Skip to main content

Comparison of Chloroplast and Mitochondrial Genome Evolution in Plants

  • Chapter

Part of the book series: Plant Gene Research ((GENE))

Abstract

Plants are unique among eukaryotes in possessing two DNA-containing organelles—the plastid and the mitochondrion. Moreover, the green alga Chlamydomonas reinhardtii has recently been shown to contain a third extranuclear genome—that of the basal body (Hall et al., 1989). Nothing is known about the origin, phylogenetic distribution and evolution of basal body DNA, and therefore this genome will not be considered in this chapter. In contrast, we now possess a rather detailed picture of the tempo and mode of evolution of chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) in land plants. Review of this topic will form the heart of this chapter, as presented in Sects. III–V. Data for both genomes will be presented in an integrated format in order to highlight the striking contrasts in their evolution in land plants. The much more limited evolutionary data base available for algal organelle genomes will be discussed in Sect. VI. All plastid and mitochondrial genomes are of endosymbiotic, bacterial origin. However, as discussed in the next section, considerable uncertainty remains as to the precise number and nature of endosymbioses that have taken place.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey-Serres J, Hanson DK, Fox TD, Leaver CJ (1986) Mitochondrial genome rearrangement leads to extension and relocation of the cytochrome c oxidase subunit I gene in Sorghum. Cell 47: 567–576

    Article  PubMed  CAS  Google Scholar 

  • Baldauf SL, Palmer JD (1990) Evolutionary transfer of the chloroplast tufA gene to the nucleus. Nature 344: 262–265

    Article  PubMed  CAS  Google Scholar 

  • Baldwin BG, Kyhos DW, Dvorák J (1990) Chloroplast DNA evolution and adaptive radiation in the Hawaiian silversword alliance (Asteraceae-Madiinae). Ann Missouri Bot Gard 77: 96–109

    Article  Google Scholar 

  • Bedinger P, de Hostos EL, Leon P, Walbot V (1986) Cloning and characterization of a linear 2.3 kb mitochondrial plasmid of maize. Mol Gen Genet 205: 206–212

    CAS  Google Scholar 

  • Bernatzky R, Mau S-L, Clarke AE (1989) A nuclear sequence associated with self-incompatibility in Nicotiana alata has homology with mitochondrial DNA. Theor Appl Genet 77: 320–324

    Article  CAS  Google Scholar 

  • Bland MM, Levings CS III, Matzinger DF (1986) The tobacco mitochondrial ATPase subunit 9 gene is closely linked to an open reading frame for a ribosomal protein. Mol Gen Genet 204: 8–16

    Article  PubMed  CAS  Google Scholar 

  • Blasko K, Kaplan SA, Higgins KG, Wolfson R, Sears BB (1988) Variation in copy number of a 24-base pair tandem repeat in the chloroplast DNA of Oenothera hookeri strain Johansen. Curr Genet 14: 287–292

    Article  PubMed  CAS  Google Scholar 

  • Boer PH, Gray MW (1988a) Transfer RNA genes and the genetic code in Chlamydomonas reinhardtii mitochondria. Curr Genet 14: 583–590

    Article  PubMed  CAS  Google Scholar 

  • Boer PH, Gray MW (1988b) Scrambled ribosomal RNA gene pieces in Chlamydomonas reinhardtii mitochondrial DNA. Cell 55: 399–411

    Article  PubMed  CAS  Google Scholar 

  • Bowman CM, Dyer TA (1986) The location and possible evolutionary significance of small dispersed repeats in wheat ctDNA. Curr Genet 10: 931–941

    Article  CAS  Google Scholar 

  • Bowman CM, Barker RF, Dyer TA (1988) In wheat ctDNA, segments of ribosomal protein genes are dispersed repeats, probably conserved by nonreciprocal recombination. Curr Genet 14: 127–136

    Article  PubMed  CAS  Google Scholar 

  • Braun CJ, Brown GG, Levings III CS (1992) Cytoplasmic male sterility. In: Herrmann RG (ed) Cell organelles. Springer, Wien New York, pp 219–245 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]

    Chapter  Google Scholar 

  • Boynton JE, Gillham NW, Newman SM, Harris EH (1992) Organelle genetics and transformation of Chlamydomonas. In: Herrmann RG (ed) Cell organelles. Springer, Wien New York, pp 3–64 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]

    Chapter  Google Scholar 

  • Brears T, Lonsdale DM (1988) The sugar beet mitochondrial genome: a complex organisation generated by homologous recombination. Mol Gen Genet 214: 514–522

    Article  CAS  Google Scholar 

  • Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76: 1967–1971

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA, Stirewalt VL (1990) The cyanelle genome of Cyanophora paradoxa encodes ribosomal proteins not encoded by the chloroplast genomes of higher plants. FEBS Lett 259: 273–280

    Article  PubMed  CAS  Google Scholar 

  • Calie PJ, Hughes KW (1987) The consensus land plant chloroplast gene order is present, with two alterations, in the moss Physcomitrella patens. Mol Gen Genet 208: 335–341

    Article  CAS  Google Scholar 

  • Carlson JE, Erickson LR, Kemble RJ (1986) Cross hybridization between organelle RNAs and mitochondrial and chloroplast genomes in Brassica. Curr Genet 11: 161–163

    Article  CAS  Google Scholar 

  • Cozens AL, Walker JE (1987) The organization and sequence of the genes for ATP synthase subunits in the cyanobacterium Synechococcus 6301. J Mol Biol 194: 359–383

    Article  PubMed  CAS  Google Scholar 

  • Curtis SE, Clegg MT (1984) Molecular evolution of chloroplast DNA sequences. Mol Biol Evol 1: 291–301

    PubMed  CAS  Google Scholar 

  • Dawson AJ, Hodge TP, Isaac PG, Leaver CJ, Lonsdale DM (1986) Location of the genes for cytochrome oxidase subunits I and II, apocytochrome b, a-subunit of the F1 ATPase and the ribosomal RNA genes on the mitochondrial genome of maize (Zea mays L.) Curr Genet 10: 561–564

    Article  CAS  Google Scholar 

  • Day A, Ellis THN (1985) Deleted forms of plastid DNA in albino plants from cereal anther culture. Curr Genet 9: 671–678

    Article  CAS  Google Scholar 

  • Deng X-W, Wing RA, Gruissem W (1989) The chloroplast genome exists in multimeric forms. Proc Natl Acad Sci USA 86: 4156–4160

    Article  PubMed  CAS  Google Scholar 

  • de Heij HT, Lustig H, van Ee JH, Vos YJ, Groot GSP (1985) Repeated sequences on mitochondrial DNA of Spirodela oligorhiza. Plant Mol Biol 4: 219–224

    Article  Google Scholar 

  • dePamphilis CW, Palmer JD (1989) Evolution and function of plastid DNA: a review with special reference to nonphotosynthetic plants. In: Boyer CD, Shannon JC, Hardison RC (eds) Physiology, biochemistry, and genetics of nongreen plastids. American Society of Plant Physiologists, Rockville, MD, pp 182–202

    Google Scholar 

  • dePamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348: 337–339

    Article  PubMed  CAS  Google Scholar 

  • Dewey RE, Levings CS III, Timothy DH (1986) Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell 44: 439–449

    Article  PubMed  CAS  Google Scholar 

  • Douglas SE, Durnford DG, Morden CW (1990) Nucleotide sequence of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Cryptomonas sp.: evidence supporting the polyphyletic origin of plastids. J Phycol 26: 500–508

    CAS  Google Scholar 

  • Downie SR, Palmer JD (1991) Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis P, Soltis D, Doyle JJ (eds), Molecular systematics of plants Chapman and Hall, London, pp 14–35

    Google Scholar 

  • Ellis THN, Day A (1986) A hairpin plastid genome in barley. EMBO J 5: 2769–2772

    PubMed  CAS  Google Scholar 

  • Evrard JL, Kuntz M, Straus NA, Weil J-H (1988) A class-I intron in a cyanelle tRNA gene from Cyanophora paradoxa: phylogenetic relationship between cyanelles and plant chloroplasts. Gene 71: 115–122

    Article  PubMed  CAS  Google Scholar 

  • Fain SR, Druehl LD, Bailie DL (1988) Repeat and single copy sequences are differentially conserved in the evolution of kelp chloroplast DNA. J Phycol 24: 292–302

    CAS  Google Scholar 

  • Fauron C, Havlik M (1989) The maize mitochondrial genome of the normal type and the cytoplasmic male sterile type T have very different organization. Curr Genet 15: 149–154

    Article  CAS  Google Scholar 

  • Fauron C, Havlik M, Lonsdale D, Nichols L (1989) Mitochondrial genome organization of the maize cytoplasmic male sterile type T. Mol Gen Genet 216: 395–401

    Article  CAS  Google Scholar 

  • Fearnley IM, Runswick MJ, Walker JE (1989) A homologue of the nuclear coded 49 kd subunit of bovine mitochondrial NADH-ubiquinone reductase is coded in chloroplast DNA. EMBO J 8: 665–672

    PubMed  CAS  Google Scholar 

  • Fejes E, Masters BS, McCarty DM, Hauswirth WW (1988) Sequence and transcriptional analysis of a chloroplast insert in the mitochondrial genome of Zea mays. Curr Genet 13: 509–515

    Article  PubMed  CAS  Google Scholar 

  • Folkerts O, Hanson MR (1989) Three copies of a single recombination repeat occur on the 443 kb mastercircle of the Petunia hybrida 3704 mitochondrial genome. Nucleic Acids Res 17: 7345–7357

    Article  PubMed  CAS  Google Scholar 

  • Gibbs SP (1981) Chloroplasts of some groups may have evolved from endosymbiotic eukaryotic algae. Ann NY Acad Sci 361: 193–207

    Article  PubMed  CAS  Google Scholar 

  • Gillham NW, Boyriton JE, Harris EH (1991) Transmission of plastid genes. In: Vasil IK (ed) Molecular biology of plastids and the photosynthetic apparatus. Academic Press, New York, pp 55–92 [Bogorad L, Vasil IK (eds) Cell culture and somatic cell genetics of plants, vol 7A]

    Google Scholar 

  • Grabau E, Havlik M, Gesteland R (1988) Chimeric organization of two genes for the soybean mitochondrial ATPase subunit 6. Curr Genet 13: 83–89

    Article  PubMed  CAS  Google Scholar 

  • Gray MW (1989a) The evolutionary origins of organelles. Trends Genet 5: 294–299

    Article  PubMed  CAS  Google Scholar 

  • Gray MW (1989b) Origin and evolution of mitochondrial DNA. Annu Rev Cell Biol 5: 25–50

    Article  PubMed  CAS  Google Scholar 

  • Gray MW (1991) The origin and evolution of plastid genomes and genes. In: Vasil IK (ed) Molecular biology of plastids and the photosynthetic apparatus. Academic Press, New York, pp 303–330 [Bogorad L, Vasil IK (eds) Cell culture and somatic cell genetics of plants, vol 7A]

    Google Scholar 

  • Gray MW, Boer PH (1988) Organization and expression of algal (Chlamydomonas reinhardtii) mitochondrial DNA. Philos Trans R Soc Lond [Biol] 319: 135–147

    Article  CAS  Google Scholar 

  • Gray MW, Cedergren R, Abel Y, Sankoff D (1989) On the evolutionary origin of the plant mitochondrion and its genome. Proc Natl Acad Sci USA 86: 2267–2271

    Article  PubMed  CAS  Google Scholar 

  • Gualberto JM, Wintz H, Weil J-H, Grienenberger J-M (1988) The genes coding for subunit 3 of NADH dehydrogenase and for ribosomal protein S12 are present in the wheat and maize mitochondrial genomes and are co-transcribed. Mol Gen Genet 215: 118–127

    Article  PubMed  CAS  Google Scholar 

  • Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin ML (1987) Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci USA 84: 5823–5827

    Article  PubMed  CAS  Google Scholar 

  • Hall JL, Ramanis Z, Luck DJL (1989) Basal body/centriolar DNA: molecular genetic studies in Chlamydomonas. Cell 59: 121–132

    Article  PubMed  CAS  Google Scholar 

  • Hallick RB (1989) Proposals for the naming of chloroplast genes. II. Update to the nomenclature of genes for thylakoid membrane polypeptides. Plant Mol Biol Rep 7: 266–275

    Article  CAS  Google Scholar 

  • Hallick RB, Buetow DE (1989) Chloroplast DNA. In: Buetow DE (ed) The biology of Euglena, vol 4. Academic Press, New York, pp 351–414

    Google Scholar 

  • Herrmann RG, Possingham JV (1980) Plastid DNA—the plastome. In: Reinert J (ed) Results and problems in cell differentiation: the chloroplast. Springer, New York Berlin Heidelberg, pp 45–96

    Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217: 185–194

    Article  PubMed  CAS  Google Scholar 

  • Howe CJ (1985) The endpoints of an inversion in wheat chloroplast DNA are associated with short repeated sequences containing homology to att-lambda. Curr Genet 10: 139–145

    Article  PubMed  CAS  Google Scholar 

  • Hsu CL, Mullin BC (1989) Physical characterization of mitochondrial DNA from cotton. Plant Mol Biol 13: 467–468

    Article  PubMed  CAS  Google Scholar 

  • Hudson GS, Mason JG, Holton TA, Koller B, Cox GB, Whitfeld PR, Bottomley W (1987) A gene cluster in the spinach and pea chloroplast genomes encoding one CF1 and three CF0 subunits of the H+-ATP synthase complex and the ribosomal protein S2. J Mol Biol 196: 283–298

    Article  PubMed  CAS  Google Scholar 

  • Hudson GS, Holton TA, Whitfeld PR, Bottomley W (1988) Spinach chloroplast rpoBC genes encode three subunits of the chloroplast RNA polymerase. J Mol Biol 200: 639–654

    Article  PubMed  CAS  Google Scholar 

  • Joyce PBM, Gray MW (1989) Chloroplast-like transfer RNA genes expressed in wheat mitochondria. Nucleic Acids Res 17: 5461–5476

    Article  PubMed  CAS  Google Scholar 

  • Joyce PBM, Spencer DF, Gray MW (1988) Multiple sequence rearrangements accompanying the duplication of a tRNAPro gene in wheat mitochondrial DNA. Plant Mol Biol 11: 833–843

    Article  CAS  Google Scholar 

  • Kemble RJ, Mans RJ, Gaby-Laughnan S, Laughnan JR (1983) Sequences homologous to episomal mitochondrial DNAs in the maize nuclear genome. Nature 304: 744–747

    Article  CAS  Google Scholar 

  • Kohchi T, Yoshida T, Komano T, Ohyama K (1988a) Divergent mRNA transcription in the chloroplast psbB operon. EMBO J 7: 885–891

    PubMed  CAS  Google Scholar 

  • Kohchi T, Ogura Y, Umesono K, Yamada Y, Komano T, Ozeki H, Ohyama K (1988b) Ordered processing and splicing in a polycistronic transcript in liverwort chloroplasts. Curr Genet 14: 147–154

    Article  PubMed  CAS  Google Scholar 

  • Kolodner R, Tewari KK (1979) Inverted repeats in chloroplast DNA from higher plants. Proc Natl Acad Sci USA 76: 41–45

    Article  PubMed  CAS  Google Scholar 

  • Kück U (1989) The intron of a plastid gene from a green alga contains an open reading frame for a reverse transcriptase-like enzyme. Mol Gen Genet 218: 257–265

    Article  PubMed  Google Scholar 

  • Kück U, Choquet Y, Schneider M, Dron M, Bennoun P (1987) Structural and transcription analysis of two homologous genes for the P700 chlorophyll a-apoproteins in Chlamydomonas reinhardii: evidence for in vivo trans-splicing. EMBO J 6: 2185–2195

    PubMed  Google Scholar 

  • Kuhsel MG, Strickland R, Palmer JD (1990) An ancient group I intron shared by eubacteria and chloroplasts. Science 250: 1570–1573

    Article  PubMed  CAS  Google Scholar 

  • Lavin M, Doyle JJ, Palmer JD (1990) Evolutionary significance of the loss of the chloroplast DNA inverted repeat in the Leguminosae subfamily Papilionoideae. Evolution 44: 390–402

    Article  CAS  Google Scholar 

  • Leible MB, Berger S, Schweiger H-G (1989) The plastome of Acetabularia mediterranea and Batophora oerstedii: Inter-and intraspecific variability and physical properties. Curr Genet 15, 355–361

    Article  Google Scholar 

  • Leon P, Walbot V, Bedinger P (1989) Molecular analysis of the linear 2.3 kb plasmid of maize mitochondria: apparent capture of tRNA genes. Nucleic Acids Res 17: 4089–4099

    CAS  Google Scholar 

  • Levings CS III, Brown GG (1989) Molecular biology of plant mitochondria. Cell 56: 171–179

    Article  PubMed  CAS  Google Scholar 

  • Li N, Hedberg M, Cattolico RA (1991) Chloroplast DNA heterogeneity in Monodus sp. (Eustigmatophyta). Curr Genet 20: 157–159

    Article  CAS  Google Scholar 

  • Lidholm J, Szmidt AE, Hällgren J-E, Gustafsson P (1988) The chloroplast genomes of conifers lack one of the rRNA-encoding inverted repeats. Mol Gen Genet 212: 6–10

    Article  CAS  Google Scholar 

  • Loiseaux-de Goër SL, Markowicz Y, Dalmon J, Audren H (1988) Physical maps of the two circular plastid DNA molecules of the brown alga Pylaiella littoralis (L.) Kjellm. Curr Genet 14: 155–162

    Article  Google Scholar 

  • Lonsdale DM (1989) The plant mitochondrial genome. In: Marcus A (ed) Molecular biology. Academic Press, New York, pp 230–295 [Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 15]

    Google Scholar 

  • Lonsdale DM, Grienenberger JM (1992) The mitochondrial genomes of plants. In: Herrmann RG (ed) Cell organelles. Springer, Wien New York, pp 183–218 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]

    Chapter  Google Scholar 

  • Lonsdale DM, Hodge TP, Fauron CM-R (1984) The physical map and organisation of the mitochondrial genome from the fertile cytoplasm of maize. Nucleic Acids Res 12: 9249–9261

    Article  PubMed  CAS  Google Scholar 

  • Lonsdale DM, Brears T, Hodge TP, Melville SE, Rottmann WH (1988) The plant mitochondrial genome: Homologous recombination as a mechanism for generating heterogeneity. Philos Trans R Soc Lond [Biol] 319: 149–163

    Article  CAS  Google Scholar 

  • Makaroff CA, Palmer JD (1987) Extensive mitochondrial specific transcription of the Brassica campestris mitochondrial genome. Nucleic Acids Res 15: 5141–5156

    Article  PubMed  CAS  Google Scholar 

  • Makaroff CA, Palmer JD (1988) Mitochondrial DNA rearrangements and transcriptional alterations in the male-sterile cytoplasm of Ogura radish. Mol Cell Biol 8: 1474–1480

    PubMed  CAS  Google Scholar 

  • Makaroff CA, Apel IJ, Palmer JD (1989) The atp6 coding region has been disrupted and a novel reading frame generated in the mitochondrial genome of cytoplasmic male-sterile radish. J Biol Chem 264: 11706–11713

    PubMed  CAS  Google Scholar 

  • Manhart JR, Palmer JD (1990) The gain of two chloroplast tRNA introns marks the green algal ancestors of land plants. Nature: 345: 268–270

    Article  PubMed  CAS  Google Scholar 

  • Manhart JR, Kelly K, Dudock BS, Palmer JD (1989) Unusual characteristics of Codium vulgare chloroplast DNA revealed by physical and gene mapping. Mol Gen Genet 216: 417–421

    Article  PubMed  CAS  Google Scholar 

  • Manhart JR, Hoshaw RW, Palmer JD (1990) Unique chloroplast genome in Spirogyra maxima revealed by physical and gene mapping. J Phycol 26: 490–494

    Article  CAS  Google Scholar 

  • Maréchal-Drouard L, Weil J-H, Guillemaut P (1988) Import of several tRNAs from the cytoplasm into the mitochondria in bean Phaseolus vulgaris. Nucleic Acids Res 16: 4777–4788

    Article  PubMed  Google Scholar 

  • Maréchal-Drouard L, Neuburger M, Guillemaut P, Douce R, Weil J-H, Dietrich A (1990) A nuclear-encoded potato (Solanum tuberosum) mitochondrial tRNALeu and its cytosolic counterpart have identical nucleotide sequences. FEBS Lett 262: 170–172

    Article  PubMed  Google Scholar 

  • Markowicz Y, Goër SL, Mache R (1988) Presence of a 16S rRNA pseudogene in the bimolecular plastid genome of the primitive brown alga Pylaiella littoralis. Evolutionary implications. Curr Genet 14: 599–608

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi T, Wakasugi T, Shinozaki K, Yamaguchi-Shinozaki K, Zaita N, Hidaka T, Meng B-Y, Ohto C, Tanaka M, Kato A, Maruyama T, Sugiura M (1987) Six chloroplast genes (nadh A-F) homologous to human mitochondrial genes encoding components of the respiratory chain NADH dehydrogenase are actively expressed: determination of the splice sites in nadhA and nadhB pre-mRNAs. Mol Gen Genet 210: 385–393

    Article  PubMed  CAS  Google Scholar 

  • Mayes SR, Cook KM, Barber J (1990) Nucleotide sequence of the second psbG gene in Synechocystis 6803. Possible implications for psbG function as a NAD(P)H dehydrogenase subunit gene. FEBS Lett 1: 49–54

    Article  Google Scholar 

  • Meng B-Y, Tanaka M, Wakasugi T, Ohme M, Shinozaki K, Sugiura M (1988) Cotranscription of the genes encoding two P700 chlorophyll a apoproteins with the gene for ribosomal protein CS14: determination of the transcriptional initiation site by in vitro capping. Curr Genet 14: 395–400

    Article  PubMed  CAS  Google Scholar 

  • Milligan BG, Hampton J, Palmer JD (1989) Dispersed repeats and structural reorganization in subclover chloroplast DNA. Mol Biol Evol 6: 355–368

    PubMed  CAS  Google Scholar 

  • Misonou T, Ishihara J, Pak JY, Nitta T (1989) Restriction endonuclease analysis of chloroplast and mitochondrial DNAs from Bryopsis (Derbesiales, Chlorophyta). Phycologia 28: 422–428

    Article  Google Scholar 

  • Moore LJ (1990) The nature and extent of intraspecific variation in chloroplast DNAs of sexually isolated populations of Pandorina morum Bory. PhD Thesis, Brown University, Providence Rhode Island, USA

    Google Scholar 

  • Moore LJ, Coleman AW (1989) The linear 20 kb mitochondrial genome of Pandorina morum (Volvocaceae, Chlorophyta). Plant Mol Biol 13: 459–465

    Article  PubMed  CAS  Google Scholar 

  • Morden CW, Golden SS (1991) Sequence analysis and phylogenetic reconstruction of the genes encoding the large and small subunits of ribulose-1,5-bisphosphate carbox-lyase/oxygenase from the chlorophyll b-containing prokaryote Prochlorothrix hollandica. J Mol Evol 32: 379–395

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Miyao M, Hayashida N, Hidaka T, Sugiura M (1988) Identification of a new gene in the chloroplast genome encoding a low-molecular-mass polypeptide of photosys-tem II complex. FEBS Lett 235: 283–288

    Article  CAS  Google Scholar 

  • Nivison HT, Hanson MR (1989) Identification of a mitochondrial protein associated with cytoplasmic male sterility in Petunia. Plant Cell 1: 1121–1130

    Article  PubMed  CAS  Google Scholar 

  • Nixon PJ, Gounaris K, Coomber SA, Hunter CN, Dyer TA, Barber J (1989) psbG is not a photosystem two gene but may be an ndh gene. J Biol Chem 264: 14129–14135

    PubMed  CAS  Google Scholar 

  • Nugent JM, Palmer JD (1988) Location, identity, amount and serial entry of chloroplast DNA sequences in crucifer mitochondrial DNAs. Curr Genet 14: 501–509

    Article  PubMed  CAS  Google Scholar 

  • Ogihara Y, Terachi T, Sasakuma T (1988) Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc Natl Acad Sci USA 85: 8573–8577

    Article  PubMed  CAS  Google Scholar 

  • Ohto C, Torazawa K, Tanaka M, Shinozaki K, Sugiura M (1988) Transcription of ten ribosomal protein genes from tobacco chloroplasts: a compilation of ribosomal protein genes found in the tobacco chloroplast genome. Plant Mol Biol 11: 589–600

    Article  CAS  Google Scholar 

  • Ohyama K (1992) Organization and expression of genes of plastid chromosomes from non-angiospermous land plants and green algae. In: Herrmann RG (ed) Cell organelles. Springer, Wien New York, pp 137–163 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]

    Chapter  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Sano T, Sano S, Shirai H, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1988) Structure and organization of Marchantia polymorpha chloroplast genome I. Cloning and gene identification. J Mol Biol 203: 281–298

    Article  PubMed  CAS  Google Scholar 

  • Oppermann T, Hong T-H, Surzycki SJ (1989) Chloroplast and nuclear genomes of Chlamydomonas reinhardtii share homology with Escherichia coli genes for DNA replication, repair and transcription. Curr Genet 15: 39–46

    Article  PubMed  CAS  Google Scholar 

  • Padmanabhan P, Green B (1978) The kinetic complexity of Acetabularia chloroplast DNA. Biochim Biophys Acta 521: 67–73

    PubMed  CAS  Google Scholar 

  • Palmer JD (1983) Chloroplast DNA exists in two orientations. Nature 301: 92–93

    Article  CAS  Google Scholar 

  • Palmer JD (1985a) Comparative organization of chloroplast genomes. Annu Rev Genet 19: 325–354

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD (1985b) Evolution of chloroplast and mitochondrial DNA in plants and algae. In: Maclntyre RJ (ed) Monographs in evolutionary biology: molecular evolutionary genetics Plenum, New York, pp 131–240

    Google Scholar 

  • Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Vasil IK (ed) Molecular biology of plastids and the photosynthetic apparatus. Academic Press, New York, pp 5–53 [Bogorad L, Vasil IK (eds) Cell culture and somatic cell genetics of plants, vol 7A]

    Google Scholar 

  • Palmer JD, Shields CR (1984) Tripartite structure of the Brassica campestris mitochondrial genome. Nature 307: 437–440

    Article  CAS  Google Scholar 

  • Palmer JD, Herbon LA (1986) Tricircular mitochondrial genomes of Brassica and Raphanus: reversal of repeat configurations by inversion. Nucleic Acids Res 14: 9755–9764

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Herbon LA (1987) Unicircular structure of the Brassica hirta mitochondrial genome. Curr Genet 11: 565–570

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Herbon LA (1988) Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J Mol Evol 28: 87–97

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Boynton JE, Gillham NW, Harris EH (1985) Evolution and recombination of the large inverted repeat in Chlamydomonas chloroplast DNA. In: Arntzen C, Bogorad L, Bonitz S, Steinback K (eds) Molecular biology of the photosynthetic apparatus. Cold Spring Harbor Laboratory, New York, pp 269–278

    Google Scholar 

  • Palmer JD, Nugent JM, Herbon LA (1987a) Unusual structure of geranium chloroplast DNA: a triple-sized repeat, extensive gene duplications, multiple inversions and new repeat families. Proc Natl Acad Sci USA 84: 769–773

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Osorio B, Aldrich J, Thompson WF (1987b) Chloroplast DNA evolution among legumes: loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr Genet 11: 275–286

    Article  CAS  Google Scholar 

  • Palmer JD, Jansen RK, Michaels H, Manhart J, Chase MW (1988a) Phylogenetic analysis of chloroplast DNA variation. Ann Missouri Bot Gard 75: 1180–1218

    Article  Google Scholar 

  • Palmer JD, Osorio B, Thompson WF (1988b) Evolutionary significance of inversions in legume chloroplast DNAs. Curr Genet 14: 65–74

    Article  CAS  Google Scholar 

  • Pratje E, Vahrenholz C, Bühler S, Michaelis G (1989) Mitochondrial DNA of Chlamydomonas reinhardtii: the ND4 gene encoding a subunit of NADH dehydrogenase. Curr Genet 16: 61–64

    Article  PubMed  CAS  Google Scholar 

  • Quetier F, Lejeune B, Delorme S, Falconet D, Jubier MF (1985) Molecular form and function of the wheat mitochondrial genome. In: van Vloten-Doting L, Groot G, Hall T (eds) Molecular form and function of the plant genome. Plenum, New York, pp 413–420

    Google Scholar 

  • Robertson D, Boynton JE, Gillham NW (1990) Cotranscription of the wild-type chloroplast atpE gene encoding the CF1/CF0 epsilon subunit with the 3′ half of the rps7 gene in Chlamydomonas reinhardtii and characterization of frameshift mutations in atpE. Mol Gen Genet 221: 155–163

    Article  PubMed  CAS  Google Scholar 

  • Rodermal SR, Bogorad L (1987) Molecular evolution and nucleotide sequences of the maize plastid genes for the alpha subunit of CF1 (atpA) and the proteolipid subunit of CF0 (atpH). Genetics 116: 127–139

    Google Scholar 

  • Rothenberg M, Hanson MR (1987) Different transcript abundance of two divergent ATP synthase subunit 9 genes in the mitochondrial genome of Petunia hybrida. Mol Gen Genet 209: 21–27

    Article  PubMed  CAS  Google Scholar 

  • Saalaoui E, Litvak S, Araya A (1990) The apocytochrome b from an alloplasmic line of wheat (T. aestivum, cytoplasm-T. Timopheevi) exists in two differently expressed forms. Plant Sci 66: 237–246

    Article  CAS  Google Scholar 

  • Sangaré A, Lonsdale DM, Weil J-H, Grienenberger J-M (1989) Sequence analysis of the tRNATyr and tRNALys genes and evidence for the transcription of a chloroplast-like tRNAMet in maize mitochondria. Curr Genet 16: 195–201

    Article  PubMed  Google Scholar 

  • Schantz R, Bogorad L (1988) Maize chloroplast genes ndhD, ndhE and psaC. Sequences, transcripts and transcript pools. Plant Mol Biol 11: 239–247

    Article  CAS  Google Scholar 

  • Schardl CL, Lonsdale DM, Pring DR, Rose KR (1984) Linearization of maize mitochondrial chromosomes by recombination with linear episomes. Nature 310: 292–296

    Article  CAS  Google Scholar 

  • Schardl CL, Pring DR, Lonsdale DM (1985) Mitochondrial DNA rearrangements associated with fertile revenants of S-type male-sterile maize. Cell 43: 361–368

    Article  PubMed  CAS  Google Scholar 

  • Schilling EE, Jansen RK (1989) Restriction fragment analysis of chloroplast DNA and the systematics of Viguiera and related genera (Asteraceae: Heliantheae). Amer J Bot 76: 1769–1778

    Article  CAS  Google Scholar 

  • Schuster W, Brennicke A (1986) Pseudocopies of the ATPase α-subunit gene in Oenothera mitochondria are present on different circular molecules. Mol Gen Genet 204: 29–35

    Article  CAS  Google Scholar 

  • Schuster W, Brennicke A (1987a) Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA? EMBO J 6: 2857–2863

    PubMed  CAS  Google Scholar 

  • Schuster W, Brennicke A (1987b) Plastid DNA in the mitochondrial genome of Oenothera: intra-and interorganellar rearrangements involving part of the plastid ribosomal cistron. Mol Gen Genet 210: 44–51

    Article  CAS  Google Scholar 

  • Schuster W, Brennicke A (1988) Interorganellar sequence transfer: plant mitochondrial DNA is nuclear, is plastid, is mitochondrial. Plant Sci 54: 1–10

    Article  CAS  Google Scholar 

  • Schuster W, Wissinger B, Unseld M, Brennicke A (1990) Transcripts of the NADH-dehydrogenase subunit 3 gene are differentially edited in Oenothera mitochondria. EMBO J 9: 263–269

    PubMed  CAS  Google Scholar 

  • Schweiger H-G, de Groot EJ, Leible MB, Tymms MJ (1986) Conservative and variable features of the chloroplast genome of Acetabularia. In: Akoyunoglou G, Senger H (eds) Regulation of chloroplast differentiation. AR Liss, New York, pp 467–476 (Plant biology series, vol 2)

    Google Scholar 

  • Shimada H, Sugiura M (1989) Pseudogenes and short repeated sequences in the rice chloroplast genome. Curr Genet 16: 293–301

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng B-Y, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049

    PubMed  CAS  Google Scholar 

  • Shirzadegan M, Christey M, Earle ED, Palmer JD (1989) Rearrangement, amplification, and assortment of mitochondrial DNA molecules in cultured cells of Brassica campestris. Theor Appl Genet 77: 17–25

    Article  CAS  Google Scholar 

  • Siculella L, Palmer JD (1988) Physical and gene organization of mitochondrial DNA in fertile and male sterile sunflower. CMS associated alterations in structure and transcription of the atpA gene. Nucleic Acids Res 16: 3787–3799

    Article  PubMed  CAS  Google Scholar 

  • Siemeister G, Hachtel W (1989) A circular 73 kb DNA from the colourless flagellate Astasia longa that resembles the chloroplast DNA of Euglena: restriction and gene map. Curr Genet 15: 435–441

    Article  CAS  Google Scholar 

  • Small I, Issac PG, Leaver CJ (1987) Stoichiometric differences in DNA molecules containing the atp A gene suggest mechanisms for the generation of mitochondrial genome diversity in maize. EMBO J 6: 865–869

    PubMed  CAS  Google Scholar 

  • Small ID, Suffolk R, Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58: 69–76

    Article  PubMed  CAS  Google Scholar 

  • Steinmuller K, Ley AC, Steinmetz AA, Sayre RT, Bogorad L (1989) Characterization of the ndhC-psbG-ORF 151/159 operon of maize plastid DNA and of the cyanobacterium Synechocystis sp. PCC6803. Mol Gen Genet 216: 60–69

    Article  PubMed  CAS  Google Scholar 

  • Stern DB, Lonsdale DM (1982) Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature 299: 698–702

    Article  PubMed  CAS  Google Scholar 

  • Stern DB, Palmer JD (1984a) Recombination sequences in plant mitochondrial genomes: diversity and homologies to known mitochondrial genes. Nucleic Acids Res 12: 6141–6157

    Article  PubMed  CAS  Google Scholar 

  • Stern DB, Palmer JD (1984b) Extensive and widespread homologies between mitochondrial DNA and chloroplast DNA in plants. Proc Natl Acad Sci USA 81: 1946–1950

    Article  PubMed  CAS  Google Scholar 

  • Stern DB, Palmer JD (1986) Tripartite mitochondrial genome of spinach: physical structure, mitochondrial gene mapping, and locations of transposed chloroplast DNA sequences. Nucleic Acids Res 14: 5651–5666

    Article  PubMed  CAS  Google Scholar 

  • Stern DB, Palmer JD, Thompson WF, Lonsdale DM (1983) Mitochondrial DNA sequence evolution and homology to chloroplast DNA in angiosperms. In: Goldberg RB (ed) Plant molecular biology. AR Liss, New York, pp 467–477

    Google Scholar 

  • Strauss SH, Palmer JD, Howe GT, Doerksen AH (1988) Chloroplast genomes of two conifers lack an inverted repeat and are extensively rearranged. Proc Natl Acad Sci USA 85: 3898–3902

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M (1989) The chloroplast chromosomes in land plants. Annu Rev Cell Biol 5: 51–70

    Article  PubMed  CAS  Google Scholar 

  • Takaiwa F, Sugiura M (1982) Nucleotide sequence of the 16S–23S spacer region in an rRNA gene cluster from tobacco chloroplast DNA. Nucleic Acids Res 10: 2665–2676

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Obokata J, Chunwongse J, Shinozaki K, Sugiura M (1987) Rapid splicing and stepwise processing of a transcript from the psbB operon in tobacco chloroplasts: Determination of the intron sites in petB and petD. Mol Gen Genet 209: 427–431

    Article  PubMed  CAS  Google Scholar 

  • Tsai C-H, Strauss SH (1989) Dispersed repetitive sequences in the chloroplast genome of Douglas-fir. Curr Genet 16: 211–218

    Article  PubMed  CAS  Google Scholar 

  • Turmel M, Bellemare G, Lemieux C (1987) Physical mapping of differences between the chloroplast DNAs of the interfertile algae Chlamydomonas eugametos and Chlamydomonas moewusil Curr Genet 11: 543–552

    Article  CAS  Google Scholar 

  • Turmel M, Lemieux B, Lemieux C (1988) The chloroplast genome of the green alga Chlamydomonas moewusii: localization of protein-coding genes and transcriptionally active regions. Mol Gen Genet 214: 412–419

    Article  PubMed  CAS  Google Scholar 

  • Turner S, Burger-Wiersma T, Giovannoni SJ, Mur LR, Pace NR (1989) The relationship of a prochlorophyte Prochlorothrix hollandica to green chloroplasts. Nature 337: 380–382

    Article  PubMed  CAS  Google Scholar 

  • Tymms MJ, Schweiger H-G (1985) Tandemly repeated nonribosomal DNA sequences in the chloroplast genome of an Acetabularia mediterranea strain. Proc Natl Acad Sci USA 82: 1706–1710

    Article  PubMed  CAS  Google Scholar 

  • Waddle JA, Schuster AM, Lee KW, Meints RH (1990) The mitochondrial genome of an exsymbiotic Chlorella-like green alga. Plant Mol Biol 14: 187–195

    Article  PubMed  CAS  Google Scholar 

  • Wahleithner JA, Wolstenholme DR (1988) Ribosomal protein S14 genes in broad bean mitochondrial DNA. Nucleic Acids Res 16: 6897–6913

    Article  PubMed  CAS  Google Scholar 

  • Wahleithner JA, Macfarlane JL, Wolstenholme DR (1990) A sequence encoding a maturase-related protein in a group II intron of a plant mitochondrial nad1 gene. Proc Natl Acad Sci USA 87: 548–552

    Article  PubMed  CAS  Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25: 793–803

    Article  PubMed  CAS  Google Scholar 

  • Whatley JM, Whatley FR (1981) Chloroplast evolution. New Phytol 87: 233–247

    Article  CAS  Google Scholar 

  • Whittier RF, Sugiura M (1992) Plastid chromosomes from vascular plants—genes. In: Herrmann RG (ed) Cell organelles. Springer, Wien New York, pp 164–182 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]

    Chapter  Google Scholar 

  • Willey DL, Gray JC (1989) Two small open reading frames are co-transcribed with the pea chloroplast genes for the polypeptides of cytochrome b-559. Curr Genet 15: 213–220

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH (1989) Rates of nucleotide substitution in higher plants and mammals. PhD Thesis, University of Dublin, Dublin

    Google Scholar 

  • Wolfe KH, Sharp PM (1988) Identification of functional open reading frames in chloroplast genomes. Gene 66: 215–222

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84: 9054–9058

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Sharp PM, Li W-H (1989) Rates of synonymous substitution in plant nuclear genes. J Mol Evol 29: 208–211

    Article  CAS  Google Scholar 

  • Xu MQ, Käthe SD, Goodrich-Blair H, Nierzwicki-Bauer SA, Shub DA (1990) The prokaryotic origin of a chlorophast intron: a self-splicing group I intron in the gene for tRNAleu UAA of cyanobacteria. Science 250: 1566–1570

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Shimaji M (1987) Splitting of the ribosomal RNA operon on chloroplast DNA from Chlorella ellipsoidea. Mol Gen Genet 208: 377–383.

    Article  CAS  Google Scholar 

  • Yao WB, Meng B-Y, Tanaka M, Sugiura M (1989) An additional promoter within the protein-coding region of the psbD-psbC gene cluster in tobacco chloroplast DNA. Nucleic Acids Res 17: 9583–9591

    Article  PubMed  CAS  Google Scholar 

  • Young EG, Hanson MR (1987) A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell 50: 41–49

    Article  PubMed  CAS  Google Scholar 

  • Zhou D-X, Quigley F, Massenet O, Mache R (1989) Cotranscription of the S10-and spc-like operons in spinach chloroplasts and identification of three of their gene products. Mol Gen Genet 216: 439–445

    Article  PubMed  CAS  Google Scholar 

  • Zurawski G, Clegg MT (1987) Evolution of higher-plant chloroplast DNA-encoded genes: Implications for structure-function and phylogenetic studies. Annu Rev Plant Physiol 38: 391–418

    Article  CAS  Google Scholar 

  • Zurawski G, Clegg MT, Brown AHD (1984) The nature of nucleotide sequence divergence between barley and maize chloroplast DNA. Genetics 106: 735–749

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag/Wien

About this chapter

Cite this chapter

Palmer, J.D. (1992). Comparison of Chloroplast and Mitochondrial Genome Evolution in Plants. In: Herrmann, R.G. (eds) Cell Organelles. Plant Gene Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9138-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9138-5_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9140-8

  • Online ISBN: 978-3-7091-9138-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics