. 355–68.

    Article  CAS  PubMed  Google Scholar 

  24. Kinstler, O.B., Brems, D.N., Lauren, S.L., Paige, A.G., Hamburger, J.B., and Treuheit, M.J., Characterization and stability of N-terminally PEGylated rhG-CSF. Pharmaceutical Research, 1996. 13: p. 996–1002.

    Article  CAS  PubMed  Google Scholar 

  25. Koumenis, I.L., Shahrokh, Z., Leong, S., Hsei, V., Deforge, L., and Zapata, G., Modulating pharmacokinetics of an anti-interleukin-8 F(ab’)(2) by amine-specific PEGylation with preserved bioactivity. 2000. 198(1): p. 83–95.

    CAS  Google Scholar 

  26. Manjula, B.N., Tsai, A., Upadhya, R., Perumalsamy, K., Smith, P.K., Malavalli, A., Vandegriff, K., Winslow, R.M., Intaglietta, M., Prabhakaran, M et al., Site-specific PEGylation of hemoglobin at cys-93(b): correlation between the colligative properties of the PEGylated protein and the length of the conjugated PEG chain. Bioconjugate Chem., 2003. 14(2): p. 464–72.

    Article  CAS  Google Scholar 

  27. Piquet, G., Gatti, M., Barbero, L., Traversa, S., Caccia, P., and Esposito, P., Set-up of large laboratory-scale chromatographic separations of poly(ethylene glycol) derivatives of the growth hormone-releasing factor 1-29 analogue. Journal of Chromatography A, 2002. 944(1–2): p. 141–48.

    Article  CAS  PubMed  Google Scholar 

  28. Reddy, K.R., Modi, M., and Pedder, S., Use of PEGinterferon alfa-2a (40 kD) (Pegasys) for the treatment of hepatitis C. Advanced Drug Delivery Reviews, 2002. 54: p. 571–86.

    Article  Google Scholar 

  29. Sato, H., Enzymatic procedure for site-specific pegylation of proteins. Advanced Drug Delivery Reviews, 2002. 54(4): p. 487–504.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y.-S., Youngster, S., Grace, M., Bausch, J., Bordens, R., and Wyss, D.F., Structural and biological characterization of PEGylated interferon alpha-2b and its therapeutic implications. Advanced Drug Delivery Reviews, 2002. 54(4): p. 547–70.

    Article  CAS  PubMed  Google Scholar 

  31. Pabst, T.M., Buckley, J. J., Ramasubramanyan, N., and Hunter, A.K., Comparison of strong anion-exchangers for the purification of a PEGylated protein. Journal of Chromatography A, 2007. 1147(2): p. 172–82.

    Article  CAS  PubMed  Google Scholar 

  32. Lee, D.L., Sharif, I., Kodihalli, S., Stewart, D.I.H., and Tsvetnitsky, V., Preparation and characterization of monopegylated human granulocyte-macrophage colony-stimulating factor. Journal of Interferon and Cytokine Research, 2008. 28(2): p. 101–12.

    Article  CAS  PubMed  Google Scholar 

  33. Yamamoto, S., Fujii, S., Yoshimoto, N., and Akbarzadehlaleh, P., Effects of protein conformational changes on separation performance in electrostatic interaction chromatography: Unfolded proteins and PEGylated proteins. Journal of Biotechnology, 2007. 132(2): p. 196–201.

    Article  CAS  PubMed  Google Scholar 

  34. Fee, C.J., Bergstrom, J., Stadler, J., Magnusson, R., and Van Alstine, J.M., Challenges related to the processing of PEG-modified proteins, in International Conference on Biopartitioning and Purification (BPP 2005) 2005: Delft, Netherlands.

    Google Scholar 

  35. Harris, J.M., ed. Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications. Topics in Applied Chemistry, ed. A.R. Katritzky and Sabongi, G.J. 1992, Plenum Press: New York.

    Google Scholar 

  36. Harris, J.M. and Zalipsky, S., eds. Poly(ethylene glycol): Chemistry and Biological Applications. ACS Symposium Series. Vol. 680. 1997, American Chemical Society: Washington D.C.

    Google Scholar 

  37. Li, H., Robertson, A.D., and Jensen, J.H., Very fast empirical prediction and rationalization of protein pKa values. Proteins, 2005. 61: p. 704–21.

    Article  CAS  PubMed  Google Scholar 

  38. Petitpas, I., Petersen, C.E., Ha, C.E., Bhattacharya, A.A., Zunszain, P.A., Ghuman, J., Bhagavan, N.V., and Curry, S., Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Proceedings of National Academic Science, USA, 2003. 100: p. 6440–45.

    Article  CAS  Google Scholar 

  39. Murgolo, N.J., Windsor, W.T., Hruza, A., TReichert, P., Tsarbopoulos, A., Baldwin, S., Huang, E., Pramanik, S., Ealick, P., and Trotta, P., A homology model of human interferon alpha-2. Proteins, 1993. 17: p. 62–74.

    Article  CAS  PubMed  Google Scholar 

  40. Clark, R., Olson, K., Fuh, G., Marian, M., Mortensen, D., Teshima, G., Chang, S., Chu, H., Mukku, V., Canova-Davis, E et al., Long-acting growth hormones produced by conjugation with poly(ethylene glycol). Journal of Biological Chemistry, 1996. 271(21): p. 969–77.

    Google Scholar 

  41. Nijs, M., Azarkan, M., Smolders, N., Brygier, J., Vincentelli, J., Vries, G.M.P., Duchateau, J., and Looze, Y., Preliminary characterization of poly(ethylene glycol)ylated human growth hormone antagonist, in Poly(ethylene glycol): Chemistry and Biological Applications, J.M. Harris and Zalipsky, S., Editors. 1997, American Chemical Society: Washington, D.C. p. 170–81.

    Google Scholar 

  42. Vincentelli, J., Paul, C., Azarkan, M., Guermant, C., El Moussaoui, A., and Looze, Y., Evaluation of the polyethylene glycol-KF-water system in the context of purifying PEG-protein adducts. International Journal of Pharmaceutics, 1999. 176(2): p. 241–49.

    Article  CAS  Google Scholar 

  43. Azarkan, M., El Moussaoui, A., van Wuytswinkel, D., Dehon, G., and Looze, Y., Fractionation and purification of the enzymes stored in the latex of carica papaya. Journal of Chromtography B, 2003. 790(1–2): p. 229–38.

    Article  CAS  Google Scholar 

  44. Azarkan, M., Maes, D., Bouckaert, J., Thi, M.-H.D., Wyns, L., and Looze, Y, Thiol PEGylation facilitates purification of chymopapain leading to diffraction studies at 1.4 A resolution. Journal of Chromatography A, 1996. 749(1–2): p. 69–72.

    Article  CAS  Google Scholar 

  45. Lee, H.S. and Park, T.G., Preparation and characterization of mono-PEGylated epidermal growth factor: evaluation of in vitro biologic activity. Pharmaceutical Research, 2002. 19(6): p. 845–51.

    Article  CAS  PubMed  Google Scholar 

  46. Lee, L.S., Conover, C., Shi, C., Whitlow, M., and Filpula, D., Prolonged circulating lives of single-chain Fv proteins conjugated with polyethylene glycol: a comparison of conjugation chemistries and compounds. Bioconjugate Chemistry, 1999. 10(6): p. 973–81.

    Article  CAS  PubMed  Google Scholar 

  47. Veronese, F., Sacca, B., Laureto, P.P.d., Sergi, M., Caliceti, P., Schiavon, O., and Orsolini, P., New PEGs for peptide and protein modification, suitable for identification of the PEGylation site. Bioconjugate Chemistry, 2001. 12(1): p. 62–70.

    Article  CAS  PubMed  Google Scholar 

  48. Lee, K.C., Tak, K.K., Park, M.O., Lee, J.T., Woo, B.H., Yoo, S.D., Lee, H.S., and DeLuca, P.P., Preparation and characterization of polyethylene-glycol-modified salmon calcitonins. 1999. 4(2): p. 269–75.

    CAS  Google Scholar 

  49. Johnson, C, Royal, M., Moreadith, R., Bedu-Addo, F., Advant, S., Wan, M., and Conn, G., Monitoring manufacturing process yields, purity and stability of structural variants of PEGylated staphylokinase mutant SY161 by quantitative reverse-phase chromatography. Biomedical Chromatography, 2003. 17(5): p. 335–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Fee, C.J. (2009). Protein conjugates purification and characterization. In: Veronese, F.M. (eds) PEGylated Protein Drugs: Basic Science and Clinical Applications. Milestones in Drug Therapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8679-5_7

Download citation

Publish with us

Policies and ethics