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Preface

The aim of the book Geometric Q, Functions is to document the rich structure of
the holomorphic Q functions which are geometric in the sense that they transform
naturally under conformal mappings, with particular emphasis on the last few
years’ development based on interaction between geometrical function and measure
theory and other branches of mathematical analysis, including complex variables,
harmonic analysis, potential theory, functional analysis, and operator theory.

The book comprises eight chapters in which some results appear for the first
time. The first chapter begins with a motive and a very brief review of the mostly
standard characterizations of holomorphic @ functions presented in the author’s
monograph — Springer’s LNM 1767: Holomorphic @ Classes — followed by some
further preliminaries on logarithmic conformal maps, conformal domains and su-
perpositions and harmonic majorants with an application to Euler-Lagrange equa-
tions. The second chapter gives function-theoretic characterizations by means of
Poisson extension and Berezin transform with two more generalized variants. The
third chapter takes a careful look at isomorphism, decomposition, and discreteness
of spaces via equivalent forms of the generalized Carleson measures. The fourth
chapter discusses invariant preduality through Hausdorff capacity, which is a use-
ful tool to classify negligible sets for various fine properties of functions. The fifth
chapter develops some essential properties of the Cauchy dualities via both weak
factorizations and extreme points of the target function spaces. The sixth chapter
shows particularly that each holomorphic @@ function can be treated as a symbol
of the holomorphic Hankel and Volterra operators acting between two Dirichlet
spaces. The seventh chapter deals with various size estimates involving functions
and their exponentials and derivatives. Finally, the eighth chapter handles how
much of the basic theory of holomorphic @) functions can be carried over the hy-
perbolic Riemann surfaces by sharpening the area and isoperimetric inequalities
and settling the limit spaces.

Although this book may be more or less regarded as a worthy sequel to the
previously-mentioned monograph, it is essentially self-contained. And so, without
reading that monograph, readers can understand the contents of this successor,
once they are familiar with some basic facts on geometric function-measure theory
and complex harmonic-functional analysis. For further background, each chapter
ends with brief notes on the history and current state of the subject. Readers may
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consult those notes and go further to study the references cited by this book for
more information.

As is often the case, the completion of a book is strongly influenced by some
organizations and individuals. This book has been no exception. Therefore, the
author would like to deliver a word of thanks to: Natural Sciences and Engineering
Research Council of Canada as well as Faculty of Science, Memorial University
of Newfoundland, Canada, that have made this book project possible; next, a
number of people including (in alphabetical order): D. R. Adams (University of
Kentucky), A. Aleman (Lund University), R. Aulaskari (University of Joensuu), H.
Chen (Nanjing Normal University), K. M. Dyakonov (University of Barcelona), P.
Fenton (University of Otago), T. Hempfling (Birkh&user Verlag AG), M. Milman
(Florida Atlantic University), M. Pavlovic (University of Belgrade), J. Shapiro
(Michigan State University), A. Siskakis (University of Thessaloniki), K. J. Wirths
(Technical University of Braunschweig), Z. Wu (University of Alabama), G. Y.
Zhang (Polytechnic University of New York), R. Zhao (State University of New
York at Brockport) and K. Zhu (State University of New York at Albany), who
have directly or indirectly assisted in the preparation of this book. Last but not
least, the author’s family, who the author owes a great debt of gratitude for their
understanding and moral support during the course of writing.

St. John’s J. Xiao
Fall 2005 — Summer 2006 jriao@math.mun.ca





