Skip to main content

The mechanism of action of antidepressants revised

  • Conference paper
Amine Oxidases and Their Impact on Neurobiology

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 32))

  • 104 Accesses

Summary

The discovery of the clinical efficacy of imipramine and of the MAO-inhibitor iproniazid intensively stimulated biochemical-pharmacological research on the mechanism of action of antidepressants. Due to these investigations, until recently an enhanced activity of the central noradrenergic and/or serotonergic transmitter system was considered essential for the clinical antidepressive action. Such enhancement could be achieved either presynaptically by blocking α2-adrenergic receptors, or in the synaptic cleft by inhibiting the transmitter reuptake or the main metabolic enzyme, MAO. The common final result, especially of chronic treatment, was the down-regulation of postsynaptic β-receptors, modulated by interaction with the serotonergic system, neuropeptides, and hormones. The delay of clinical response corresponded better with such receptor alterations. However, the introduction of new, more selective antidepressants led to new reflections upon the mechanism of action. On the level of transmitters, α1upregulation, increased activity of the dopaminergic system, an alteration in the balance between the different transmitter systems, are reported and seem to be important. Most promising are recent investigations of the second messenger systems, the adenylate cyclase system and the phosphatidylinositol system. Both systems are modulated by antidepressant drugs including lithium and carbamazepine. These second messengers, in turn, modulate the phosphorylation status of neuronal proteins via protein kinase, which may lead to elevations of the above mentioned receptors and again their transduction systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian GK, Sprouse JS, Rasmussen K (1987) Physiology of the midbrain serotonin system. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 127–141.

    Google Scholar 

  • Arenander AT, de Vellis J, Herschman HR (1989) Induction of c-fos and TIS genes in cultured rat astrocytes by neurotransmitters. J Neurosci Res 24:107–114.

    Article  PubMed  CAS  Google Scholar 

  • Avissar S, Schreiber G, Danon R, Belmaker H (1988) Lithium inhibits adrenergic and cholinergic increase in GTP binding in rat cortex. Nature 331:440–442.

    Article  PubMed  CAS  Google Scholar 

  • van Calker D, Steber R, Klotz K-N, Greil W (1990) Carbamazepine distinguishes between adenosine receptor syptypes that mediate, respectively, regulation of cyclic AMP accumulation and inhibition of inositolphosphate formation. (Submitted).

    Google Scholar 

  • Ceccatelli S, Villar MJ, Goldstein M, Hökfelt T (1989) Expression of c-fos immunoreactivity in transmitter-characterized neurons after stress. Proc Natl Acad Sci USA 86:9569–9573.

    Article  PubMed  CAS  Google Scholar 

  • Checkley SA (1988) Monoamines, depression and antidepressant drugs. Pharmacopsychiatry 21:6–8.

    Article  PubMed  CAS  Google Scholar 

  • Checkley SA, Thompson C, Burton S, Francy C, Arendt J (1985) Clinical studies of the effect of (+) and (−)-oxaprotiline upon noradrenaline uptake. Psychopharmacology 87:116–118.

    Article  PubMed  CAS  Google Scholar 

  • Comb M, Hyman SE, Goodman HM (1987) Mechanism of trans-synaptic regulation of gene expression. TINS 10(11):473–478.

    CAS  Google Scholar 

  • Coppen A (1967) The biochemistry of affective disorders. Br J Psychiatry 113:1237–1264.

    Article  PubMed  CAS  Google Scholar 

  • Crane GE (1957) Iproniazid (Marsilid) phosphate a therapeutic agent for mental disorders and debilitating diseases. Psychiat Res Rep Am Psychiat Ass 8:142–152.

    CAS  Google Scholar 

  • Delini-Stula A, Mogilnicka E (1988) Single treatments with the antidepressant oxaprotiline and its (+) and (−) enantiomers increase behavioural responses to dopaminergic stimulation in the rat. J Neural Transm 71:91–98.

    Article  PubMed  CAS  Google Scholar 

  • Delini-Stula A, Mogilnicka E (1989) Rapid changes in functional responsiveness of the 5-HT system after single-dose and multiple-dose treatment with antidepressants: effects of maprotiline and oxaprotiline and its enantiomers. J Pharmacol 3(1):7–13.

    CAS  Google Scholar 

  • Delini-Stula A, Radeke E, van Riezen H (1988) Enhanced functional responsiveness of the dopaminergic system — the mechanism of anti-immobility effects of antidepressants in the behavioural despair test in the rat. Neuropharmacology 27(9):943–947.

    Article  PubMed  CAS  Google Scholar 

  • Dousa T, Hechter O (1970) Lithiuim and brain adenyl cyclase. Lancet i:834–835.

    Google Scholar 

  • Eccelston D (1981) Monoamines in affective illness — is there a place for 5-HT?. Br J Psychiatry 138:257–258.

    Article  Google Scholar 

  • Engel G, Göthert M, Hoyer D, Schlicker E, Hillenbrand K (1986) Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Nauyn-Schmiedebergs Arch Pharmacol 357:1–7.

    Article  Google Scholar 

  • Feuerstein TJ, Hertting G, Jackisch R (1985) Endogenous noradrenaline as modular of hippocampal serotonin (5-HT)-release. Naunyn-Schmiedebergs Arch Pharmacol 329:216–221.

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Calza L, Benfenati F, Zini I, Agnati LF (1983) Quantitative autoradiographic localization of [3H]imipramine binding sites in the brain of the rat: relationship to ascending 5-hydroxytryptamine neuron systems. Proc Natl Acad Sci USA 80:3836–3840.

    Article  PubMed  CAS  Google Scholar 

  • Hadrock JR, Malbon CC (1988) Down-regulation of beta-adrenergic receptors: Agonist-induced reduction in receptor mRNA levels. Proc Natl Acad Sci USA 85:5021–5025.

    Article  Google Scholar 

  • Hallcher LM, Sherman WR (1980) The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphate from bovine brain. J Biol Chem 225:10896–10901.

    Google Scholar 

  • Kilpatrick GJ, Jones BJ, Tyers MB (1987) Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330:746–748.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn R (1957) Über die Behandlung depressiver Zustände mit einem Iminodibenzylderivat (G 22 455). Schweiz Med Wochenschr 35/36:1135–1140.

    Google Scholar 

  • Langer SZ (1978) Presynaptic receptors and the regulation of transmitter release in the peripheral and central nervous system: physiological and pharmacological significance. In: Catecholamines: basic and clinical frontiers. Proc 4th Int Catecholamine Symposium. Pergamon Press, London, New York.

    Google Scholar 

  • Maj J (1990) Pharmakologie von Levoprotilin. (In preparation).

    Google Scholar 

  • Maj J, Wedzony K (1988) The influence of oxaprotiline enantiomers given repeatedly on the behavioural effects of d-amphetamine and dopamine injected into the nucleus accumbens. Eur J Pharmacol 145:97–103.

    Article  PubMed  CAS  Google Scholar 

  • Matussek N (1969) Die Catecholamin-und Serotoninhypothese der Depression. In: Hippius H, Selbach H (Hrsg) Das depressive Syndrom. Urban & Schwarzenberg, München Berlin Wien.

    Google Scholar 

  • Matussek N, Ackenheil M, Hippius H, Müller F, Schröder HT, Schultes H, Wasilewski B (1980) Effect of clonidine on growth hormone release in psychiatrie patients and controls. Psychiatry Res:25-36.

    Google Scholar 

  • Meltzer HY, Lowry MT (1987) The serotonin hypothesis of depression. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 513–526.

    Google Scholar 

  • Mogilnicka E, Boissard CG, Waldmeier PC, Delini-Stula A (1983) The effects of single and repeated doses of maprotiline, oxaprotiline and its enantiomers on foot-shock induced fighting in rats. Pharmacol Biochem Behav 19:719–723.

    Article  PubMed  CAS  Google Scholar 

  • Mogilnicka E, Zazula M, Wedzony K (1987) Functional supersensitivity to the α1 adrenoceptor agonist after repeated treatment with antidepressant drugs is not conditioned by β-down-regulation. Neuropharmacology 26(10): 1457–1461.

    Article  PubMed  CAS  Google Scholar 

  • Morgan JI, Curran T (1989) Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. TINS 12(11):459–462.

    PubMed  CAS  Google Scholar 

  • Newman ME, Klein E, Birnmaher B, Feinsod M, Belmaker H (1983) Lithium at therapeutic concentrations inhibits human brain noradrenaline-sensitive cAMP accumulation. Brain Res 278:380–381.

    Article  PubMed  CAS  Google Scholar 

  • Olpe HR, Schellenberg (1981) Rotubule fractions of rat cerebral cortex after prolonged desmethyl-imipramine treatment. Eur J Pharmacol-Mol Pharmacol Section 172:305–316.

    Google Scholar 

  • Perez J, Tinelli D, Brunello N, Racagni G (1989) CAMP-dependent phosphorylation of sulble and crude microtube fractions of rat cerebral cortex after prolonged desmethylimipramine treatment. Eur J Pharmacol-Mol Pharmacol Section 172:305–316.

    Article  CAS  Google Scholar 

  • Peroutka SJ (1987) Serotonin receptors. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 303–311.

    Google Scholar 

  • Potter WZ, Scheinin M, Golden RN (1985) Selective antidepressants and cerebrospinal fluid. Arch Gen Psychiatry 42:1171–1177.

    Article  PubMed  CAS  Google Scholar 

  • Pritchett DB, Bach AW, Wozny M, Taleb O, Dal Toso R, Shih J, Seeburg PH (1988) Structure and functional expression of cloned rat serotonin 5-HT2 receptor. EMBO J 7:4135–4140.

    PubMed  CAS  Google Scholar 

  • Racagni G, Brunello N (1984) Transsynaptic mechanisms in the action of antidepressant drugs. Trends Pharmacol Sci 5:527.

    Article  CAS  Google Scholar 

  • Randrup A, Braestrup C (1977) Uptake inhibition of biogenic amines by newer antidepressant drugs: relevance to the dopamine hypothesis of depression. Psychopharmacology 53:309–314.

    Article  PubMed  CAS  Google Scholar 

  • Robertson HA, Peterson MR, Murphy K, Robertson GS (1989) Dl-dopamine receptor agonists selectively activate striatal c-fos independent of rotational behaviour. Brain Res 503:346–349.

    Article  PubMed  CAS  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522.

    PubMed  CAS  Google Scholar 

  • Vetulani J, Sulser F (1975) Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in limbic forebrain. Nature 257:495–497.

    Article  PubMed  CAS  Google Scholar 

  • Wachtel H (1983) Potential antidepressant activity of rolipram and other selective cyclic adenosine 3′,5′-monophosphate phosphodiesterase inhibitors. Neuropharmacology 22:367–372.

    Article  Google Scholar 

  • Wachtel H (1990) The second-messenger dysbalance hypothesis of affective disorders. Pharmacopsychiatry 23:27–32.

    Article  PubMed  CAS  Google Scholar 

  • Waldmeier PC, Baumann PA, Hauser K, Maître L, Storni A (1982) Oxaprotiline, a noradrenaline uptake inhibitor with an active and an inactive enantiomer. Biochem Pharmacol 31(12):2169–2176.

    Article  PubMed  CAS  Google Scholar 

  • Wander TJ, Nelson A, Okazaki H, Richelson E (1986) Antagonism by antidepressants of serotonin S1 and S2 receptors of normal human brain in vitro. Eur J Pharmacol 132:115–121.

    Article  PubMed  CAS  Google Scholar 

  • Wendt G, Binz U (1989) Levoprotilin. Therapeutische Wirksamkeit und Verträglichkeit am Beispiel einer Doppelblind-Studie vs. Amitriptylin. Münch Med Wochenschr 131(2):0–0.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Ackenheil, M. (1990). The mechanism of action of antidepressants revised. In: Riederer, P., Youdim, M.B.H. (eds) Amine Oxidases and Their Impact on Neurobiology. Journal of Neural Transmission, vol 32. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9113-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9113-2_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82239-5

  • Online ISBN: 978-3-7091-9113-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics