Skip to main content

Abstract

Nucleosides, in which a carbohydrate unit is linked to a heterocyclic base, are fundamental components of nucleic acids and nucleotide coenzymes, where they occur in phosphorylated form. In most nucleosides the sugar, either D-ribose or 2-deoxy-D-erythro pentose (“2-deoxyribose”), is linked to a nitrogen atom of a pyrimidine or purine, as in the ribonucleosides uridine (1) and adenosine (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohn, W. E., and E. Volkin: Nucleoside-S’-Phosphates from Ribonucleic Acid. Nature 167, 483 (1951).

    CAS  Google Scholar 

  2. Davis, F. F., and F. W. Allen: Ribonucleic Acids from Yeast which Contain a Fifth Nucleotide. J. Biol. Chem. 227, 907 (1957).

    CAS  Google Scholar 

  3. Cohn, W. E.: Pseudouridine, a Carbon-Carbon Linked Ribonucleoside in Ribonucleic Acids: Isolation, Structure, and Chemical Characteristics. J. Biol. Chem. 235, 1488 (1960).

    CAS  Google Scholar 

  4. Michelson, A. M., and W. E. Cohn: Cyclo-pseudouridine and the Configuration of Pseudouridine. Biochemistry 1, 490 (1962).

    CAS  Google Scholar 

  5. Yu, C.-T., and F. W. Allen: Studies on an Isomer of Uridine Isolated from Ribonucleic Acids. Biochim. Biophys. Acta 32, 393 (1959).

    CAS  Google Scholar 

  6. Chambers, R. W.: The Chemistry of Pseudouridine. Progr. Nucleic Acid Res. Mol. Biol. 5, 349 (1966).

    CAS  Google Scholar 

  7. Adler, M., and A. B. Gutman: Uridine Isomer (5-Ribosyluracil) in Human Urine. Science 130, 862 (1959).

    CAS  Google Scholar 

  8. Uematsu, T., and R. J. Suhadolnik: Pseudouridine, Isolation and Biosynthesis of the Nucleoside isolated from the Culture Filtrates of Streptoverticillicum Ladakanus. Biochemistry 11, 4669 (1972).

    CAS  Google Scholar 

  9. Argoudelis, A. D., and S. A. Mizsak: 1-Methylpseudouridine, a Metabolite of Streptomyces Platensis. J. Antibiotics 29, 818 (1976).

    CAS  Google Scholar 

  10. fox, J. J., K. A. Watanabe, and A. Bloch: Nucleoside Antibiotics. Progr. Nucleic Acid Res. Mol. Biol. 5, 251 (1966).

    CAS  Google Scholar 

  11. Suhadolnik, R. J.: Nucleoside Antibiotics. New York: J. Wiley. 1970.

    Google Scholar 

  12. Suhadolnik, R. J.: Nucleosides as Biological Probes. New York: J. Wiley. 1979.

    Google Scholar 

  13. Suhadolnik, R. J.: Naturally Occurring Nucleoside and Nucleotide Antibiotics. Progr. Nucleic Acid Res. Mol. Biol. 22, 193 (1979).

    CAS  Google Scholar 

  14. Buchanan, J. G., and R. H. Wightman: Chemistry of Nucleoside Antibiotics. IN: Topics in Antibiotic Chemistry, 6 (P. G. Sammes, ed.), p. 229. Chichester: E. Horwood. 1982.

    Google Scholar 

  15. Goodchild, J.: The Biochemistry of Nucleoside Antibiotics. In: Topics in Antibiotic Chemistry, 6 (P. G. Sammes, ed.), p. 99. Chichester: E. Horwood. 1982.

    Google Scholar 

  16. Tronchet, J. M. J.: Synthèse de Nouveaux Types de C-Nucléosides. Biol. Med. 4, 83 (1975).

    CAS  Google Scholar 

  17. Hanessian, S., and A. G. Pernet: Synthesis of Naturally Occurring C-Nucleosides, their Analogs, and Functionalised C-Glycosyl Precursors. Adv. Carbohydrate Chem. Biochem. 33, 111 (1976).

    CAS  Google Scholar 

  18. Daves, G. D., JR., and C. C. Cheng: The Chemistry and Biochemistry of C-Nucleosides. Progr. Medicin. Chem. 13, 303 (1976).

    CAS  Google Scholar 

  19. Michelson, A. M.: The Chemistry of Nucleosides and Nucleotides. New York: Academic Press. 1963.

    Google Scholar 

  20. Lemieux, R. U.: Rearrangements and Isomerizations in Carbohydrate Chemistry. In: Molecular Rearrangements, Part 2 (P. de Mayo, ed.), pp. 710–719. New York: J. Wiley. 1964.

    Google Scholar 

  21. Brown, D. M., M. G. Burdon, and R. P. Slatcher: A Synthesis of Pseudouridine and 5-P-D-Ribofuranosyluridine. J. Chem. Soc. (C) 1968, 1051.

    Google Scholar 

  22. Lerch, U., M. G. Burdon, and J. G. Moffatt: C-Glycosyl Nucleosides. I. Studies on the Synthesis of Pseudouridine and Related Compounds. J. Organ. Chem. (USA) 36, 1507 (1971).

    CAS  Google Scholar 

  23. Brown, D. M., and R. C. Ogden: A Synthesis of Pseudouridine. J. Chem. Soc. Perkin I 1981, 723.

    Google Scholar 

  24. Baron, F., and D. M. Brown: Nucleotides. Part XXXIII. The Structure of Cytidylic Acids a and b. J. Chem. Soc. ( London ) 1955, 2855.

    Google Scholar 

  25. Darnall, K. R., L. B. Townsend, and R. K. Robins: The Structure of Showdomycin, a Novel Carbon-Linked Nucleoside Antibiotic Related to Uridine. Proc. Nat. Acad. Sci. (USA) 57, 548 (1967).

    CAS  Google Scholar 

  26. Sasaki, K., Y. Kusakabe, and S. Esumi: The Structure of Minimycin, a Novel Carbon- linked Nucleoside Antibiotic Related to p-Pseudouridine. J. Antibiotics 25, 151 (1972).

    CAS  Google Scholar 

  27. Townsend, L. B.: Nuclear Magnetic Resonance Spectroscopy in the Study of Nucleic Acid Components and Certain Related Derivatives. In: Synthetic Procedures in Nucleic Acid Chemistry, Vol. 2 (W. W. Zorbach and R. S. Tipson, eds.), p. 267. New York: J. Wiley. 1973.

    Google Scholar 

  28. Rice, J. M., and G. O. Dudek: Mass Spectra of Uridine and Pseudouridine: Fragmentation Patterns Characteristic of a Carbon-Carbon Nucleoside Bond. Biochem. Biophys. Res. Comm. 35, 383 (1969).

    CAS  Google Scholar 

  29. Deslauriers, R., and I. C. P. Smith: A Comparison of the Conformations of Uridine, (3- Pseudouridine, and Dihydrouridine in Dimethyl Sulfoxide and Water. A 1H Nuclear Magnetic Resonance Study. Canad. J. Chem. 51, 833 (1973).

    Google Scholar 

  30. Robins, R. K., L. B. Townsend, F. Cassidy, J. F. gerster, A. F. Lewis, and R. L. Miller: Structure of the Nucleoside Antibiotics Formycin, Formycin B and Laurusin. J. Hetero. Chem. 3, 110 (1966).

    CAS  Google Scholar 

  31. Nakagawa, Y., H. Kano, Y. Tsukuda, and H. Koyama: Structure of a New Class of C- Nucleoside Antibiotic, Showdomycin. Tetrahedron Letters 1967, 4105.

    Google Scholar 

  32. Koyama, G., K. Maeda, H. Umezawa, and Y. Iitaka: The Structural Studies of Formycin and Formycin B. Tetrahedron Letters 1966, 597.

    Google Scholar 

  33. Gutowski, G. E., M. O. Chaney, N. D. Jones, R. L. Hamill, F. A. Davies, and R. D. Miller: Pyrazomycin B: Isolation and Characterization of an A-C-Nucleoside Antibiotic Related to Pyrazomycin. Biochem. Biophys. Res. Comm. 51, 312 (1973).

    CAS  Google Scholar 

  34. Haneishi, T., T. Okazaki, T. Hata, C. Tamura, M. Nomura, A. Naito, I. Seki, and M. Arai: Oxazinomycin, a New Carbon-linked Nucleoside Antibiotic. J. Antibiotics 24, 797 (1971).

    CAS  Google Scholar 

  35. Sakata, K., A. Sakurai, and S. Tamura: Studies on Ezomycins, Antifungal Antibiotics, Part X. Structures of Ezomycins B1, B2, C1, C2, and D2. Agr. Biol. Chem. 41, 2033 (1977).

    CAS  Google Scholar 

  36. Wenkert, E.S E. W. Hagaman, and G. E. Gutowski: Carbon-13 Nuclear Magnetic Resonance Spectral Analysis of C-Nucleosides. The Structure of Pyrazomycin B. Biochem. Biophys. Res. Comm. 51, 318 (1973).

    Google Scholar 

  37. Chenon, M.-T., R. J. Pugmire, D. M. Grant, R. P. Panzicka, and L. B. Townsend: Carbon-13 NMR Spectra of C-Nucleosides. Showdomycin and p-Pseudouridine. J. Hetero. Chem. 10, 427 (1973).

    CAS  Google Scholar 

  38. Isono, K., and J. Uzawa: 13C-Nmr Evidence for the Biosynthetic Incorporation of Acetate into Minimycin and Compounds Related to Krebs Cycle. FEBS Letters 80, 53 (1977).

    CAS  Google Scholar 

  39. Hruska, F. E., A. A. Grey, and I. C. P. Smith: A Nuclear Magnetic Resonance Study of the Molecular Conformation of (3-Pseudouridine in Aqueous Solution. J. Amer. Chem. Soc. 92, 4088 (1970).

    CAS  Google Scholar 

  40. Jones, A. J., D. M. Grant, M, W. Winkley, and R. K. Robins: Pyrimidine and Purine Nucleosides. J. Amer. Chem. Soc. 92, 4079 (1970).

    Google Scholar 

  41. Dejongh, D. C.: Mass Spectrometry of Nucleic Acid Components. In: Synthetic Procedures in Nucleic Acid Chemistry, Vol. 2 (W. W. Zorbach and R. S. Tipson), p. 145. New York: J. Wiley. 1973.

    Google Scholar 

  42. Townsend, L. B., and R. K. ROBINS: The Mass Spectra of Formycin, Formycin B and Showdomycin, Carbon Linked Nucleoside Antibiotics. J. Hetero. Chem. 6, 459 (1969). Crain, P. F., J. A. Mccloskey, A. F. Lewis, K. H. Schram, and L. B. Townsend: Mass Spectra of C-Nucleosides II. An Unusual Fragmentation Reaction of the Heterocyclic Moiety of Pyrazomycin and Some Closely Related Compounds. J. Hetero. Chem. 10, 843 (1973).

    Google Scholar 

  43. Farkas, J., Z. Flegelova, and F. Sorm: Synthesis of Pyrazomycin. Tetrahedron Letters 1972, 2279.

    Google Scholar 

  44. Ulbricht, T. L. V.: Optical Rotatory Dispersion of Nucleosides and Nucleotides. In: Synthetic Procedures in Nucleic Acid Chemistry, Vol. 2 (W. W. Zorbach and R. S. Tipson), p. 177. New York: J. Wiley. 1973.

    Google Scholar 

  45. Davies, D. B.: Conformations of Nucleosides and Nucleotides. Progr. NMR Spectroscopy 12, 135 (1978).

    CAS  Google Scholar 

  46. Nishimura, H., M. mayama, Y. Komatsu, H. kato, N. Shimaoka, and Y. Tanaka: Showdomycin, a New Antibiotic from a Streptomyces Sp. J. Antibiotics Ser. A 17, 148 (1964).

    CAS  Google Scholar 

  47. Tsukuda, Y., Y. Nakagawa, H. Kano, T. Sato, M. Shiro, and H. koyama: The Crystal Structure of Showdomycin and their Derivatives. Chem. Commun. 1967, 975.

    Google Scholar 

  48. Kalvoda, L., J. Farkas, and F. Sorm: Synthesis of Showdomycin. Tetrahedron Letters 1970, 2297.

    Google Scholar 

  49. Kalvoda, L.: Simple Preparative Synthesis of Showdomycin. J. Carbohydrates, Nucleosides, Nucleotides 3, 47 (1976).

    CAS  Google Scholar 

  50. Bobek, M., and J. Farkas: Nucleic Acid Components and their Analogues. CXVIII. Synthesis of 8-P-D-Ribofuranosyladenine Starting from 2,5-Anhydro-D-allonic Acid. Collect. Czech. Chem. Comm. 34, 247 (1969).

    CAS  Google Scholar 

  51. Kalvoda, L.: The Synthesis of Pyrazoles. A Simple Preparative Synthesis of C-Nucleosidic Antibiotics Formycin and Formycin B. Collect. Czech. Chem. Comm. 43, 1431 (1978).

    CAS  Google Scholar 

  52. Trummlitz, G., and J. G. Moffatt: C-Glycosyl Nucleosides. III. A Facile Synthesis of the Nucleoside Antibiotic Showdomycin. J. Organ. Chem. (USA) 38, 1841 (1973).

    CAS  Google Scholar 

  53. Albrecht, H. P., D. B. Repke, and J. G. Moffatt: C-Glycosyl Nucleosides. II. A Facile Synthesis of Derivatives of 2,5-Anhydro-D-allose. J. Organ. Chem. (USA) 38, 1836 (1973).

    CAS  Google Scholar 

  54. Buchanan, J. G., A. R. Edgar, and M. J. Power: C-Nucleoside Studies. Part 1. Synthesis of [2,3,5-Tri-0-benzyl-a(and P)-D-ribofuranosyl]ethyne. J. Chem. Soc. Perkin I 1974, 1943.

    Google Scholar 

  55. Buchanan, J. G., A. R. Edgar, M. J. Power, and C. T. Shanks: C-Nucleoside Studies. Part 7. A New Synthesis of Showdomycin, 2-P-D-Ribofuranosylmaleimide. J. Chem. Soc. Perkin I 1979, 225.

    Google Scholar 

  56. Barker, R., and H. G. Fletcher, JR.: 2,3,5-Tri-O-benzyl-D-ribosyl and -L-arabinosyl bromides. J. Organ. Chem. (USA) 26, 4605 (1961).

    CAS  Google Scholar 

  57. Heck, R. F.: Dicarboalkoxylation of Olefins and Acetylenes. J. Amer. Chem. Soc. 94, 2712 (1972).

    CAS  Google Scholar 

  58. Inoue,T., and I. Kuwajima: Highly Efficient Method for the Synthesis of Showdomycin. Chem. Commun. 1980, 251.

    Google Scholar 

  59. Just, G., A. Martel, K. Grozinger, and M. Ramjeesingh: C-Nucleosides and Related Compounds. IV. The Synthesis and Chemistry of D,L-2,5-Anhydroallose Derivatives. Canad. J. Chem. 53, 131 (1975).

    CAS  Google Scholar 

  60. Just, G., T. J. Liak, M.-I. Lim, P. Potvin, and Y. S. Tsantrizos: C-Nucleosides and Related Compounds. XV. The Synthesis of D,L-e/-Showdomycin and D,L- Showdomycin. Canad. J. Chem. 58, 2024 (1980).

    CAS  Google Scholar 

  61. Ito, Y., T. Shibata, M. Arita, H. Sawai, and M. Ohno: Chirally Selective Synthesis of Sugar Moiety of Nucleosides by Chemicoenzymatic Approach: L- and D-Riboses, Showdomycin, and Cordycepin. J. Amer. Chem. Soc. 103, 6739 (1981).

    CAS  Google Scholar 

  62. Just, G., and A. Martel: C-Nucleosides and Related Compounds. Synthesis of D,L-3,4- 0-Isopropylidene-2,5-anhydroallose: A Novel Periodate Cleavage. Tetrahedron Letters 1973, 1517.

    Google Scholar 

  63. Just, G., and K. Grozinger: A Correction to “A Novel Periodate Cleavage”. Tetrahedron Letters 1974, 4165.

    Google Scholar 

  64. Aldersley, M. F., A. J. Kirby, and P. W. Lancaster: Intramolecular Displacement of Alkoxide Ions by the Ionised Carboxy-group: Hydrolysis of Alkyl Hydrogen Dialkylmaleates. J. Chem. Soc. Perkin II 1974, 1504.

    Google Scholar 

  65. Gensler, W. J., S. Chan, and D. B. Ball: Synthesis of a Triazole Homo-C-nucleoside. J. Amer. Chem. Soc. 97, 436 (1975).

    CAS  Google Scholar 

  66. Ohrui, H., G. H. Jones, J. G. Moffatt, M. L. Maddox, A. T. Christensen, and S. K. Byram: C-Glycosyl Nucleosides. V. Some Unexpected Observations on the Relative Stabilities of Compounds Containing Fused Five-Membered Rings with Epimerizable Substituents. J. Amer. Chem. Soc. 97, 4602 (1975).

    CAS  Google Scholar 

  67. Ohrui, H., and S. Emoto: A Rationalization of the Relative Thermodynamic Stabilities of Fused Five-Membered Tetrahydrofurans with Epimerizable Substituents. An Anomeric Effect in Furanoses. J. Organ. Chem. (USA) 42, 1951 (1977).

    CAS  Google Scholar 

  68. Noyori, R., T. Sato, and Y. Hayakawa: A Stereocontrolled Synthesis of C- Nucleosides. J. Amer. Chem. Soc. 100, 2561 (1978).

    CAS  Google Scholar 

  69. Sato, T., R. Ito, Y. Hayakawa, and R. NOYORI: Stereocontrolled Synthesis of Showdomycin and 6-Azapseudouridines. Tetrahedron Letters 1978, 1829.

    Google Scholar 

  70. Chu, C. K., I. Wempen, K. A. Watanabe, and J. J. Fox: Nucleosides, 100. General Synthesis of Pyrimidine C-5 Nucleosides Related to Pseudouridine. Synthesis of 5-((3-D- Ribofuranosyl)isocytosine (Pseudoisocytidine), 5-(p-D-Ribofuranosyl)-2-thiouracil (2Thiopseudouridine) and 5-(p-D-Ribofuranosyl)uracil (Pseudouridine). J. Organ. Chem. (USA) 41, 2793 (1976).

    CAS  Google Scholar 

  71. Kozikowski, A. P., and A. Ames: Total Synthesis of the C-Nucleoside //-Showdomycin by a Diels-Alder, Retrograde Dieckmann Strategy. J. Amer. Chem. Soc. 103, 3923 (1981).

    CAS  Google Scholar 

  72. Matsuura, S., O. Shiratori, and K. Katagiri: Antitumour Activity of Showdomycin. J. Antibiotics Ser. A 17, 234 (1964).

    CAS  Google Scholar 

  73. Komatsu, Y.: Mechanism of Action of Showdomycin. V. Reduced Ability of Showdomycin-resistant Mutants of Eschericia Coli K-12 to take up Showdomycin and Nucleosides. J. Antibiotics 24, 876 (1971).

    CAS  Google Scholar 

  74. Visser, D. W., and S. Roy-Burman: Showdomycin. In: Antibiotics, Vol.5, Part2. Mechanism of Action of Antieukaryotic and Antiviral Compounds (F. E. Hahn, ed.), p. 363. New York: Springer. 1979.

    Google Scholar 

  75. Ozaki, M., T. Kariya, H. Kato, and T. Kimura: Microbial Transformation of Antibiotics. Part II. omerisation of Showdomycin by Streptomyces Species. Agr. Biol. Chem. 36, 451 (1972).

    CAS  Google Scholar 

  76. Nakagawa, Y.: Personal Communication.

    Google Scholar 

  77. Hori, M., E. Ito, T. Takita, G. Koyama, T. Takeuchi, and H. Umezawa: A New Antibiotic, Formycin. J. Antibiotics Ser. A 17, 96 (1964).

    CAS  Google Scholar 

  78. Koyama, G., and H. Umezawa: Formycin B and Its Relation to Formycin. J. Antibiotics Ser. A 18, 175 (1965).

    CAS  Google Scholar 

  79. Aizawa, A., T. Hidaka, N. Otake, H. Yonehara, K. Isono, N. Igarishi, and S. Suzuki: Studies on a New Antibiotic, Laurusin. Agr. Biol. Chem. 29, 375 (1965).

    CAS  Google Scholar 

  80. Umezawa, H., T. Sawa, Y. Fukagawa, G. Koyama, M. Murase, M. Hamada, and T. Takeuchi: Transformation of Formycin to Formycin B and their Biological Activities. J. Antibiotics Ser. A 18, 178 (1965).

    Google Scholar 

  81. Otake, N., S. Aizawa, T. Hidaka, H. Seto, and H. Yonehara: Biological and Chemical Transformations of Formycin to Laurusin. Agr. Biol. Chem. 29, 377 (1965).

    CAS  Google Scholar 

  82. Fukagawa, Y., T. Sawa, T. Takeuchi, and H. Umezawa: Deamination of Purine Antibiotics by Adenosine Deaminase. J. Antibiotics Ser. A 18, 191 (1965).

    CAS  Google Scholar 

  83. Sawa, T., Y. Fukagawa, I. Homma, T. Takeuchi, and H. Umezawa: Formycin- deaminating Activity of Microorganisms. J. Antibiotics Ser. A 20, 317 (1967).

    CAS  Google Scholar 

  84. Ishizuka, M., T. Sawa, G. Koyama, T. Takeuchi, and H. Umezawa: Metabolism of Formycin and Formycin B In Vivo. J. Antibiotics 21, 1 (1968).

    CAS  Google Scholar 

  85. sawa, T., Y. Kukagawa, I. Homma, T. Wakashiro, T. Takeuchi, M. Hori, and T. Komai: Metabolic Conversion of Formycin B to Formycin A and to Oxformycin B in Nocardia Interforma. J. Antibiotics 21, 334 (1968).

    CAS  Google Scholar 

  86. Kawamura, K., S. Fukatsu, M. Murase, G. Koyama, K. Maeda, and H. Umezawa: The Studies on the Degradation Products of Formycin and Formycin B. J. Antibiotics Ser. A 19, 91 (1966).

    CAS  Google Scholar 

  87. Robins, R. K., F. W. Furcht, A. D. Grauer, and J. W. Jones: Potential Purine Antagonists. II. Synthesis of some 7- and 5,7-substituted Pyrazolo[4,3-d]pyrimidines. J. Amer. Chem. Soc. 78, 2418 (1956).

    CAS  Google Scholar 

  88. Robins, R. K., L. B. Holum, and F. W. Furcht: Potential Purine Antagonists. V. Synthesis of Some 3-Methyl-5,7-substituted Pyrazolo[4,3-d]pyrimidines. J. Organ. Chem. (USA) 21, 833 (1956).

    CAS  Google Scholar 

  89. Koyama, G., H. Umezawa, and Y. Iitaka: Crystal Structure of Formycin Hydrobromide Monohydrate. Acta Crystallogr. Sect. B 30, 1511 (1974).

    Google Scholar 

  90. Prusiner, P., T. Brennan, and M. Sundaralingam: Crystal Structure and Molecular Conformation of Formycin Monohydrates. Possible Origin of the Anomalous Circular Dichroic Spectra in Formycin Mono and Polynucleotides. Biochemistry 12, 1196 (1973).-92. Koyama, G., H. Nakamura, H. Umezawa, and Y. Iitaka: The Crystal and Molecular Structures of Oxoformycin B and Formycin B. Acta Crystallogr. Sect. B 32, 813 (1976).

    Google Scholar 

  91. Buchanan, J. G., M. R. Hamblin, G. R. Sood, and R. H. Wightman: The Biosynthesis of Pyrazofurin and Formycin. Chem. Commun. 1980, 917.

    Google Scholar 

  92. Farkas, J., and F. Sorm: Synthesis of 3-(p-D-Ribofuranosyl)-5,7-dihydroxy-l/1- pyrazolo-[4,3-d]-pyrimidine (Oxoformycin). Collect. Czech. Chem. Comm. 37, 2798 (1972). Preliminary communication: BOBEK, M., J. FARKAS, and F. SORM, Tetrahedron Letters 1970, 4611.

    Google Scholar 

  93. Acton, E. M., K. J. Ryan, D. W. Henry, and L. Goodman: Synthesis of the Nucleoside Antibiotic Formycin B. Chem. Commun. 1971, 986.

    Google Scholar 

  94. Ogawa, T., Y. Kikuchi, M. Matsui, H. Ohrui, H. Kuzuhara, and S. Emoto: Synthetic Studies on C-Nucleosides. Part I. A Synthesis of Oxoformycin. Agr. Biol. Chem. 35, 1825 (1971).

    CAS  Google Scholar 

  95. Lang, R. A., A. F. Lewis, R. K. Robins, and L. B. Townsend: Pyrazolopyrimidine Nucleosides. Part II. 7-Substituted 3-P-D-Ribofuranosylpyrazolo[4,3-d]pyrimidines Related to and Derived from the Nucleoside Antibiotics Formycin and Formycin B.J. Chem. Soc. (C) 1971, 2443.

    Google Scholar 

  96. Kalvoda, L.: The Synthesis of Pyrazoles. A Simple Preparative Synthesis of C-Nucleosidic Antibiotics Formycin and Formycin B. Collect. Czech. Chem. Comm. 43, 1431 (1978).

    CAS  Google Scholar 

  97. Buchanan, J. G., A. R. Edgar, R. J. Hutchison, A. Stobie, and R. H. Wightman: C-Nucleoside Studies. Part 10. A New Synthesis of 3-(2,3,5-Tri-0-benzyl-P-D-ribo- furanosyl)pyrazole and its Conversion into 4-Nitro-3(5)-P-D-ribofuranosylpyrazole. J. Chem. Soc. Perkin I 1980, 2567.

    Google Scholar 

  98. Buchanan, J. G., A. Stobie, and R. H. Wightman: C-Nucleoside Studies. Part XI. Cme-substitution in 1,4-Dinitropyrazoles; Application to the Synthesis of Formycin via Nitropyrazole Derivatives. Canad. J. Chem. 58, 2624 (1980).

    CAS  Google Scholar 

  99. Habraken, C. L., and E. K. Poels: Nucleophilic Substitution Reactions on N- Nitropyrazoles. J. Organ. Chem. (USA) 42, 2893 (1977).

    CAS  Google Scholar 

  100. Buchanan, J. G., A. Stobie, and R. H. Wightman: C-Nucleoside Studies. Part 14. A New Synthesis of Pyrazofurin. J. Chem. Soc. Perkin I 1981, 2374.

    Google Scholar 

  101. Ishizuka, M., T. Takeuchi, K. Nitta, G. Koyama, M. Hori, and H. Umezawa: Antitumour Activities of Formycin and Labilomycin. J. Antibiotics Ser. A 17, 124 1964 ).

    CAS  Google Scholar 

  102. Ishizuka, M., T. Sawa, S. Hori, H. Takayama, T. Takeuchi, and H. Umezawa: Biological Studies on Formycin and Formycin B. J. Antibiotics 21, 5 (1968).

    CAS  Google Scholar 

  103. Muller, W. E. G., H. J. Rohde, R. Steffen, A. Maidhof, M. Lachmann, R. K. Zahn, and H. Umezawa: Influence of Formycin B on Polyadenosine Diphosphoribose Synthesis In vitro and In vivo. Cancer Res. 35, 3673 (1975).

    CAS  Google Scholar 

  104. Hori, M. T. Wakashiro, E. Ito, T. Sawa, T. Takeuchi, and H. Umezawa: Biochemical Effects of Formycin B on Xanthomonas Oryzae. J. Antibiotics 21, 264 (1968).

    CAS  Google Scholar 

  105. Takeuchi, T., J. Iwanaga, T. Aoyagi, and H. Umezawa: Antiviral Effect of Formycin and Formycin B. J. Antibiotics Ser. A 19, 286 (1966).

    CAS  Google Scholar 

  106. Ishida, N., M. Homma, K. Kumagai, Y. Schimizu, S. Matsumoto, and A. Izawa: Studies on the Antiviral Activity of Formycin. J. Antibiotics Ser. A 20, 49 (1967).

    CAS  Google Scholar 

  107. Umezawa, H. T. Sawa, Y. Fukagawa, I. Homma, M. Ishizuka, and T. Takeuchi: Studies on Formycin and Formycin B in Cells of Ehrlich Carcinoma and E. Coli. J. Antibiotics Ser. A 20, 308 (1967).

    CAS  Google Scholar 

  108. Ward, D. C., A. Cerami, E. Reich, G. Acs, and L. Altwerger: Biochemical Studies of the Nucleoside Analogue, Formycin. J. Biol. Chem. 244, 3243 (1969).

    CAS  Google Scholar 

  109. Ikehara, M., K. Murao, F. Harada, and S. Nishimura: Synthesis of Formycin Triphosphate and its Incorporation into Ribopolynucleotide by DNA-Dependent RNA Polymerase. Biochim. Biophys. Acta 155, 82 (1968).

    CAS  Google Scholar 

  110. Maelicke, A., M. Sprinzl, F. Vonderhaar, T. A. Khwaja, and F. Cramer: Structural Studies on Phenylalanine Transfer Ribonucleic Acid from Yeast with the Spectroscopic Label Formycin. Eur. J. Biochem. 43, 617 (1974).

    CAS  Google Scholar 

  111. Ward, D. C., and E. Reich: Conformational Properties of Polyformycin: A Polyribonucleotide with Individual Residues in the Conformation. Proc. Nat. Acad. Sci (USA) 61, 1494 (1968).

    CAS  Google Scholar 

  112. Ward, D. C., W. Fuller, and E. Reich: Stereochemical Analysis of the Specificity of Pancreatic RNase with Polyformycin as Substrate: Differentiation of the Trans- phosphorylation and Hydrolysis Reactions. Proc. Nat. Acad. Sci (USA) 62, 581 (1969).

    CAS  Google Scholar 

  113. Ward, D. C., T. Horn, and E. Reich: Fluorescence Studies of Nucleotides and Polynucleotides. III. Diphosphopyridine Nucleotide Analogues which Contain Fluorescent Purines. J. Biol. Chem. 247, 4014 (1972).

    CAS  Google Scholar 

  114. von der Haar, F., and E. Gaertner: Phenylalanyl-tRNA Synthetase from Baker’s Yeast: Role of S’-Terminal Adenosine of tRNAphe in Enzyme-Substrate Interaction Studied with 3’-Modified tRNAPhe Species. Proc. Nat. Acad. Sci (USA) 72, 1378 (1975).

    Google Scholar 

  115. Kumar, S. A., J. S. Krakow, and D. C. Ward: ATP Analogues as Initiation and Elongation Nucleotides for Bacterial DNA-Dependent RNA Polymerase. Biochim. Biophys. Acta 477, 112 (1977).

    CAS  Google Scholar 

  116. Sawa, T., Y. Fukagawa, I. Homma, T. Takeuchi, and H. Umezawa: Mode of Inhibition of Coformycin on Adenosine Deaminase. J. Antibiotics Ser. A 20, 227 (1967).

    CAS  Google Scholar 

  117. Nakamura, H., G. Koyama, Y. Iitaka, M. Ohno, N. Yagisawa, S. Kondo, K. Maeda, and H. Umezawa: Structure of Coformycin, an Unusual Nucleoside of Microbial Origin. J. Amer. Chem. Soc. 96, 4327 (1974).

    CAS  Google Scholar 

  118. Ohno, M., N. Yagisawa, S. Shibahara, S. Kondo, K. Maeda, and H. Umezawa: Synthesis of Coformycin. J. Amer. Chem. Soc. 96, 4326 (1974).

    CAS  Google Scholar 

  119. Henderson, J. F., A. R. P. Paterson, I. C. Caldwell, and M. HORI: Biochemical Effects of Formycin, an Adenosine Analog. Cancer Res. 27, 715 (1967).

    CAS  Google Scholar 

  120. Gerzon, K., D. C. Delong, and J. C. Cline: C-Nucleosides: Aspects of Chemistry and Mode of Action. Pure Appl. Chem. 28, 489 (1971).

    CAS  Google Scholar 

  121. Gerzon, K., R. H. Williams, M. Hoehn, M. Gorman, and D. C. Delong: Pyrazomycin, A C-Nucleoside with Antiviral Activity. 2nd Int. Cong. Hetero. Chem., Montpellier, France, July 1969, Abstr. 30C, p. 131.

    Google Scholar 

  122. Williams, R. H., K. Gerzon, M. Hoehn, M. Gorman, and D. C. Delong: Pyrazomycin — a Novel Carbon-Linked Nucleoside. 158th National Meeting, Amer. Chem. Soc., New York (1969), Abstr. MICR. 38.

    Google Scholar 

  123. Gutowski, G. E., M. J. Sweeney, D. C. Delong, R. L. Hamill, K. Gerzon, and R. W. Dyke: Biochemistry and Biological Effects of the Pyrazofurins (Pyrazomycins): Initial Clinical Trial. Ann. New York Acad. Sci. 255, 544 (1975).

    CAS  Google Scholar 

  124. Williams, R. H., and M. M. Hoehn: Pyrazomycin and Process for Production thereof. U.S. Pat. 3,802,999, April 9, 1974 to Eli Lilly and Company.

    Google Scholar 

  125. Jones, N. D., and M. O. Chaney: The Crystal Structure of Pyrazomycin, A C- Nucleoside Antiviral Agent. 9th Int. Congr. Crystallogr., Kyoto, Japan, Abstr. S. 48.

    Google Scholar 

  126. de Bernardo, S., and M. Weigele: A Synthesis of the Pyrazomycins. J. Organ. Chem. (USA) 41, 287 (1976).

    Google Scholar 

  127. Ohrui, H., and J. J. Fox: Nucleosides LXXXI. An Approach to the Synthesis of C-C Linked P-D-Ribofuranosyl Nucleosides from 2,3-0-Isopropylidene-5-0-trityl-f3-D- ribofuranosyl Chloride. Tetrahedron Letters 1973, 1951.

    Google Scholar 

  128. katagiri, N., K. Takashima, and T. Kato: A Simple Synthesis of the Pyrazofurins. Chem. Commun. 1982, 664.

    Google Scholar 

  129. de Clercq, E., and P. F. Torrence: Nucleoside Analogs with Selective Antiviral Activity. J. Carbohydr. Nucleosides Nucleotides 5, 187 (1978).

    Google Scholar 

  130. Sweeney, M. J., F. A. Davis, G. E. Gutowski, R. L. Hamill, D. H. Hoffmann, and G. A. poore: Experimental Antitumour Activity of Pyrazomycin. Cancer Res. 33, 2619 (1973).

    CAS  Google Scholar 

  131. Cadman, E. C., D. E. Dix, and R. E. Handschumacher: Clinical, Biological, and Biochemical Effects of Pyrazofurin. Cancer Res. 38, 682 (1978).

    CAS  Google Scholar 

  132. Rossi, A.: The Clinical Uses of Nucleoside Analogues in Malignant Disease. In: Nucleoside Analogues. Chemistry, Biology, and Medical Applications (R. T. Walker, E. de Clercq, and F. Eckstein), p. 409. NATO Advanced Study Institutes Series. New York and London: Plenum Press. 1979.

    Google Scholar 

  133. Levine, H. L., R. S. Brody, and F. H. Westheimer: Inhibition of Orotidine-5’- phosphate Decarboxylase by l-Phospho-p-D-ribofuranosyl)barbituric Acid, 6- Azauridine S’-Phosphate and Uridine 5’-Phosphate. Biochemistry 19, 4993 (1980).

    CAS  Google Scholar 

  134. Shirato, S., J. Nagatsu, M. Shibuya, and Y. Kasukabe: Antibiotic Minimycin. Ger. Pat. 2,043,946, March 25, 1971 to Kaken Chemical Co. Ltd. Chem. Abs. 74, 139557h (1971).

    Google Scholar 

  135. Kusakabe, Y., J. Nagatsu, M. Shibuya, O. Kawaguchi, C. Hirose, and S. Shirato: Minimycin, a New Antibiotic. J. Antibiotics 25, 44 (1972).

    CAS  Google Scholar 

  136. De Bernardo, S., and M. Weigele: Synthesis of Oxazinomycin (Minimycin). J. Organ. Chem. (USA) 42, 109 (1977).

    Google Scholar 

  137. Takaoka, K., T. Kuwayama, and A. Aoki: Jap.Pat. 615,332 (1971): cited in ref. 140.

    Google Scholar 

  138. Sakata, K., A. Sakurai, and S. Tamura: Studies on Ezomycins, Antifungal Antibiotics. Part I. L-Cystathionine as a Component of Ezomycins A1 and from a Streptomyces. Agr. Biol. Chem. 37, 697 (1973).

    CAS  Google Scholar 

  139. Studies on Ezomycins, Antifungal Antibiotics. Part II. Ezoaminuroic Acid, 3-Amino-3,4-dideoxy-D-/o-hexopyranuroic Acid, as a Constituent of Ezomycins A1 and A2. Tetrahedron Letters 1974, 1533.

    Google Scholar 

  140. Studies on Ezomycins, Antifungal Antibiotics. Part III. Isolation of Novel Antifungal Antibiotics, Ezomycins Al5 A2, Bx and B2. Agr. Biol. Chem. 38, 1883 (1974).

    Google Scholar 

  141. Studies on Ezomycins, Antifungal Antibiotics. Part IV. Structures of Ezomycins Ax and A2. Tetrahedron Letters 1974, 4327.

    Google Scholar 

  142. Studies on Ezomycins, Antifungal Antibiotics. Part V. Degradative Studies on Ezomycins Ax and A2.Agr. Biol. Chem. 39, 885 (1975).

    Google Scholar 

  143. Studies on Ezomycins, Antifungal Antibiotics. Part VI. Structures of Ezomycins B1, B2, C1, C2, D1? and D2. Tetrahedron Letters 1975, 3191.

    Google Scholar 

  144. Studies on Ezomycins, Antifungal Antibiotics. Part VII. Structures of Ezomycins A± and A2. Agr. Biol. Chem. 40, 1993 (1976).

    Google Scholar 

  145. Sakata, K., and J. Uzawa: Studies on Ezomycins, Antifungal Antibiotics. Part VIII. Application of C-13 NMR Spectrometry to the Structural Investigation of the Novel Bicyclic Anhydrooctose Uronic Acid Nucleosides, Constituents of Ezomycins. Agr. Biol. Chem. 41, 413 (1977).

    CAS  Google Scholar 

  146. Sakata, K., A. Sakurai, and S. Tamura: Studies on Ezomycins, Antifungal Antibiotics. Part IX. Isolation and Antimicrobial Activities of Ezomycins Bl5 B2, Q, C2, and D2. Agr. Biol. Chem. 41, 2027 (1977).

    CAS  Google Scholar 

  147. Sakata, K., J. Uzawa, and A. Sakurai: Studies on Ezomycins, Antifungal Antibiotics. Part XI. Application of Carbon-13 N. m. r. Spectroscopy to the Structural Investigation of Ezomycins. Organic Magnetic Resonance 10, 230 (1977).

    CAS  Google Scholar 

  148. Ogawa, T., M. Akatsu, and M. Matsui: Synthesis of a Sugar Occurring in an Antibiotic: Ezoaminuroic Acid, the First Example of a Naturally Occurring 3-Amino-3- deoxyhexuronic Acid. Carbohydrate Research 44, C22 (1975).

    CAS  Google Scholar 

  149. Cerny, M., and J. Pacak: Desoxyzucker III. Uber Rtaktionen der 2-0-Tosyl-l,6: 3,4- dianhydro-P-D-galactopyranose Darstellung von 4-Desoxy-D-XF/ohexose (4-Desoxy-D- glucose) und 4-Desoxy-D-tfratoohexose (4-Desoxy-D-altrose). Collect. Czech. Chem. Comm. 27, 94 (1962).

    CAS  Google Scholar 

  150. Mieczowski, J., and A. Zamojski: Total Syntheses of Methyl(methyl 3-amino-3,4- dideoxy-oc- and p-DL-/hexopyranoside)uronates. Bull. Acad. Pol. Sci., Ser. Sci. Chim. 23, 581 (1975). [Chem. Abs. 84, 31341a (1976)].

    Google Scholar 

  151. Isono, K., P. F. Crain, and J. A. Mccloskey: Isolation and Structure of Octosyl Acids. Anhydrooctose Uronic Acid Nucleosides. J. Amer. Chem. Soc. 97, 943 (1975).

    CAS  Google Scholar 

  152. Anzai, K., and T. Saita: Synthesis of 3,7-Anhydrooctose Derivatives Related to Octosyl Acids. Chem. Commun. 1976, 681.

    Google Scholar 

  153. Anzai, K., and T. Saita: The Synthesis of Several Octose Derivatives Related to Octosyl Acids A and B. B. ll . Chem. Soc. Japan 50, 169 (1977).

    CAS  Google Scholar 

  154. Kim, K. S., and W. A. Szarek: Synthesis of S’J’-Anhydrooctose Nucleosides Related to the Ezomycins and the Octosyl Acids. Canad. J. Chem. 59, 878 (1981).

    CAS  Google Scholar 

  155. Syntheses Related to the 3,7-Anhydrooctose in the Ezomycins and the Octosyl Acids. Carbohydrate Research 100, 169 (1982).

    Google Scholar 

  156. Buchanan, J. M., and S. C. Hartman: Enzymic Reactions in the Synthesis of the Purines. Adv. Enzymology 21, 199 (1959).

    Google Scholar 

  157. Hartman, S. C.: Purines and Pyrimidines. In: Metabolic Pathways, 3rd Edn., Vol. 4 (D. M. Greenberg, Ed.), p. 1. New York: Academic Press. 1970.

    Google Scholar 

  158. Elstner, E. F., and R. J. Suhadolnik: Nucleoside Antibiotics. Biosynthesis of the Maleimide Nucleoside Antibiotic, Showdomycin, by Streptomyces showdoensis. Biochemistry 10, 3608 (1971).

    CAS  Google Scholar 

  159. Nucleoside Antibiotics. Asymmetric Incorporation of Glutamic Acid and Acetate into the Maleimide Ring of Showdomycin by Streptomyces showdoensis. Biochemistry 11, 2578 (1972).

    Google Scholar 

  160. Elstner, E. F., R. J. Suhadolnik, and A. Allerhand: Effect of Changes in the Pool of Acetate on the Incorporation and Distribution of 13 C- and 14C-Labeled Acetate into Showdomycin by Streptomyces showdoensis. J. Biol. Chem. 248, 5385 (1973).

    CAS  Google Scholar 

  161. buchaanan, J. G., M. R. Hamblin, and R. H. Wightman: Heriot-Watt University, unpublished results.

    Google Scholar 

  162. Sawa, T., Y. Fukagawa, Y. Shimauchi, K. Ito, M. hamada, T. Takeuchi, and H. Umezawa: Studies on Formycin and Formycin B Phosphates. J. Antibiotics Ser. A 18, 259 (1965).

    CAS  Google Scholar 

  163. Ochi, K., S. Yashima, and Y. Eguchi: Biosynthesis of Formycin. Formation of Formycin from Formycin B. J. Antibiotics 28, 965 (1975).

    CAS  Google Scholar 

  164. Kunimoto, T., T. Sawa, T. Wakashiro, M. HORI, and H. Umezawa: Biosynthesis of the Formycin Family. J. Antibiotics 24, 253 (1971).

    CAS  Google Scholar 

  165. Ochi, K., S. Kikuchi, S. Yashima, and Y. Eguchi: Biosynthesis of Formycin. Incorporation and Distribution of Labeled Compounds into Formycin. J. Antibiotics 29, 638 (1976).

    CAS  Google Scholar 

  166. Ochi, K., S. Yashima, Y. Eguchi, and K. Matsushita: Biosynthesis of Formycin. Incorporation and Distribution of 13C-, 14C-, and 15N-Labeled Compounds into Formycin. J. Biol. Chem. 254, 8819 (1979).

    CAS  Google Scholar 

  167. Ochi, K., S. Iwamoto, E. Hayase, S. Yashima, and Y. Okami: Biosynthesis of Formycin. Role of Certain Amino Acids in Formycin Biosynthesis. J. Antibiotics 27, 909 (1974).

    CAS  Google Scholar 

  168. Krugh, T. R.: Tautomerism of the Nucleoside Antibiotic Formycin, as studied by Carbon-13 Nuclear Magnetic Resonance. J. Amer. Chem. Soc. 95, 4761 (1973).

    CAS  Google Scholar 

  169. Suhadolnik, R. J., and N. L. Reichenbach: Glutamate as the Common Precursor for the Aglycon of the Naturally Occurring C-Nucleoside Antibiotics. Biochemistry 20, 7042 (1981).

    CAS  Google Scholar 

  170. Isono, K., and R. J. Suhadolnik: The Biosynthesis of the Nucleoside Antibiotics: Minimycin Formation by Streptomyces hygroscopicus. Ann. New York Acad. Sci. 255, 390 (1975).

    CAS  Google Scholar 

  171. Biosynthesis of the C-Nucleoside, Minimycin: Asymmetric Incorporation of Glutamate and Acetate into the Oxazine Ring. J. Antibiotics 30, 272 (1977).

    Google Scholar 

  172. Isono, K., T. Sato, K. Hirasawa, S. Funayama, and S. Suzuki: Biosynthesis of the Nucleoside Skeleton of Polyoxins. J. Amer. Chem. Soc. 100, 3937 (1978).

    CAS  Google Scholar 

  173. Sato,T., K. Hirasawa, J. Uzawa, T. Inaba, and K. Isono: Biosynthesis of Octosyl Acid A: Incorporation of C-13 Labeled Glucose.Tetrahedron Letters 1979, 3441.

    Google Scholar 

  174. Uematsu, T., and R. J. Suhadolnik: Pseudouridine: Biosynthesis by Strepto-verticillicum Ladakanus. Biochim. Biophys. Acta 319, 348 (1973).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag/Wien

About this chapter

Cite this chapter

Buchanan, J.G. (1983). The C-Nucleoside Antibiotics. In: Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 44. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8714-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8714-2_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8716-6

  • Online ISBN: 978-3-7091-8714-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics