Skip to main content

Oxidative stress: a role in the pathogenesis of Parkinson’s disease

  • Chapter
Neurotransmitter Actions and Interactions

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 29))

Summary

The degeneration of nigro-striatal dopaminergic neurons is considered to be a predominant pathogenetic factor of Parkinson’s disease (PD). However, the etiology of this degeneration is not known. Hypotheses assume accumulation of endogenous and/or exogenous toxins as trigger of the disease. An increase in the concentration of free radicals has been suggested to be toxic to cells, especially when combined with certain metals like free iron or copper. The role of melanin in the degenerative process is not clear, but autoxidative reactions such as the oxidation of dopamine (DA) to melanin generating radicals and toxic metabolites seem to enhance the vulnerability of neurons in the substantia nigra (SN). Disappearance of melanin in the SN, increase of total iron and ferric iron, extreme decrease of glutathione (GSH) levels, reduced activity of enzymes involved in the detoxification of hydrogen peroxide, hydroxyl and superoxide radicals (peroxidases, catalase, glutathione peroxidase), an increase of monoamine oxidase B (MAO B) activity and the substantial increase of malondialdehyde, a marker of lipid peroxidation, in the SN seem to indicate a role of an oxidative stress syndrome in the SN causing or aggravating PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JD, Lauterberg BH, Mitchell JR (1983) Plasma glutathione and glutathione disulfide in the rat: regulation and response to oxidative stress. J Pharmacol Exp Ther 227: 749–754.

    PubMed  CAS  Google Scholar 

  • Bast A, Haenen GRMM (1988) Interplay between lipoic acid and glutathione in the protection against microsomal lipid peroxidation. Biochem Biophys Acta 963: 558–561.

    PubMed  CAS  Google Scholar 

  • Birkmayer W, Riederer P (1985) Die Parkinson-Krankheit, Biochemie, Klinik, Therapie. 2. Aufl. Springer, Wien New York.

    Google Scholar 

  • Birkmayer W, Knoll J, Riederer P, Youdim MBH, Hars V, Marton J (1985) Increased life expectancy resulting from addition of L-deprenyl to madopar treatment in Parkinson’s disease: a longterm study. J Neural Transm 64: 113–127.

    Article  PubMed  CAS  Google Scholar 

  • Cohen G (1983) The pathobiology of Parkinson’s disease: biochemical aspects of dopamine neuron senescence. J Neural Transm 19: 89–103.

    CAS  Google Scholar 

  • Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52 (2): 381–389.

    Article  PubMed  CAS  Google Scholar 

  • Fariello RG, Ghirardi O, Peschechera A, Ramacci MT, Angelucci L (1987) Transient nigral ubiquinone depletion after single MPTP administration in mice. Neuropharmacology 26 (12): 1799–1802.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert HF (1982) Biological disulfides: the third messenger? J Biol Chem 257: 12086–12091.

    PubMed  CAS  Google Scholar 

  • Graham DG, Tiffany SM, Bell WR jr, Gutknecht WF (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C 1300 neuroblastoma cells in vitro. Mol Pharmacol 14: 644–653.

    PubMed  CAS  Google Scholar 

  • Hefti F, Melamed E, Bhawan J, Wurtman RJ (1981) Longterm administration of L-Dopa does not damage dopaminergic neurons in the mouse. Neurology 31: 1194–1195.

    CAS  Google Scholar 

  • Iwahashi H, Morishita H, Ishii T, Sugata R, Kido R (1989) Enhancement by catechols of hydroxyl-radical formation in the presence of ferric ions and hydrogen peroxide. J Biochem 105: 429–434.

    PubMed  CAS  Google Scholar 

  • Konradi C, Riederer P, Youdim MBH (1986) Hydrogen peroxide enhances the activity of monoamine type-B but not type A: a pilot study. J Neural Transm [Suppl 22]: 61-73.

    Google Scholar 

  • Konradi C, Svoma E, Jellinger K, Riederer P, Denney RM, Thibault J (1988) Topographic immunocytochemical mapping of monoamine oxidase-A, monoamine oxidase-B, and thyrosine hydroxylase in human post mortem brain stem. Neuroscience 26 (3): 791–802.

    Article  PubMed  CAS  Google Scholar 

  • Konradi C, Kornhuber J, Frölich L, Fritze J, Heinsen H, Beckmann H, Schulz E, Riederer P (1989) Demonstration of MAO-A and-B in the human brain stem by a histochemical technique. Neuroscience (in press).

    Google Scholar 

  • Konradi C, Riederer P, Heinsen H (1989) Histochemistry of MAO subtypes in the brainstem of humans: a relation to the radical hypothesis of Parkinson’s disease. In: Przuntek H, Riederer P (eds) Early diagnosis and preventive therapy in Parkinson’s disease. Springer, Wien New York, pp 243–248.

    Google Scholar 

  • Moll G, Moll R, Riederer P, Heinsen H, Denney RM (1988) Distribution pattern of monoamine oxidase A and monoamine oxidase B in human substantia nigra shown by immunofluorescence cytochemistry on Thin Frozen Sections. Pharmacol Res Comm 20 [Suppl 4]: 89–90.

    Article  Google Scholar 

  • Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33: 305–310.

    Article  PubMed  CAS  Google Scholar 

  • Pilas B, Sarna T, Kalyanaraman B, Swartz HM (1988) The effect of melanin on iron associated decomposition of hydrogen peroxide. Free Rad Biol Med 4: 285–293.

    Article  PubMed  CAS  Google Scholar 

  • Pileblad E, Slivka A, Bratfold D, Cohen G (1988) Studies on the autoxidation of dopamine: interaction with ascorbate. Arch Biochem Biophys 263 (2): 447–452.

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in Parkinson’s disease. J Neural Transm 38: 277–301.

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Youdim MBH (1986) Monoamine oxidase activity and monoamine metabolism in brains of parkinsonian patients treated with L-deprenyl. J Neurochem 46 (5): 1359–1365.

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Youdim MBH (1987) MPTP induced dopaminergic neurotoxicity—a useful model in the study of Parkinson’s disease. Neurochem Int 11 (4): 379–381.

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Sofic E, Heuschneider G, Strolin Benedetti M, Dostert P (1988) Secondary (toxic) parkinsonism as model of Parkinson’s disease. Functional Neurology 3 (4): 449–457.

    PubMed  CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52: 515–520.

    Article  PubMed  CAS  Google Scholar 

  • Rosengren E, Linder-Eliasson E, Carlsson A (1985) Detection of 5-S-cysteinyldopamine in human brain. J Neural Transm 63: 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MBH (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74: 199–205.

    Article  PubMed  CAS  Google Scholar 

  • Sonsalla PK, Nicklas WJ, Heikkila RE (1989) Role for excitatory amino acids in meth-amphetamine-induced nigrostriatal dopaminergic toxicity. Science 243: 398–400.

    Article  PubMed  CAS  Google Scholar 

  • Spina MB, Cohen G (1988) Exposure of striatal synaptosomes to L-dopa increases levels of oxidized glutathione. J Pharmacol Exp Ther 247 (2): 502–507.

    PubMed  CAS  Google Scholar 

  • Spina MB, Cohen G (1989) Dopamine turnover and glutathione oxidation: implications for Parkinson’s disease. Proc Natl Acad Sci USA 86: 1398–1400.

    Article  PubMed  CAS  Google Scholar 

  • Westlund KN, Denney RM, Rose RM, Abell CW (1988) Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience 25: 439–456.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this chapter

Cite this chapter

Götz, M.E., Freyberger, A., Riederer, P. (1990). Oxidative stress: a role in the pathogenesis of Parkinson’s disease. In: Youdim, M.B.H., Tipton, K.F. (eds) Neurotransmitter Actions and Interactions. Journal of Neural Transmission, vol 29. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9050-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9050-0_23

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82142-8

  • Online ISBN: 978-3-7091-9050-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics