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Abstract. We discuss quantum fields on Riemannian space-time. A principle of
local definiteness is introduced which is needed beyond equations of motion
and commutation relations to fix the theory uniquely. It also allows us to
formulate local stability. In application to a region with a time-like Killing
vector field and horizons it yields the value of the Hawking temperature. The
concept of vacuum and particles in a non-stationary metric is treated in the
example of the Robertson-Walker metric and some remarks on detectors in
non-inertial motion are added.

I. Introduction

In the past decade there has been increasing interest in the interplay between the
principles of general relativity and those of quantum physics. Some aspects arise
already when one considers local quantum physics in a Riemannian space whose
causal structure is described by a given, classical metric field gμv(x). Typical
examples are the Hawking temperature of a black hole [1], the behaviour of
accelerated detectors as discussed by Unruh [2] and the definition of particle states
in an expanding universe. The essential phenomena and problems arising from the
deviation of gμv from the Minkowski metric can be illustrated in these examples by
quantum fields obeying linear field equations. We shall confine our discussion to
this.

The first question is whether the quantum theory is unambiguously defined by
the equation of motion and commutation relations without recourse to a special,
distinguished state, the vacuum [2a]. In the Minkowski world this special state is
tied to the time translation symmetry of the theory, a feature which is lost in
general (there will usually be no global time-like Killing vector fields). To answer
this question we have to make clear what we mean by "the theory." Our customary
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description of phenomena in physics distinguishes between the "laws of nature"
and "initial conditions." The theory concerns the former and leaves a large
arbitrariness in the latter. In the algebraic approach to quantum physics the "laws"
correspond to the fixing of an algebra (or rather a net of algebras associated with
space-time regions [3]), the "initial conditions" correspond to the choice of a state
(expectation functional) over this algebra. However, there is some leeway because
the equations of motion and commutation relations of the field still allow a variety
of choices of the algebra of bounded observables and hence of the allowed states. It
appears to us a good principle, supported by all experience with quantum field
theory in Minkowski space as well as by the spirit of the principle of locality, that
for a small contractible neighborhood of a point the theory must fix the algebra
uniquely in such a way that no superselection rules between the allowed "partial
states" of such a small region1 exist. In other words, the laws should not allow
inequivalent representations of the algebra of bounded observables of such a
space-time region. All superselection rules are either of global nature (such as the
total matter content of the universe) or of topological nature such as charge
quantum numbers which have no significance for a small, contractible part of
space-time. Mathematically it means that the algebra of a compact, contractible
region shall be a W*-factor, i.e. isomorphic to an operator algebra with trivial
center on a Hubert space and that only normal states of this algebra are allowed.
We shall call this the principle of local definiteness. This indicates incidentally that
the set of (partial) states is more fundamental than the algebra, the latter being the
dual space of the linear hull of the former. Compare Sect. C of [4].

The next observation is that the usual algebraic relations written down in
quantum field theory, i.e. the commutation relations and the equations of motion,
are not enough to implement the laws as demanded by the principle of local
definiteness. One reason for this is the following. Consider a sequence ΰn of simple2

space-time regions shrinking to a point x as rc-»oo, and in each region pick an
observable An. The sequence An will move into the commutant of the total algebra
as w-»oo because there are no observables at a single point; the observables in the
space-like complement of a single point generate the whole algebra. Hence any
limit point of such a sequence is in the center and should be a multiple of the
identity by local definiteness. For a quantum field Φ with linear field equations this
problem may be reduced to the discussion of the product Φ(x1)Φ(x2) with xt e ̂ ,
where °U is a small neighborhood of the point x. We have to specify the singularity
of the product of fields as xl-*x2. In particular, considering Φ(x1)Φ(x2) as an
operator-valued distribution over ^ x % we can reduce it to a distribution over
Tx x Γx, where Tx is the tangent space at a point x:

w,(/(1), /(2)) = lim J Φ(X + y,)Φ(x + y2)nι\yl)n2\y2)dμ(y^dμ(y2) ,

/"*° (i.i)
dμ(y)y-g(x)d4y,

by taking a suitable sequence of test functions fλ9 ( f λ \ λ = 1 E@(J£)), whose support
contracts to the origin as Λ,-»0. For a free scalar field in Minkowski space such a

1 By "partial state" we mean the restriction of the expectation functional to the algebra of the
region
2 Open, contractible regions with compact closure
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sequence is

13'). (i 2)
The vacuum expectation value of wx becomes then

with

D(+\z) = (2π) ~ 3 J *' <P -*

= (2π)~2(z2-(z°-iε)2)-1 (1.4)

Note that (w,,) does not contain the mass value anymore because only the most
singular part of zl(+)(z, m) survives in the limit (ί.l).

The essential point is now that the principle of local definiteness implies that
<w;c>ω of (1.1) shall be the same for all allowed states ω, i.e. the operator valued
distribution (1.1) is actually a numerical-valued distribution whose specification is
part of the definition of the theory. This remark can be carried over almost without
change now to the case of field theory in Riemannian space-time. In fact we shall
see that wx and w(

x

n) (see the next section) are uniquely prescribed by requirements
of continuity in x, co variance under parallel transport, fixing of the scaling factor
needed in (1.2) which follows from the commutation relations or the "dimension of
the field," "local stability" which gives the proper zε-prescription for the singularity
on the light cone or, alternatively speaking, replaces the "positive energy"
condition of the Minkowski theory and finally the positivity of the set v\4n)

considered as a linear form over the tensor algebra of test functions in tangent
space.

The specification of the wξj0 is necessary to fix the local P7*-algebras. It is in
general not sufficient for that purpose (see Sect. IV). Once the local J/F*-algebrasare
fixed the global algebra is naturally defined as the norm closure of the algebra
generated by all the algebras of compact, contractible regions. This is a C*-algebra
which will have many inequivalent representations whose restrictions to local
regions will, however, all be equivalent. The distinction between the inequivalent
global representations result on the one hand from differences in the asymptotic
behaviour of states at space-like infinite. On the other hand they may result from
topologically different possibilities of patching together local states as in the case of
charge quantum numbers (superselection sectors) known in the Minkowski-space
quantum field theory. There arises however one new feature in the Riemannian
case: The given metric field may describe only part of the manifold such as the
outside region of a Schwarzschild hole. In that case the horizon plays at first sight
the same role as infinity for the C*-algebra of the accessible region. This algebra
will allow representations differing in the behaviour of states on the horizon. If we
know, however, that the manifold extends beyond the horizon, then the condition
for the state in the tangent spaces along the horizon has to be taken into account
and this gives a restriction on the allowed representations. In other words it is
necessary to make the algebra of a closed simple region including points of the
horizon again into a PF*-factor.We shall discuss this mechanism and its relation to
the Hawking temperature in Sect. III.
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Another circle of questions is: Does there exist a reasonable definition of local
vacuum and local particle states if the metric is not stationary. We shall address
ourselves to this in the example of the Robertson-Walker metric in Sect. IV.
Related to this is the problem of how to define detectors. We make some remarks
on this in Sect. V.

II. The Wightman Distributions in Tangent Space.
Covariance and Local Stability

In the Wightman frame the requirement of local defϊniteness demands that we
specify the ((numerical-valued) distributions in TxxTxx ... Tx arising from

... dμ(yn) (2.1)

for appropriate choices of the sequence of test functions fλ. For an interacting field
this should be done following the lines of the Wilson-Zimmermann expansion. In
this paper we are concerned only with free fields where a unique answer follows
from a few general properties.

For quantum fields living on a Riemannian manifold Jί we first have to
convince ourselves that wj} as defined by (2.1) is independent of the choice of the
coordinate system. For an intrinsic definition of the wj) we may start from a map ξ

from the tangent space at x into the manifold with properties

i)

dξ(sz)
ϋ) ds

zeTx,

i.e. the tangent vector of the parametrized curve in M which is the image of the ray
sz shall be z. We may then consider

W«\f) = limN^s)$f(z1,...,zn)Φ(ξ(Szl))...Φ(ξ(Szn)dμ(z1)...dμ(zn), (2.2)
s^O

where dμ(z) = ]/ — g(x)d4z, provided there exists a normalization factor N(n\s)
which gives a finite, nonvanishing limit for all Laurent Schwartz test functions/. If
such an N(n\s) exists for one mapping with properties i), ii), one sees that it will be
the same for any such map and the result (2.2) is independent of the choice of ξ. Of
course, for this to hold it is assumed that g is not degenerate at the point x.

The difference between w£° calculated with the mappings ξ and ξ' is

A =limW2)

)ί [/(zi ... z/

n)J—f(zί, ...,zπ)]Φ(ξ(5z1))... Φ(ξ(szn))Yldμ(zi),
s-»0

where z'i = s~1Mszί, J= ^— and M = ξ'~1ξ. Since ξ and ξ' shall both satisfy the
oz

properties i), ii) the map M from 7^ to Tx has the form
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Thus

Since f(z\ . . . z'JJ —f(z^ ...9zn) regarded as a function of the zi is again a Laurent
Schwartz test function, A vanishes of order s.

Now the tangent space is naturally isomorphic to Minkowski space with
distinguished origin and therefore one may expect that the set of distributions wj)

should have the same properties as the Wightman distributions in Minkowski
space.

The first property is "Poincare-invariance", i.e.

(2.3)

where

f'(Zl . . . zπ) =f(ΛZl +a,...,Λzn + ά). (2.4)

The translation invariance corresponds to the continuity in x of w^w) since a
common finite translation of the zt in tangent space corresponds to an infinitesimal
shift of the base point x. The Lorentz-invariance follows in the generic case from
the following consideration: Since the wj} are numerical distributions whose
specification is part of the theory there is - in the absence of external fields other
than the metric field gμv - only one natural way to transport w^} to w ̂ , namely by
the affine connection along some path. The result has to be path independent. If the
curvature is not zero, then the transport along a closed path from x to x produces a
common Lorentz transformation of all the tangent vectors zt . In the generic case
we can obtain an arbitrary Lorentz transformation by suitably choosing a closed
path.

The next essential property of the Wightman distributions is the support
property in momentum space. In flat space-time it expresses the requirement that
there should exist a ground state, the vacuum. In Riemannian space-time we can
retain a local version of this, which we may call the principle of local stability,
limiting the support of the distributions wj} in momentum space (cotangent space).
For the 2-point distribution this means that with

w42)(Zl, z2) = f wW(p)e"(" -^dμ(p) , (2.5)

the support of w(2) is restricted to the forward cone

(2.6)

where the scalar products, of course, are defined with the local metric gμv(x).
The construction of the w("} as the scaling limits in (2.2) implies one further

property. We discuss it here only for the linear theory. There the commutator
[ΦCXi), Φfe)] is already a numerical valued distribution and therefore the
antisymmetric part of w^2) is directly given. This determines the scaling factor

= s2, (2.7)
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and also the normalization. Replacing s by λs in (2.2), we obtain the scaling
property of w(2)

W<e

2>(Az1)AZ2) = λ-V2>(Zlsz2), (2.8)

and correspondingly, since dμ(λp) =

λ-2ύx(p) (2.9)

This scaling property implies that the value of the mass disappears. Any finite mass
value is scaled down to zero.

Taking all the properties together we get

W?\zl,z2) = D<x

+\z1 -z2) = (2π)-%v(x)zV)-1 , (2.10)

where z = zΐ—z2 and z° is given an infinitesimal negative imaginary part, i.e. z° is
replaced by z° — iε.

There is one further important property of the set of Wightman distributions.
They should define a positive linear form on the tensor algebra of test functions.
We should first note that the passage to tangent space by (2.2) is not the limit of an
automorphism group of the observable algebra. In fact it is not even a mapping
from this algebra to the numbers since the same algebraic element may be
described by many different Φ(/) due to the field equations. However, if we choose
a space-like surface and express each element in the observable algebra by the

dΦ
Cauchy data Φ, — -̂  on this surface, then the observable algebra of a neighborhood

C/X

of a point on this space-like surface is mapped into the "kinematical algebra"
dΦ

generated by the Φ, — -̂  on this surface and (2.2) defines a positive map from this
(7.X

algebra to the tensor algebra of test functions in tangent space. The consequences
of this positivity are that with wjc

2) given by (2.10) and w^1} = 0, the extension to the
higher w$Jl) is unique. The truncated (correlated) parts vanish for n > 2

w?)T = 0 for n>2, (2.11)

i.e. the set of w^n) is precisely equal to the vacuum expectation values of a massless
free field in Minkowski space.

One further remark is needed for the discussion in the next section. If we have a
coordinate patch whose boundary is a horizon so that the metric becomes
degenerate there in the coordinates used we can still check in this coordinate
system whether a state is allowed by the local definiteness condition on the
boundary, because for space-like z1 — z2 the distribution w(2)(zί , z2) is a continuous
function which may be computed from <Φ(x1)Φ(x2)> with x1 moving towards the
boundary from the inside of the patch.

III. Horizons and Hawking Temperature

The simplest example of a horizon has been given by Rindler [5]. Considering the
subset of Minkowski space (right wedge Wr)

x1^!*0!, (3.1)



Quantum Fields and Gravitation 225

we may coordinatize it by (τ, ρ, x1) related to the Minkowski coordinates by

x° = ρsinhτ,

x^ρcoshτ, (3.2)

X 2 ,X 3 = X1.

The hyperhalfplanes in Minkowski space

H(+>:x° = x^O; H(->:-x° = x1^0 (3.3)

are the future (respectively past) horizons for a family of observers moving on
world lines staying entirely in Wr. Namely, if such an observer sends a signal
crossing H(+\ none of his family can receive its echo back. In particular one may
consider observers moving with uniform acceleration in the ^-direction whose
world lines are the hyperbolas ρ = const, x1 = const. Their proper time element is
given by ds = ρdτ, the acceleration by ρ ~1. Therefore, for such an observer τ would
be a natural time coordinate and, if he used w = logρ instead of ρ as a spatial
coordinate then the Rindler region (3.1) would be represented by all of R4 in these
coordinates, i.e. the horizons would be removed to infinity. The metric is

ds2 = - ρ2dτ2 + dρ2 + dx^2 = e2u( ~ dτ2 + du2) + dxλ\ (3.4)

The essential features which this example shares with the Schwarzschild
solution are the existence of a time-like isometry, a 3-parameter group of space-like
isometries acting on the coordinates x1 (the angles 5, φ in the Schwarzschild case)
and of a horizon. Using orthogonal coordinates in which x° measures the
coordinate along the time-like Killing vector and x1 the approach to the horizon,
the metric is of the form

where A, B, C are functions of x1 alone, g^ are independent of x° and x1 and the
horizon is characterized by

^(x1)^. (3.6)

The integral

V l / 2

dx1 (3.7)

diverges so that the coordinate time x° taken by a signal from the inside to reach
the horizon is infinite. In fact, the divergence of (3.7) at the horizon is logarithmic in
the Schwarzschild- and Rindler case and the quantity

> = B'1/2

dx1 (3.8)

is finite. This quantity, which is independent of the choice of the coordinate x1

(within the specified conventions) and scales inversely proportional to the time
y

coordinate is related to a distinguished temperature T= —, the Hawking
2π
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temperature. To arrive at this interpretation of (3.8) one considers a quantum field
Φ on the Riemannian manifold (3.5). We shall show how this distinguished
temperature arises from the principles of local defmiteness and stability described
in the last section when applied to points on the horizon3. To make the
calculations analytically explicit we shall perform them in the Rindler case for a
scalar quantum field satisfying the covariant Klein-Gordon-equation
corresponding to (3.4)

and canonical commutation relations

fiΦ Ί
— (O^x^ΦCO,^,*1') = -ΐρδfe-ρOaCx1-*1'). (3.10)
ΰτ ]

Before doing this we have to refer to results coming from an entirely different circle
of ideas.

Bisognano and Wichmann [6] considered the restriction of the vacuum state in
Minkowski quantum field theory to the right wedge (3.1). It was known due to the
theorem of Reeh and Schlieder [7] (which follows from the assumption that the
vacuum is the state of lowest energy) and from the mathematical theory of modular
operators by Tomita and Takesaki [8] that for any region of Minkowski space
which has a nonvoid causal complement there exists a distinguished 1 -parameter
group of automorphisms of the algebra of this region, the modular automorphism
group associated with the vacuum state. Bisognano and Wichmann determined
the modular automorphism group of the vacuum state for the right-hand wedge
and found the surprising result that it could be characterized quite independently
of the detailed nature of the theory in purely geometrical terms: The modular
automorphism group of the restriction of the vacuum state to the right wedge is the
group of Lorentz boosts in the x1-x° plane with a scaling factor 2π. In the
coordinates (3.2) it corresponds to a translation of the τ-coordinate τ-»τ + 2πs (s is
the group parameter).

On the other hand we know that the relation between a (faithful) state and its
modular automorphism group is precisely the one which prevails between an
dequilibrium state and the group of time translation automorphisms [9].
Specifically, an equilibrium state at inverse temperature β satisfies the KMS-
condition4

-imtdt , (3.11)

where < yβ denotes the expectation value in the state, ut(A) is the time translate of
A; B and A are arbitrary elements of the observable algebra. This condition is
synonymous with the statement that aβs is the modular automorphism group of
the state. Therefore the result of Bisognano and Wichmann may be interpreted as
saying that for an observer in Wr who takes τ as his time coordinate, the Minkowski
vacuum state appears as an equilibrium state with temperature (2π)-1.

3 More precisely to points of the 2-dimensional manifold H(+)r\H(~]

4 KMS stands for Kubo, Martin, Schwinger who first wrote the Gibbs canonical ensemble in a
form which could be applied to an infinite medium
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Sewell [10] has pointed out the parallelism between this result and the
Hawking temperature. In a subsequent paper he formulated axioms for quantum
field theory on certain manifolds including the Kruskal-Schwarzschild case which
served to characterize a distinguished global state on the (complete) manifold,
generalizing the vacuum in Minkowski space in the Wightman frame. From the
point of view described in the previous sections we would like to separate two
questions. First, assume that for some reason we have an equilibrium state with
respect to the time-like Killing vector field in the incomplete (Rindler or
Schwarzschild) region. Then we can show that local definiteness and stability
allows only one value of the temperature. The other question is: under what
circumstances can we expect to find a stationary state with respect to this Killing
vector field in a finite neighborhood of the horizon? This demands assumptions on
the nature of the state in the past at space-like infinity [1, 12, 13] (see also the
summary at the end of this section).

Now we want to find the class of allowed states on Wr for the quantum field
theory (3.9), (3.10). In analogy to the usual procedure we can express the field in
terms of "creation" - and "destruction" - operators by using a complete system of
C-number-solutions of (3.9). One gets

Φ(τ, ρ, x1) - ϊ Kiω(μρ){a(ω, k1)^ (k±χl - ωτ> + α*(ω, k1)^ ~ '(klχl " ωτ^}dωd2kλ ,

(3.12)

where Kiω is the modified Hankel function with purely imaginary Index ίω and

1/2. (3.13)

If we use the normalization convention of [14 and 15] (which unfortunately is
different from the one used by Wittaker and Watson), one has the orthogonality
relations

] Kw(μβ)Kim(μe)^ = ̂ (ωsinhπα/Γ^ω-α/), (3.14)
o ρ 2

and completeness relation

oo yt

f ωsmhπωKiω(μρί)Kiω(μρ2)dω=—ρίδ(ρ1-ρ2) (3.15)
π2

(see [15] under Kontorowich-Lebedev-Transformation). Correspondingly the
commutation relations (3.10) become

[α(ω, k1), α*(ω', k1')] - (4π4) ~ x sinh πωδ(ω - ω/)^2(k1 - k1') ,

The expectation value of Φ(x1)Φ(x2) in a state can then be written

<Φ(τ1,ρ1,xf)Φ(τ2,ρ2,xi)>
GO

- J dω1dω2ίd
2kid2k^Kiωί(μίρ1)Kiω2(μ2ρ2)

— oo

2

)Σ(ω1,k}|ω2,ki), (3.17)
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where

Σ+ + = <α(ω, k-V(ω', k'1)) , ω, ω'>0 ,
Σ" = <**(M, -kXlω'l, -k1'), ω,ω'<0,

1X|ωΊ,-k L />, ω>0, ω'<0, l * }

Σ" + = <fl*(M,-k1)α*(ω/,k L0>, ω<0, ω'>0.

The commutation relations (3.15) impose the restriction

Σ++(ω,kV,k10-Σ"~(-ω/,-k-LΊ-ω,-k1)

-(4π4)~1 sίnhπωφ>-ωO<5(2)(k-L-k-L'). (3.19)

We shall discuss the additional restrictions on the state arising from the
conditions in tangent space only for the case of "equilibrium states" with respect to
the "time translation"

ατ,Φ(τ,ρ,xJ-) = Φ(τ + τ/,ρ,xJ ). (3.20)

TheKMS-condition(3.11)allows us then to express the expectation value of a
product by that of a commutator

(2π)-1 -(fa(A)9B]yβe
ia»dωdτ. (3.21)

— oo £ 1

For the left-hand side of (3.17) this gives

i °° eβω

<Φ(τl9x1)Φ(τ29JL2)yβ= — j^A(τ1+τ9x1\τ29x2^ (3.22)

with

XL = (Qί, *i~) ->

(3.23)
i2l(x1|x2) = [Φ(x1),Φ(x2)].

By (3.12), (3.16) we have in the Rindler case

We should put

τ2 — τ1=sz°.) ρ2 — Qι=sz1, x2— xf^sz1 (3.25)

and evaluate the singularity as 5 = 0.
If Xi is an inner point of the Rindler region, i.e. ρί >0, we see that in the integral

over ω and k1 which remains after inserting (3.24), (3.25) into (3.22) finite ranges of
ω and k1 give no singularity in 5, only the asymptotic part for large ω and large k1

eβω

is relevant in the limit. In that region, however, the Bose factor -̂  — - becomes
c — i

independent of/?, namely 1 for ω-> + oo and 0 for ω-> — oo for positive values of/?
and μ can be replaced by Ik1!. Therefore, for any (positive) value of β the singular
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part of (3.22) will be precisely the vacuum expectation value of a massless field as
demanded in (2.10). Thus (2.10) applied to the inner point of the Rindler wedge
allows all positive temperatures.

If we know that the horizon is in the interior of an extended manifold, then we
have to demand (2.10) also for the points of the horizon. As ρx ->0 the commutator
function A becomes more and more extended in τ and its Fourier transform with
respect to τ becomes concentrated around ω = 0. This can be seen from the form of
Kiω(μQι) for small argument

-iωlog^\
€ \

As £i-»0, logρ!-* — oo, and this becomes equivalent to

(3'26)

KtoίWi)-" lim - = πδ(ω) . (3.27)
κ->oo CO

In the limit ρt =0 the expression (3.22) with the insertion of (3.24), (3.25), (3.27)
becomes

,Q,κ^Φ(τ2,ρ2,xi)yβ = (4π2β)-1ίK0(μSz
1)e-Λί''ίd2iί

(j.Zo)

Here we have changed from Ik1! to fc' = slk1!, replaced sμ=(k/2 + s2m2)1/2 by k '. For
the last evaluation see [14, p. 37]. Thus on the horizon

<w<2>>/f = (2π«-1(z2)-1, (3.29)

and comparison with (2.10) shows that this agrees with the principles of local
definiteness and stability if and only if

β = 2π. (3.30)

Let us consider the more general case (3.5). The covariant Klein-Gordon
equation is now

-A~lΆ+B-1ίΆ+D^ϊ+C-WΦ-m2Φ = Q9 (3.31)
dx° dx1 dxl

where
D = B-ί~log(CAί/2B-1^, (3.32)

dX

and zl1 is the Laplacian in the transversal coordinates with respect to the metric gΛβ

(α,jβ = 2,3). To compute the expectation value <Φ(x1)Φ(x2)> in a KMS-state
(Gibbs state) for inverse temperature β with respect to the time translation
x°->x0 + 1 we start from (3.21) [or (3.22) in the adapted notation]. We need only
the commutator A(xί x2) defined by (3.23). This distribution is uniquely
determined by the fact that it is a solution of the wave equation (3.31) in both x t
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and x2> vanishes for equal times x? = %2 and i§ normalized by

l*2), (333)
2

where δ(*} is the "co variant <5-function" on the hyperplane x° = x° defined by the
properties

= 0 for ***2,

Separation of the variables gives

i/l(x1|x2) = ίdωSRωfie(xί,xi)Pιe(xi,xi)e-to(*?-^, (3.35)

where #ω κ is a solution of the radial wave equation

= Q (3.36)
dx1 dx1

in both x{ and x^ ^2 runs through the spectrum of — AL and Pκ is the spectral
projector. Specifically

(3.37)
κ έ,m

in the Schwarzschild case where the transversal manifold is a 2-sphere and

S...Pκ-(2π)-2J...βίkl(xi-χ^2k-L; /c2 = k±2 (3.38)
K

in the Rindler case where the transverse manifold is a 2-plane. As one might expect
the difference between the two cases (3.37), (3.38) disappears when one passes to the
tangent space in the transversal coordinates. Explicitly, for xί — x£ only the very
large values of K are relevant and, in the case (3.37)

f
2^0(^12), (3-39)

when ^^oo such that ̂ 512 remains fixed. The summation Σ can then be replaced
by J d£, and we obtain '

S...P iC = (2π)-1f...ιc/o(Φ1IVιc, (3.40)

where Ix1! = (g^x^x1*)112. This is the same expression as one obtains from (3.38) and
which was used in (3.28).

With the ansatz (3.35) the normalization for the radial part of Δ becomes

ίωRω,κ(x1

1,x
1

2)dω = A1/2B-1!2C-1δ(x\-x1

2). (3.41)

We must now specify the conditions for the functions A, B, C determining the
metric. As mentioned earlier the horizon is characterized by A = 0 and we require

,dAlt2

dx1 = y (finite, φO). (3.42)



Quantum Fields and Gravitation 231

We add

C|H=*Co(finite, ΦO); β ~ 1 / 2 τ =0. (3.43)
H

These conditions are independent of the choice of the x1 -coordinate (apart from
the required orthogonality to x°, x1, (which latter are fixed by the Killing vector
fields. Under these conditions C may be replaced by the constant C0 for the
subsequent discussion where only the neighborhood of the horizon enters in the
radial wave equation (3.36) and the normalization (3.41). The constant C0 can be
absorbed by a rescaling of K. Putting

Coll2κ = k; C0RmtCV2lc = Sωtk, (3.44)

we get from (3.22), (3.35), (3.40) (for small xf-x^)

\)e ~ ίω(xϊ ~ *® . (3.45)

The discussion can now be reduced to the one in the Rindler case by choosing the
coordinate x1 = ρ so that B=l, and thus by (3.42) A = y2ρ2 near the horizon. The
radial equation which S has to satisfy for both ρl and ρ2 becomes

θ. (3.46)2 ρdρ y2ρ2

The normalization condition:

SωSωtk(ρl9ρ2)dω = γρ1δ(ρ1-ρ2). (3.47)

The explicit solution (neglecting the mass which is irrelevant in the limit /c-»oo):

Sω,k(eί,Q2) = (π2Γ1 ^~Kiωly(kQl)Kίωly(kQ2) (3.48)

[see the completeness relation for the modified Hankel-functions (3.15)]. As ρ1

moves towards the horizon we obtain the limit (see 3.27)

lim ω-1SωtK(ρ,9Q2) = y-1δ(ω)KQ(kρκ)9 (3.49)
ρi->oo

and (3.45) reduces to

<Φ(0)Φ(x2)>, = (2πβy) 1 f
o

(3.50)

Note that the transition to tangent space just needs a rescaling of /c, i.e. the change
of the integration variable in (4.50) to fc'^s/c, in agreement with the previous claim
that only very large k- values are relevant. Equation (3.50) agrees with the
demanded form (2.10) for the metric (3.5) on the horizon precisely if

\ (3.51)
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The physical picture becomes somewhat more transparent if one chooses x1 so
that the horizon moves to — oo. This corresponds to the choice A = B. In the
Schwarzschild case this is achieved by the tortoise coordinate

^-l). (3.52)
T O /

The region "near the horizon" is then f < 0 and in this region, by (3.42) A = e2γr.
The radial equation near the horizon is

Ί~^ —^ \t\ T ίϊl ) -f- 0) l o — U , (J.Dj)
\drz

and the normalization

k(fl9f2) = δ ( f 1 i - f 2 ) . (3.54)

Far away from the horizon, for r>r0, A-*l, and C~1->0. The effective potential
has the shape pictured in Fig. 1. The two regions r < 0 and r ^> r0 are separated by a
potential barrier whose height is proportional to k2. Since in the reduction to
transversal tangent space only the behavior for fc->oo (^-»oo) matters we may
ignore the region r^>r0 for our purpose and consider only Eq. (3.53), (3.54). This
means that all incoming waves from r = oo are shielded by the centrifugal barrier
from exerting an influence on our condition in the tangent space at the horizon.
The determination of S from (3.53), (3.54) and Sω>k= —5_ω k (resulting from the
antisymmetry of A) amounts then to a discussion of the scattering of a particle
coming from the left in the potential of Fig. 1 by Schrόdinger wave mechanics. We
shall omit this discussion. However, we note that for ω>m there are in the
Schwarzschild case - in contrast to the Rindler case - two linearly independent
admissible solutions RL, RR of the radial equation and, correspondingly, two sets
of destruction operators α£m(ω), α*m(ω), where the symbol L denotes incoming
waves from the horizon, R denotes incoming waves from r=oo. Characterizing a
stationary, rotationally symmetric, quasifree state by the occupation number
distributions ρlj:

<fl?»^»'(ωO> = ̂ 'δmm/δ(ω - ωOρy(ω) ij = L, Λ ,

we see that the tagent space condition for inner points demands

lim ρjf(ω) = 0,
ω-* oo

and for points on the horizon it gives only a condition for ρLL at ω = 0 which fixes
the value of the Hawking temperature.

Summarizing the results of this section: We considered a (linear) quantum field
on a Riemannian space with a time-like Killing vector field and a horizon which
can be described by the metric (3.5) with conditions (3.42), (3.43). We showed that
there is a unique temperature

Γ=y(2π)-1 (3.55)

for which an "equilibrium state" with respect to the time-like Killing vector field
satisfies the conditions of local definiteness and stability on the horizon. From the



Quantum Fields and Gravitation 233
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Fig.l

computation it appears that the existence of the space-like symmetries assumed in
(3.5) is needed only to the extent that A and B must be functions of x1 alone near the
horizon. The results of Bisognano and Wichmann for the Rindler wedge indicate
that (3.55) remains valid also in the case of an interacting quantum field. But to
show this we would have to understand the consequences of local defϊniteness and
stability for the P7*-algebras of finite regions better.

It must be stressed that our discussion does not replace a detailed discussion of
the history of black hole formation because every admissible state of the quantum
field will look like a thermal state with the Hawking temperature (3.55) in the
infinitesimal neighborhood of the horizon. This corresponds to the statement in
Minkowski space that every admissible state looks like the vacuum in a sufficiently
small neighborhood of a point (since the energy density is finite). In general there is
no reason why the state in a finite region should be (or ultimately become)
stationary with respect to a Killing vector field of the metric (if there is one).
Considering the tendency to local equilibrium in Minkowski space due to
interactions as described by the Boltzmann equation the relevant vector field is the
time flow in the rest system of the local matter distribution and not the Killing
vector field of Rindler boosts. Equilibrium states at finite temperature are not
stationary with respect to the latter, only the ground state is. In a Riemannian
manifold the corresponding statement would be that thermalization in the
Boltzmann sense occurs with respect to a time-like vector field of geodesic flow.
The KMS-state with respect to the Killing vector field in the Schwarzschild case
with temperature (3.55) is a state of specially high symmetry, analoguous to the
ground state in Minkowski space. In the gravitational collapse of a star we have a
well defined "incoming vacuum" of the Φ-field because in the past the mass
distribution extended beyond the Schwarzschild radius and the metric was regular.
It can be idealized as (space-like) asymptotically flat and asymptotically stationary
at f-> - oo in the complete manifold. The adiabatic transform of this state when the
radius of the star shrinks below the Schwarzschild radius is expected to become the
"half thermal" state in which ρLL is the equilibrium distribution with the Hawking
temperature and ρRR = 0.

IV. Local Vacuum and Particles in Nonstationary Metric

Let us consider as the simplest example the Robertson-Walker metric

ds2= -A(x°)dx°2 + B(x°)gikdxidxk; i , f c = l , 2 , 3 , (4.1)
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where the space part is maximally symmetric (homogenous, isotropic). Thus the
xl may be taken as three angular coordinates α, $, φ for points on a 3-sphere and

ds2

r = gίkdxldxk = da2 + sin2 α(d£2 + sin2 Uφ2} (4.2)

is invariant under the group SO (4), the rotations of this sphere.
We want to discuss a scalar quantum field Φ satisfying the covariant Klein-

Gordon equation in this metric:
3/2~1/2

m^O. (4-3)

where A * is the Laplace-Beltrami operator of the 3-sphere. Using a complete
system of c-number solutions of this equation the quantum field may be written
(t = x°,x = α, 3, φ)

*(*)= Σ α* fΛ»Γ f cω^.ΛmX) + αfcVfIB7iω^.Λm(x). (4-4)
k,<f,m

Here ^kί^m shall denote the normalized spherical harmonics of the 3-sphere, Tk

and Tk are complex conjugate solutions of the ordinary differential equation

0, (4.5)

with

2A; D= \ogB3/2A'1/2 . (4.6)

Usually one puts A = l, and

R(t) = B1/2 (4.7)

may be interpreted as the instantaneous radius of the universe. To make the
formulas slightly more transparent we choose the time coordinate so that D = 0 in
(4.5) putting

A = B3 = R6. (4.8)

The covariant canonical commutation relations for the field give then

[>*Λ»> %Vm'] = <5«Λ^*m' IX βl = !>*> β*l = o (4-9)
if we normalize Tk so that the Wronski determinant

dΆTk-Tk

d^ = -ι. (4.10)
at at '

If we choose an arbitrary pair of complex conjugate solutions of (4.5),
normalized by (4.10), then any other such pair Tk, Tk is given by

(4.11)
where

α * = cosh λk + ίckλk

 1 sinh λk; of2 = (ak — ίbk)λk

 i sinh λk;
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Equations (4.11), (4.12) define a 3-parameter group of transformations for the
fundamental system Tfe, Tk of solutions of the harmonic oscillator with time
dependent frequency (4.5). Corresponding to this we have a 3-parametric
subgroup of Bogolubov transformations of the "creation-destruction-operators"
aktm> aktm ίn (4-4), and the question is whether among the possible choices for Γfc, Tk

(and αk^m, flfe>J there exists one which is physically distinguished. If the frequency
ωk is constant, then the choice

Tk = (2ωkΓ
i/2e-i\ti Tk = (2ωkΓ

1/2ei^t (4.13)

is so obvious that everybody takes it without argument. It is the only one which
keeps positive and negative frequencies separated and (related to this) whose
logarithmic derivative does not oscillate. If ωk is not constant then the magnitude
of the dimensionless quantity

is relevant. Unfortunately, for almost all conceivable physical applications this
quantity is so extremely small that at most an adiabatic first order correction to
(4.13) may be of interest and even this only if we consider the solution for time

1 —^-at
has changed significantly. In a perturbation calculation with respect to yk starting
from the zero order choice (4.13) the functions Tk are uniquely determined. By the
normalization condition (4.10) we have

intervals A t in which ωk

 1 —^- A t becomes significant, i.e. a time period in which ωk

(4.15)
\ UL /

and σk is given by

The first order adiabatic expression replacing (4.13) is just

(4.17)

We draw the following conclusions: As long as y<ξl there is a clearcut
definition of the vacuum state and of local particle numbers. The (Heisenberg) state
annihilated by all %,m, where Tk is given by (4.15), (4.16) may be called the vacuum.
Local positive observables with vanishing vacuum expectation values may then be
considered as detectors with the help of which a local particle interpretation can be
built in analogy with the procedure in Minkowski space. If ωk changes so fast that
y f c«l, no meaningful definition of a vacuum seems possible and the concept of
particles looses any relevance. However, this regime is hardly of interest in the
Robertson-Walker universe where y^ωίo)"1 (ί0 the age of the universe and
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Remarks. The operator

,A,m (4.18)

with α, α* referring to the choice of Tk given by (4.15), (4.16) may be regarded as the
"adiabatic (time dependent) Hamiltonian." There is a common, time independent,
ground state of all H(f), the physical vacuum. One checks that this state satisfies
the tangent space condition of Sect. II. In this computation we replace the
spherical harmonics by plane waves (see Sect. Ill) and obtain with

lim s\Φ(x + sz)Φ(x)>0 - lim(2π) " V j Tk(t + s
s-*0

= lim(2πΓ3f d"k/ e1^-^'^
2ωk V β s

-AB-1(z°-iε)2Γ1' (4.19)

By our choice of time coordinate (4.8) this can also be written as
(2π)~2(Bz2 — A(z°— ze)2)"1, which is the demanded form. We also see that if we
used any other choice Tk of the time functions in (4.4) related to Tk by (4.11), then
the state which is annihilated by the corresponding "destruction operators" a^m

will satisfy the tangent space condition if and only if in (4.11)

lim 4-0. (4.20)
&->• oo

This shows that the tangent space condition does not suffice to fix the local von
Neumann algebras (the quasi-equivalence class of the representation of the
canonical commutation relations) because it does not prescribe how fast of2 has to
go to zero as fc-> oo, whereas within one local quasi-equivalence class we must have
that αξ decreases faster than fc~3/2.

An interesting example in the present context is given by the ground states of
the formal time dependent Hamiltonian H(t) which produces the Heisenberg
equation of motion

= i[H(ί), *(ί, x)] |̂̂  = i[H(t), π(ί, x)] . (4.21)

Note that the adiabatic Hamiltonian does not satisfy (4.21), i.e. H(i)ή=H(i), but

where in first order

bktm - aWm = -- Jkt}akt - m (4 22)

Since
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the ground state of H(f) satisfies the tangent space condition but is not locally
normal with respect to the vacuum nor with respect to the ground state of ff (f J for
ίx Φ t. Therefore the operators H(f) and their ground states are not physically
meaningful objects.

V. Detectors

In [2] Unruh described the construction of idealized detectors corroborating the
idea that a detector, racing with acceleration a through the vacuum in Minkowski
space, will register incident quanta according to the Planck distribution with

temperature -^-.
2n

This is the experimental counterpart of the fact that the vacuum is locally a
KMS-state of this temperature with respect to the proper time on the world line of
the accelerated detector. It suggests the questions:

1) Which elements of the observable algebra represent ideal detectors?
2) Suppose a detector, specified by its construction procedure is represented by

the algebraic element C if it is placed in space-time in a certain position with, say,
inertial motion. Is there a transformation law which tells us which algebraic
element C' represents the same detector when it is forced to move along some other
world line?

We can not offer an answer here, only a few modest remarks. Looking at the
KMS-condition in the form (3.21), putting A = B* and C = B*B, we see that

if
ατ(B) = e-ί(»τB, (5.2)

and

[£,£*] = !. (5.3)

Thus an ideal detector, sensitive only to quanta of frequency ω is represented by
C = B*B with B satisfying (5.2) and (5.3). Of course, this has to be qualified in
several ways. First, to specify an approximate position and time of sensitivity, B
has to belong essentially to the algebra of a specified finite region in spacetime and
thus (5.2) can only approximately be realized. Secondly it can be applied only if the
world line of the detector follows a Killing vector field because otherwise no
automorphism ατ exists. If we ask for a transformation law, then we encounter one
further fundamental problem coming from the nonexistence of rigid bodies in
relativity. This is avoided if the extension of the detector orthogonal to the world
line is practically zero. To the extent to which a compromise between these
conflicting demands can be achieved the geometric description (world line)
together with the approximate compliance with (5.2), (5.3) will allow us to define
detectors in different states of motion.
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