Skip to main content

Abstract

The atria and the ventricles of the heart contract rhythmically and sequentially to achieve efficient blood flow. This contraction pattern is orchestrated by the cardiac conduction system, comprising specialized cardiomyocytes that initiate and propagate the cardiac electrical impulse. Genetic defects cause dysfunction of the cardiac conduction system leading to arrhythmias, emphasizing the need to understand the molecular and cellular mechanisms involved in its development and function. In the adult heart, the electrical impulse is generated in the sinoatrial node and traverses slowly through the atrioventricular node and rapidly through the atrioventricular bundle, the left and right bundle branches, and the peripheral ventricular conduction system. All components have a unique function, shape, and molecular composition but share particular properties acquired during embryogenesis. During embryonic development, the components are gradually formed from embryonic cardiomyocytes involving conserved molecular regulatory networks. In this chapter, the developmental origin, known signaling pathways, transcription factors, ion channels, and gap junctions involved in the development and functioning of the cardiac conduction system will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mangoni ME, Nargeot J (2008) Genesis and regulation of the heart automaticity. Physiol Rev 88:919–982

    Article  CAS  PubMed  Google Scholar 

  2. de Haan RL (1961) Differentiation of the atrioventricular conducting system of the heart. Circulation 24:458–470

    Article  Google Scholar 

  3. Moorman AFM, Christoffels VM (2003) Cardiac chamber formation: development, genes and evolution. Physiol Rev 83:1223–1267

    Article  CAS  PubMed  Google Scholar 

  4. de Jong F, Opthof T, Wilde AA et al (1992) Persisting zones of slow impulse conduction in developing chicken hearts. Circ Res 71:240–250

    Article  PubMed  Google Scholar 

  5. Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–837

    Article  CAS  PubMed  Google Scholar 

  6. Davis DL, Edwards AV, Juraszek AL et al (2001) A GATA-6 gene heart-region-specific enhancer provides a novel means to mark and probe a discrete component of the mouse cardiac conduction system. Mech Dev 108:105–119

    Article  CAS  PubMed  Google Scholar 

  7. Aanhaanen WT, Brons JF, Dominguez JN et al (2009) The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ Res 104:1267–1274

    Article  CAS  PubMed  Google Scholar 

  8. van den Berg G, Abu-Issa R, de Boer BA et al (2009) A caudal proliferating growth center contributes to both poles of the forming heart tube. Circ Res 104:179–188

    Article  PubMed Central  PubMed  Google Scholar 

  9. Christoffels VM, Habets PEMH, Franco D et al (2000) Chamber formation and morphogenesis in the developing mammalian heart. Dev Biol 223:266–278

    Article  CAS  PubMed  Google Scholar 

  10. Soufan AT, van den Berg G, Ruijter JM et al (2006) Regionalized sequence of myocardial cell growth and proliferation characterizes early chamber formation. Circ Res 99:545–552

    Article  CAS  PubMed  Google Scholar 

  11. van Mierop LHS (1967) Localization of pacemaker in chick embryo heart at the time of initiation of heartbeat. Am J Physiol 212:407–415

    PubMed  Google Scholar 

  12. Hoff EC, Kramer TC, DuBois D et al (1939) The development of the electrocardiogram of the embryonic heart. Am Heart J 17:470–488

    Article  Google Scholar 

  13. Bleeker WK, Mackaay AJC, Masson-Pevet M et al (1980) Functional and morphological organization of the rabbit sinus node. Circ Res 46:11–22

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Dobrzynski H, Yanni J et al (2007) Organisation of the mouse sinoatrial node: structure and expression of HCN channels. Cardiovasc Res 73:729–738

    Article  CAS  PubMed  Google Scholar 

  15. Fedorov VV, Schuessler RB, Hemphill M et al (2009) Structural and functional evidence for discrete exit pathways that connect the canine sinoatrial node and atria. Circ Res 104:915–923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kreuzberg MM, Willecke K, Bukauskas FF (2006) Connexin-mediated cardiac impulse propagation: connexin 30.2 slows atrioventricular conduction in mouse heart. Trends Cardiovasc Med 16:266–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gros D, Theveniau-Ruissy M, Bernard M et al (2009) Connexin 30 is expressed in the mouse sino-atrial node, and modulates heart rate. Cardiovasc Res 85:45–55

    Article  Google Scholar 

  18. Dobrzynski H, Boyett MR, Anderson RH (2007) New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation 115:1921–1932

    Article  PubMed  Google Scholar 

  19. Verheijck EE, van Kempen MJ, Veereschild M et al (2001) Electrophysiological features of the mouse sinoatrial node in relation to connexin distribution. Cardiovasc Res 52:40–50

    Article  CAS  PubMed  Google Scholar 

  20. Hoogaars WM, Engel A, Brons JF et al (2007) Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 21:1098–1112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Gros D, Dupays L, Alcolea S et al (2004) Genetically modified mice: tools to decode the functions of connexins in the heart-new models for cardiovascular research. Cardiovasc Res 62:299–308

    Article  CAS  PubMed  Google Scholar 

  22. Tellez JO, Dobrzynski H, Greener ID et al (2006) Differential expression of ion channel transcripts in atrial muscle and sinoatrial node in rabbit. Circ Res 99:1384–1393

    Article  CAS  PubMed  Google Scholar 

  23. Stieber J, Herrmann S, Feil S et al (2003) The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci U S A 100:15235–15240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Mommersteeg MTM, Hoogaars WMH, Prall OWJ et al (2007) Molecular pathway for the localized formation of the sinoatrial node. Circ Res 100:354–362

    Google Scholar 

  25. Virágh S, Challice CE (1980) The development of the conduction system in the mouse embryo heart. III. The development of sinus muscle and sinoatrial node. Dev Biol 80:28–45

    Article  PubMed  Google Scholar 

  26. Mommersteeg MT, Dominguez JN, Wiese C et al (2010) The sinus venosus progenitors separate and diversify from the first and second heart fields early in development. Cardiovasc Res 87:92–101

    Article  CAS  PubMed  Google Scholar 

  27. Wiese C, Grieskamp T, Airik R et al (2009) Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by tbx18 and tbx3. Circ Res 104:388–397

    Article  CAS  PubMed  Google Scholar 

  28. Ma Q, Zhou B, Pu WT (2008) Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity. Dev Biol 323:98–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Zhou B, von Gise A, Ma Q et al (2008) Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem Biophys Res Commun 375:450–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hoogaars WMH, Tessari A, Moorman AFM et al (2004) The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res 62:489–499

    Article  CAS  PubMed  Google Scholar 

  31. Frank DU, Carter KL, Thomas KR et al (2011) Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis. Proc Natl Acad Sci U S A 109:E154–E163

    Article  PubMed Central  PubMed  Google Scholar 

  32. Blaschke RJ, Hahurij ND, Kuijper S et al (2007) Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation 115:1830–1838

    Article  CAS  PubMed  Google Scholar 

  33. Espinoza-Lewis RA, Yu L, He F et al (2009) Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5. Dev Biol 327:376–385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hoffmann S, Berger IM, Glaser A et al (2013) Islet1 is a direct transcriptional target of the homeodomain transcription factor Shox2 and rescues the Shox2-mediated bradycardia. Basic Res Cardiol 108:339

    Article  PubMed Central  PubMed  Google Scholar 

  35. Tessadori F, van Weerd JH, Burkhard SB et al (2012) Identification and functional characterization of cardiac pacemaker cells in zebrafish. PLoS One 7:e47644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Mori AD, Zhu Y, Vahora I et al (2006) Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. Dev Biol 297:566–586

    Article  CAS  PubMed  Google Scholar 

  37. Puskaric S, Schmitteckert S, Mori AD et al (2010) Shox2 mediates Tbx5 activity by regulating Bmp4 in the pacemaker region of the developing heart. Hum Mol Genet 19:4625–4633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Mommersteeg MTM, Hoogaars WMH, Prall OWJ et al (2007) Molecular pathway for the localized formation of the sinoatrial node. Circ Res 100:354–362

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Greener ID, Inada S et al (2008) Computer three-dimensional reconstruction of the atrioventricular node. Circ Res 102:975–985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ko YS, Yeh HI, Ko YL et al (2004) Three-dimensional reconstruction of the rabbit atrioventricular conduction axis by combining histological, desmin, and connexin mapping data. Circulation 109:1172–1179

    Article  PubMed  Google Scholar 

  41. Christoffels VM, Moorman AFM (2009) Development of the cardiac conduction system. Why are some regions of the heart more arrhythmogenic than others? Circ Arrhythm Electrophysiol 2:195–207

    Article  PubMed  Google Scholar 

  42. Wessels A, Markman MWM, Vermeulen JLM et al (1996) The development of the atrioventricular junction in the human heart. Circ Res 78:110–117

    Article  CAS  PubMed  Google Scholar 

  43. Pennisi DJ, Rentschler S, Gourdie RG et al (2002) Induction and patterning of the cardiac conduction system. Int J Dev Biol 46:765–775

    PubMed  Google Scholar 

  44. Cheng G, Litchenberg WH, Cole GJ et al (1999) Development of the cardiac conduction system involves recruitment within a multipotent cardiomyogenic lineage. Development 126:5041–5049

    CAS  PubMed  Google Scholar 

  45. de Lange FJ, Moorman AFM, Anderson RH et al (2004) Lineage and morphogenetic analysis of the cardiac valves. Circ Res 95:645–654

    Article  PubMed  Google Scholar 

  46. Yamada M, Revelli JP, Eichele G et al (2000) Expression of chick Tbx-2, Tbx-3, and Tbx-5 genes during early heart development: evidence for BMP2 induction of Tbx2. Dev Biol 228:95–105

    Article  CAS  PubMed  Google Scholar 

  47. Singh R, Hoogaars WM, Barnett P et al (2012) Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation. Cell Mol Life Sci 69:1377–1389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Habets PEMH, Moorman AFM, Clout DEW et al (2002) Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev 16:1234–1246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Bakker ML, Boukens BJ, Mommersteeg MTM et al (2008) Transcription factor Tbx3 is required for the specification of the atrioventricular conduction system. Circ Res 102:1340–1349

    Article  CAS  PubMed  Google Scholar 

  50. Ma L, Lu MF, Schwartz RJ et al (2005) Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132:5601–5611

    Article  CAS  PubMed  Google Scholar 

  51. Gaussin V, Morley GE, Cox L et al (2005) Alk3/Bmpr1a receptor is required for development of the atrioventricular canal into valves and annulus fibrosus. Circ Res 97:219–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Stroud DM, Gaussin V, Burch JB et al (2007) Abnormal conduction and morphology in the atrioventricular node of mice with atrioventricular canal-targeted deletion of Alk3/Bmpr1a receptor. Circulation 116:2535–2543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Verhoeven MC, Haase C, Christoffels VM et al (2011) Wnt signaling regulates atrioventricular canal formation upstream of BMP and Tbx2. Birth Defects Res A Clin Mol Teratol 91:435–440

    Article  CAS  PubMed  Google Scholar 

  54. Schott J-J, Benson DW, Basson CT et al (1998) Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281:108–111

    Article  CAS  PubMed  Google Scholar 

  55. Basson CT, Bachinsky DR, Lin RC et al (1997) Mutations in human TBX5 (corrected) cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 15:30–35

    Article  CAS  PubMed  Google Scholar 

  56. Munshi NV, McAnally J, Bezprozvannaya S et al (2009) Cx30.2 enhancer analysis identifies Gata4 as a novel regulator of atrioventricular delay. Development 136:2665–2674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Moskowitz IP, Kim JB, Moore ML et al (2007) A molecular pathway including id2, tbx5, and nkx2-5 required for cardiac conduction system development. Cell 129:1365–1376

    Article  CAS  PubMed  Google Scholar 

  58. Jay PY, Harris BS, Maguire CT et al (2004) Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J Clin Invest 113:1130–1137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Moskowitz IPG, Pizard A, Patel VV et al (2004) The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system. Development 131:4107–4116

    Article  CAS  PubMed  Google Scholar 

  60. Rutenberg JB, Fischer A, Jia H et al (2006) Developmental patterning of the cardiac atrioventricular canal by Notch and Hairy-related transcription factors. Development 133:4381–4390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Kokubo H, Miyagawa-Tomita S, Nakazawa M et al (2005) Mouse hesr1 and hesr2 genes are redundantly required to mediate Notch signaling in the developing cardiovascular system. Dev Biol 278:301–309

    Article  CAS  PubMed  Google Scholar 

  62. Stennard FA, Harvey RP (2005) T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development 132:4897–4910

    Article  CAS  PubMed  Google Scholar 

  63. Singh R, Horsthuis T, Farin HF et al (2009) Tbx20 interacts with smads to confine tbx2 expression to the atrioventricular canal. Circ Res 105:442–452

    Article  CAS  PubMed  Google Scholar 

  64. Hahurij ND, Gittenberger-de Groot AC, Kolditz DP et al (2008) Accessory atrioventricular myocardial connections in the developing human heart: relevance for perinatal supraventricular tachycardias. Circulation 117:2850–2858

    Article  PubMed  Google Scholar 

  65. Aanhaanen WT, Boukens BJ, Sizarov A et al (2011) Defective Tbx2-dependent patterning of the atrioventricular canal myocardium causes accessory pathway formation in mice. J Clin Invest 121:534–544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Anderson RH, Ho SY, Gillette PC et al (1996) Mahaim, Kent and abnormal atrioventricular conduction. Cardiovasc Res 31:480–491

    Article  CAS  PubMed  Google Scholar 

  67. Gollob MH, Green MS, Tang AS et al (2001) Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med 344:1823–1831

    Article  CAS  PubMed  Google Scholar 

  68. Lalani SR, Thakuria JV, Cox GF et al (2009) 20p12.3 microdeletion predisposes to Wolff-Parkinson-White syndrome with variable neurocognitive deficits. J Med Genet 46:168–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Rentschler S, Harris BS, Kuznekoff L et al (2011) Notch signaling regulates murine atrioventricular conduction and the formation of accessory pathways. J Clin Invest 121:525–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Gourdie RG, Severs NJ, Green CR et al (1993) The spatial distribution and relative abundance of gap-junctional connexin40 and connexin43 correlate to functional properties of components of the cardiac atrioventricular conduction system. J Cell Sci 105:985–991

    CAS  PubMed  Google Scholar 

  71. Miquerol L, Moreno-Rascon N, Beyer S et al (2010) Biphasic development of the mammalian ventricular conduction system. Circ Res 107:153–161

    Article  CAS  PubMed  Google Scholar 

  72. Wessels A, Vermeulen JLM, Verbeek FJ et al (1992) Spatial distribution of “tissue-specific” antigens in the developing human heart and skeletal muscle: III. An immunohistochemical analysis of the distribution of the neural tissue antigen G1N2 in the embryonic heart; implications for the development of the atrioventricular conduction system. Anat Rec 232:97–111

    Article  CAS  PubMed  Google Scholar 

  73. Virágh S, Challice CE (1977) The development of the conduction system in the mouse embryo heart. II. Histogenesis of the atrioventricular node and bundle. Dev Biol 56:397–411

    Article  PubMed  Google Scholar 

  74. Arnolds DE, Liu F, Fahrenbach JP et al (2012) TBX5 drives Scn5a expression to regulate cardiac conduction system function. J Clin Invest 122:2509–2518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Zhang SS, Kim KH, Rosen A et al (2011) Iroquois homeobox gene 3 establishes fast conduction in the cardiac His-Purkinje network. Proc Natl Acad Sci U S A 108:13576–13581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Sedmera D, Reckova M, DeAlmeida A et al (2003) Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts. Am J Physiol Heart Circ Physiol 284:H1152–H1160

    Article  CAS  PubMed  Google Scholar 

  77. Bruneau BG, Logan M, Davis N et al (1999) Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev Biol 211:100–108

    Article  CAS  PubMed  Google Scholar 

  78. Gourdie RG, Wei Y, Kim D et al (1998) Endothelin-induced conversion of embryonic heart muscle cells into impulse-conducting Purkinje fibers. Proc Natl Acad Sci U S A 95:6815–6818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Rentschler S, Zander J, Meyers K et al (2002) Neuregulin-1 promotes formation of the murine cardiac conduction system. Proc Natl Acad Sci U S A 99:10464–10469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Grego-Bessa J, Luna-Zurita L, del Monte G et al (2007) Notch signaling is essential for ventricular chamber development. Dev Cell 12:415–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Chen H, Shi S, Acosta L et al (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131:2219–2231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Rentschler S, Yen AH, Lu J et al (2012) Myocardial Notch signaling reprograms cardiomyocytes to a conduction-like phenotype. Circulation 126:1058–1066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Christoffels VM, Smits GJ, Kispert A et al (2010) Development of the pacemaker tissues of the heart. Circ Res 106:240–254

    Article  CAS  PubMed  Google Scholar 

  84. Munshi NV (2012) Gene regulatory networks in cardiac conduction system development. Circ Res 110:1525–1537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. de Laat W, Duboule D (2013) Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502:499–506

    Article  CAS  PubMed  Google Scholar 

  86. Wu M, Peng S, Yang J et al (2014) Baf250a orchestrates an epigenetic pathway to repress the Nkx2.5-directed contractile cardiomyocyte program in the sinoatrial node. Cell Res 24:1201–1213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Stefanovic S, Barnett P, Van Duijvenboden K et al (2014) GATA-dependent regulatory switches establish atrioventricular canal specificity during heart development. Nat Commun 5:3680

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent M. Christoffels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Mohan, R., Christoffels, V.M. (2016). Cardiac Conduction System. In: Rickert-Sperling, S., Kelly, R., Driscoll, D. (eds) Congenital Heart Diseases: The Broken Heart. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1883-2_8

Download citation

Publish with us

Policies and ethics