Skip to main content

Part of the book series: Plant Systematics and Evolution ((SYSTEMATICS,volume 2))

Abstract

Methylases from the bacterium Haemophilus influenzae are proposed as a tool for a selective modification of the internucleosomal linker DNA. The exclusive methylation at this site was demonstrated by a comparison of the rate of degradation of radioactively methylated chromatin and of total DNA with micrococcal nuclease. Analysis of the DNA fragment pattern after digestion of methylated nucleosome dimers reveals that only full size nucleosome monomers and larger fragments (e.g. dimers) are radioactively labelled, whereas smaller (subnucleosomal) DNA cleavage products do not carry any methylated portions any more. Methylation and digestion studies in the presence of polylysine support the conclusion that modification methylases and micrococcal nuclease act at the internucleosomal linker DNA, whereas polylysine interacts preferentially with the nucleosomal core DNA.—The minor groove of the nucleosomal core DNA was identified as the site of polylysine binding by competition studies with ethidium bromide, since intercalation of this molecule proceeds via the minor groove. Scatchard plots of ethidium binding parameters and analysis of nucleosome cleavage patterns indicate a competition of polylysine and ethidium bromide for binding sites in the nucleosomal core DNA.—Finally, cross-linking studies with formaldehyde and dimethylsuberi­midate suggest that the conformational change of the nucleosomal DNA due to ethidium intercalation leads to slight changes in the mode of interaction of the different nucleosomal compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenburger, W., Hörz, W., Zachau, H. G., 1976: Nuclease cleavage of chromatin at 100 nucleotide intervals. — Nature (London) 264, 517 – 522.

    Article  CAS  Google Scholar 

  • Angerer, L. M., Moudrianakis, E. N., 1972: Interaction of ethidium bromide with whole and selectively deproteinized deoxynucleoproteins from calf thymus. — J. Mol. Biol. 63, 505 – 521.

    Google Scholar 

  • Benyajati, C., Worcel, A., 1976: Isolation, characterization and structure of the folded interphase genome of Drosophila melanogaster. — Cell 9, 393 – 407.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, H. W., 1971: DNA restriction and modification mechanisms in bacteria. — Annu. Rev. Microbiol. 25, 153 – 176.

    Article  CAS  Google Scholar 

  • Brutlag, D., Schlehuber, C., Bonner, J., 1969: Properties of formaldehyde-treated nucleohistone. — Biochemistry 8, 3214 – 3218.

    Article  PubMed  CAS  Google Scholar 

  • Burton, K., 1956: A study of the conditions and mechnism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. — Biochem. J. 62, 315 – 321.

    PubMed  CAS  Google Scholar 

  • Camerini-Otero, R. D., Sollner-Webb, B., Simon, R. H., Williamson, P., Zasloff, M., Felsenfeld, G., 1978: Nucleosome structure, DNA folding and gene activity. — Cold Spring Harbor Symp. Quant. Biol. 42, 57 – 75.

    CAS  Google Scholar 

  • Carroll, D., Botchan, M. R., 1972: Competition between pentalysine and actinomycin D for binding to DNA. — Biochem. Biophys. Res. Commun. 46, 1681 – 1687.

    Article  CAS  Google Scholar 

  • Chauveau, J., Moule, Y., Rouiller, C., 1956: Isolation of pure and unaltered liver nuclei. Morphology and biochemical composition. — Experim. Cell Res. 11, 317 – 324.

    Article  CAS  Google Scholar 

  • Clark, R. J., Felsenfeld, G., 1971: Structure of chromatin. — Nature New Biology 229, 101 – 106.

    PubMed  CAS  Google Scholar 

  • Climent, F., Doenecke, D., Beato, M., 1977: Properties of the partially purified activated glucocorticoid receptor of rat liver. Binding to chromatin subunits. — Biochemistry 16, 4694 – 4703.

    Article  PubMed  CAS  Google Scholar 

  • Davies, G. E., Stark, G. R., 1970: Use of dimethylsuberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins. — Proc. Natl. Acad. Sci. (U.S.) 66, 651 – 656.

    Article  CAS  Google Scholar 

  • Doenecke, D., 1976 a : Cesium chloride gradients of chromatin after treatment with micrococcal nuclease. — Cell 8, 59 – 64.

    Article  PubMed  CAS  Google Scholar 

  • Doenecke, D., 1976 b: Binding of ethidium bromide to fractionated chromatin. — Experim. Cell Res. 100, 223 – 227.

    Article  CAS  Google Scholar 

  • Doenecke, D., 1977 a: Binding of polylysine to chromatin subunits and cleavage by micrococcal nuclease: a comparison of accessible sites. — Eur. J. Biochem. 76, 355 – 363.

    Article  Google Scholar 

  • Doenecke, D., 1977 b: Ethidium bromide binding to nucleosomal DNA: effects on DNA cleavage patterns. — Experim. Cell Res. 109, 309 – 315.

    Article  CAS  Google Scholar 

  • Doenecke, D., 1978: Digestion of chromosomal proteins in formaldehyde treated chromatin. — Hoppe-Seylers Z. Physiol. Chem. 359, 1343 – 1352.

    Article  CAS  Google Scholar 

  • Doenecke, D., Mccarthy, B. J., 1975: Protein content of chromatin fractions separated by sucrose gradient fractionation. — Biochemistry 14, 1366 – 1372.

    Article  PubMed  CAS  Google Scholar 

  • Doenecke, D., Mccarthy, B. J., 1976: Movement of histones in chromatin induced by shearing. — Eur. J. Biochem. 64, 405 – 411.

    Article  PubMed  CAS  Google Scholar 

  • Fenske, H., Eichhorn, I., Buttger, M., Lindigkeit, R., 1975: Evidence of altered histone interactions, as investigated by removal of histones, in chromatin isolated from rat liver nuclei by a conventional method. — Nucl. Acids Res. 2, 1975 – 1985.

    Article  PubMed  CAS  Google Scholar 

  • Finch, J. T., Noll, M., Kornberg, R. D., 1975: Electron microscopy of defined lengths of chromatin. — Proc. Natl. Acad. Sci. (U.S.) 72, 3320 – 3322.

    Article  CAS  Google Scholar 

  • Finch, J. T., Lutter, L. C., Rhodes, D., Brown, R. S., Rushton, B., Levitt, M., Klug, A., 1977: Structure of nucleosome core particles of chromatin. — Nature (London) 269, 29 – 36.

    Article  CAS  Google Scholar 

  • Franke, W. W., Scheer, U., 1978: Morphology of transcriptional units at different states of activity. — Phil. Trans. R. Soc. Lond. B. 283, 333 – 342.

    Article  CAS  Google Scholar 

  • Garel, A., Axel, R., 1976: Selective digestion of transcriptionally active ovalbumin genes from oviduct nuclei. — Proc. Nat. Acad. Sci. (U.S.) 73, 3966 – 3970.

    Article  PubMed  CAS  Google Scholar 

  • Gottesfeld, J. M., 1978: Organization of transcribed regions of chromatin. — Phil. Trans. R. Soc. Lond. B. 283, 343 – 357.

    Article  CAS  Google Scholar 

  • Hewisx, D. R., Burgoyne, L. A., 1973: Chromatin Substructure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. — Biochem. Biophys. Res. Commun. 52, 504 – 510.

    Article  Google Scholar 

  • Kato, Y., and Iwai, K., 1977: DNA-binding segments of four histone sequences identified in trypsin-treated H 1-depleted chromatin. — J. Biochem. 81, 621 – 630.

    PubMed  CAS  Google Scholar 

  • Kornberg, R. D., 1977: Structure of chromatin. — Ann. Rev. Biochem. 46, 931 – 954.

    Article  PubMed  CAS  Google Scholar 

  • Kornberg, R. D., Thomas, J. 0., 1974: Chromatin structure—oligomers of the histones. — Science 184, 865 – 868.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U. K., 1970: Cleavage of structural proteins during the assembly of the head of bacteriophage T 4. — Nature (London) 227, 680 – 685.

    Article  CAS  Google Scholar 

  • Lawrence, J. J., Daune, M., 1976: Ethidium bromide as a probe of conformational heterogeneity of DNA in chromatin. The role of histone H 1. — Biochemistry 15, 3301 – 3307.

    Article  PubMed  CAS  Google Scholar 

  • Loening, U. E., 1967: The fractionation of high-molecular weight ribonucleic acid by polyacrylamide gel electrophoresis. — Biochem. J. 102, 251 – 257.

    PubMed  CAS  Google Scholar 

  • Mirzabekov, A. D., Kolchinsky, A. M., 1974: Localization of chromatin proteins within DNA grooves by methylation of chromatin with dimethyl sulphate. — Mol. Biol. Rep. 1, 379 – 384.

    Article  PubMed  CAS  Google Scholar 

  • Mirzabekov, A. D., Shick, V. V., Belyausky, A. V., Karpov, V. L., Bavykin, S. G., 1978: The structure of nucleosomes: the arrangement of histones in the DNA grooves and along the DNA chain. — Cold Spring Harbor Symp. Quant. Biol. 42, 149 – 155.

    PubMed  CAS  Google Scholar 

  • Noll, H., 1967 : Characterization of macromolecules by constant velocity sedimentation. — Nature (London) 215 360–363.

    Article  CAS  Google Scholar 

  • Noll, M., 1974 a : Subunit structure of chromatin. — Nature (London) 251 249–252.

    Article  CAS  Google Scholar 

  • Noll, M., 1974 b:Internal structure of the chromatin subunit. — Nucl. Acids Res. 1, 1573 – 1578.

    Article  PubMed  CAS  Google Scholar 

  • Noll, M., 1977: DNA folding in the nucleosome. — J. Mol. Biol. 116, 49 – 71.

    Article  PubMed  CAS  Google Scholar 

  • Noll, M., Thomas, J. O., Kornberg, R. D., 1975: Preparation of native chromatin and damage caused by shearing. — Science (Wash.) 187, 1203 – 1206.

    Article  CAS  Google Scholar 

  • Olims, A. L., Olins, D. E., 1974: Spheroidal chromatin units (v-bodies). — Science (Wash.) 183, 330 – 332.

    Article  Google Scholar 

  • Oudet, P., Gross-Bellard, M., Chambon, P., 1975: Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. — Cell 4, 281 300.

    Google Scholar 

  • Roy, P. H., Smith, H. O., 1973: DNA methylases of Haemophilus influenzae Rd. — J. Mol. Biol. 81, 427 – 444.

    Google Scholar 

  • Sahasrabuddhe, C. G., Van Holde, K. E., 1974: The effect of trypsin on nuclease-resistant chromatin fragments. — J. Biol. Chem. 249, 152 – 156.

    Google Scholar 

  • Scatchard, G., 1949: The attraction of proteins for small molecules and ions. —Ann. N.Y. Acad. Sci. 51, 660 – 672.

    Google Scholar 

  • Simpson, R. T., Whitlock, J. P. Jr., 1976: Mapping DNAase I-susceptible sites in nucleosomes labeled at the 5’ ends. — Cell 9, 347 – 353.

    Google Scholar 

  • Sollner-Webb, B., Melchior, W. Jr., Felsenfeld, G., 1978: DNase I, DNase II and staphylococcal nuclease cut at different, yet symmetrically located, sites in the nucleosome core. — Cell 14, 611 – 627.

    Google Scholar 

  • Stein, A., Bina-Stein, M., Simpson, R. T., 1977: A cross-linked histone octamer as a model of the nucleosome core. — Proc. Nat. Acad. Sci. (U.S.) 74, 2780 – 2784.

    Google Scholar 

  • Stratling, W. H., Seidel, I., 1976: Relaxation of chromatin structure by ethidium bromide binding: determined by viscometry and histone dissociation studies. — Biochemistry 15, 4803 – 4809.

    CAS  Google Scholar 

  • Tsai, C. C., Jain, S. C., Sobell, H. M., 1975: X-ray crystallographic visualization of drug-nucleic acid intercalative binding. — Proc. Nat. Acad. Sci. (U.S.) 72, 628 – 632.

    Article  CAS  Google Scholar 

  • Vanlente, F., Jackson, J. F., Weintraub, H., 1975: Identification of specific crosslinked histories after treatment of chromatin with formaldehyde. — Cell 5, 45 – 50.

    CAS  Google Scholar 

  • Waring, M., 1965: Complex formation between ethidium bromide and nucleic acids. — J. Mol. Biol. 13, 269 – 282.

    Article  PubMed  CAS  Google Scholar 

  • Weber, K., Osborn, M., 1969: The reliability of molecular weight determination by dodecyl sulfate-polyacrylamide gel electrophoresis. — J. Biol. Chem. 244, 4406 – 4412.

    PubMed  CAS  Google Scholar 

  • Weintraub, H., Groudine, M., 1976: Transcriptionally active and inactive conformations of chromosomal subunits. — Science (Wash.) 193, 848 – 856.

    CAS  Google Scholar 

  • Weintraub, H., Palter, K., Van Lente, F., 1975: Histones H 2a, H 2b, H 3 and H 4 form a tetrameric complex in solutions of high salt. — Cell 6, 85 – 110.

    Article  PubMed  CAS  Google Scholar 

  • Wilkins, M. H. F., 1956: Physical Studies of the molecular structure of deoxyribose nucleic acid and nucleoprotein. — Cold Spring Harbor Symp. Quant. Biol. 21, 75 – 90.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag

About this chapter

Cite this chapter

Doenecke, D. (1979). Analysis of Accessible Sites in Modified Nucleosomes. In: Nagl, W., Hemleben, V., Ehrendorfer, F. (eds) Genome and Chromatin: Organization, Evolution, Function. Plant Systematics and Evolution, vol 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8556-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8556-8_17

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8558-2

  • Online ISBN: 978-3-7091-8556-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics