Skip to main content

Aerenchyma Formation in Plants

  • Chapter
  • First Online:
Low-Oxygen Stress in Plants

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 21))

Abstract

Aerenchyma enhances internal aeration between, and within, shoots and roots. Aerenchyma formation is therefore important for the adaptation of plants in environments with excess water, such as plants with roots in waterlogged soils or submerged shoots. Aerenchyma can form in primary tissues (primary aerenchyma) and in secondary tissues (secondary aerenchyma). Primary tissues have two main types of aerenchyma: schizogenous aerenchyma and lysigenous aerenchyma. Both types provide enlarged spaces for gas-phase diffusion. Schizogenous aerenchyma is formed by the separation of adjacent files (radial rows) of cortical cells and by enlargement of existing intercellular spaces through cell division and differential cell enlargement. By contrast, lysigenous aerenchyma results from the collapse and lysis of files of cortical cells via programmed cell death. Secondary aerenchyma differentiates from phellogen, cambium, and pericycle in stems, hypocotyls, or roots of some dicots to form a gas-filled and low-resistance pathway for gas movement. Presently, the mechanisms of schizogenous and secondary aerenchyma formation are less well understood than the mechanisms of lysigenous aerenchyma formation. Here, we summarize the characteristics of primary aerenchyma (schizogenous and lysigenous aerenchymas) and secondary aerenchyma types, and present recent advances in understanding the mechanisms of lysigenous aerenchyma formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abiko T, Kotula L, Shiono K, Malik AI, Colmer TD, Nakazono M (2012) Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Plant Cell Environ 35:1618–1630

    Article  CAS  PubMed  Google Scholar 

  • Angeles G (1992) The periderm of flooded and non-flooded Ludwigia octovalvis (Onagraceae). IAWA Bull 13:195–200

    Google Scholar 

  • Appleby CA (1984) Leghemoglobin and Rhizobium respiration. Annu Rev Plant Physiol 35:443–478

    Article  CAS  Google Scholar 

  • Arber A (1920) Water plants: a study of aquatic angiosperms. Cambridge University Press, Cambridge

    Google Scholar 

  • Arikado H, Adachi Y (1955) Anatomical and ecological responses of barley and some forage crops to the flooding treatment. Bull Fac Agric Mie Univ 11:1–29

    Google Scholar 

  • Armstrong W (1968) Oxygen diffusion from the roots of woody species. Physiol Plant 21:539–543

    Article  Google Scholar 

  • Armstrong W (1971) Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration and waterlogging. Physiol Plant 25:192–197

    Article  Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. Adv Bot Res 7:236–332

    Google Scholar 

  • Armstrong J, Armstrong W (1994) Chlorophyll development in mature lysigenous and schizogenous root aerenchyma provides evidence of continuing cortical cell viability. New Phytol 126:493–497

    Article  Google Scholar 

  • Armstrong J, Armstrong W, Beckett PM (1992) Phragmites australis: Venturi- and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytol 120:197–207

    Article  Google Scholar 

  • Armstrong J, Armstrong W, Beckett PM, Halder JE, Lythe S, Holt R, Sinclair A (1996) Pathways of aeration and the mechanisms and beneficial effects of humidity- and Venturi-induced convections in Phragmites australis (Cav.) Trin ex Steud. Aquat Bot 54:177–197

    Article  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Bisseling T, Van Staveren W, Van Kammen A (1980) The effect of waterlogging on the synthesis of the nitrogenase components in bacteroids of Rhizobium leguminosarum in root nodules of Pisum sativum. Biochem Biophys Res Commun 93:687–693

    Article  CAS  PubMed  Google Scholar 

  • Chae HZ, Uhm TB, Rhee SG (1994) Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. Proc Natl Acad Sci U S A 91:7022–7026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36

    Article  CAS  Google Scholar 

  • Colmer TD, Pedersen O (2008) Oxygen dynamics in submerged rice (Oryza sativa). New Phytol 178:326–334

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD, Voesenek LACJ (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol 36:665–681

    Article  Google Scholar 

  • Colmer TD, Peeters AJM, Wagemaker CAM, Vriezen WH, Ammerlaan A, Voesenek LACJ (2004) Expression of α-expansin genes during root acclimations to O2 deficiency in Rumex palustris. Plant Mol Biol 56:423–437

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD, Cox MCH, Voesenek LACJ (2006) Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol 170:767–778

    Article  CAS  PubMed  Google Scholar 

  • Constable JVH, Longstreth DJ (1994) Aerenchyma carbon dioxide can be assimilated in Typha latifolia L. leaves. Plant Physiol 106:1065–1072

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coutts MP, Philipson JJ (1978) Tolerance of tree roots to waterlogging. II. Adaptation of Sitka spruce and Lodgepole pine to waterlogged soil. New Phytol 80:71–77

    Article  Google Scholar 

  • Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647

    Article  CAS  PubMed  Google Scholar 

  • Dittert K, Wätzel J, Sattelmacher B (2006) Responses of Alnus glutinosa to anaerobic conditions—mechanisms and rate of oxygen flux into the roots. Plant Biol 8:212–223

    Article  CAS  PubMed  Google Scholar 

  • Drew MC, Fourcy A (1986) Radial movement of cations across aerenchymatous roots of Zea mays measured by electron probe X-ray microanalysis. J Exp Bot 37:823–831

    Article  CAS  Google Scholar 

  • Drew MC, Jackson MB, Giffard S (1979) Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays L. Planta 147:83–88

    Article  CAS  PubMed  Google Scholar 

  • Drew MC, Jackson MB, Giffard SC, Campbell R (1981) Inhibition by silver ions of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to exogenous ethylene or to oxygen deficiency. Planta 153:217–224

    Article  CAS  PubMed  Google Scholar 

  • Drew MC, He CJ, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5:123–127

    Article  CAS  PubMed  Google Scholar 

  • Evans DE (2003) Aerenchyma formation. New Phytol 161:35–49

    Article  Google Scholar 

  • Fraser L (1931) The reaction of Viminaria denudata to increased water content of the soil. Proc Linn Soc NSW 56:391–406

    Google Scholar 

  • Gallon JR (1992) Reconciling the incompatible: N2 fixation and O2. New Phytol 122:571–609

    Article  CAS  Google Scholar 

  • Gibberd MR, Gray JD, Cocks PS, Colmer TD (2001) Waterlogging tolerance among a diverse range of Trifolium accessions is related to root porosity, lateral root formation and ‘aerotropic rooting’. Ann Bot 88:579–589

    Article  Google Scholar 

  • Greenway H, Armstrong W, Colmer TD (2006) Conditions leading to high CO2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. Ann Bot 98:9–32

    Article  CAS  PubMed  Google Scholar 

  • Haque ME, Abe F, Kawaguchi K (2010) Formation and extension of lysigenous aerenchyma in seminal root cortex of spring wheat (Triticum aestivum cv. Bobwhite line SH 98 26) seedlings under different strengths of waterlogging. Plant Root 4:31–39

    Article  Google Scholar 

  • He CJ, Finlayson SA, Drew MC, Jordan WR, Morgan PW (1996a) Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia. Plant Physiol 112:1679–1685

    CAS  PubMed Central  PubMed  Google Scholar 

  • He CJ, Morgan PW, Drew MC (1996b) Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol 112:463–472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hook DD, Brown CL, Kormanik PP (1971) Inductive flood tolerance in swamp tupelo (Nyssa sylvatica var. biflora (Walt.) Sarg.). J Exp Bot 22:78–89

    Article  Google Scholar 

  • Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287

    Article  CAS  Google Scholar 

  • Jackson MB, Fenning TM, Jenkins W (1985) Aerenchyma (gas-space) formation in adventitious roots of rice (Oryza sativa L.) is not controlled by ethylene or small partial pressures of oxygen. J Exp Bot 36:1566–1572

    Article  CAS  Google Scholar 

  • James EK, Crawford RMM (1998) Effect of oxygen availability on nitrogen fixation by two Lotus species under flooded conditions. J Exp Bot 49:599–609

    CAS  Google Scholar 

  • James EK, Sprent JI (1999) Development of N2-fixing nodules on the wetland legume Lotus uliginosus exposed to conditions of flooding. New Phytol 142:219–231

    Article  Google Scholar 

  • James EK, Minchin FR, Sprent JI (1992) The physiology and nitrogen-fixing capability of aquatically and terrestrially grown Neptunia plena: the importance of nodule oxygen supply. Ann Bot 69:181–187

    Google Scholar 

  • Jung J, Lee SC, Choi HK (2008) Anatomical patterns of aerenchyma in aquatic and wetland plants. J Plant Biol 51:428–439

    Article  Google Scholar 

  • Justin SHFW, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytol 106:465–495

    Article  Google Scholar 

  • Justin SHFW, Armstrong W (1991) Evidence for the involvement of ethene in aerenchyma formation in adventitious roots of rice (Oryza sativa L.). New Phytol 118:49–62

    Article  CAS  Google Scholar 

  • Karahara I, Umemura K, Soga Y, Akai Y, Bando T, Ito Y, Tamaoki D, Uesugi K, Abe J, Yamauchi D, Mineyuki Y (2012) Demonstration of osmotically dependent promotion of aerenchyma formation at different levels in the primary roots of rice using a ‘sandwich’ method and X-ray computed tomography. Ann Bot 110:503–509

    Article  PubMed  Google Scholar 

  • Kawai M, Samarajeewa PK, Barrero RA, Nishiguchi M, Uchimiya H (1998) Cellular dissection of the degradation pattern of cortical cell death during aerenchyma formation of rice roots. Planta 204:277–287

    Article  CAS  Google Scholar 

  • Konings H, Verschuren G (1980) Formation of aerenchyma in roots of Zea mays in aerated solutions, and its relation to nutrient supply. Physiol Plant 49:265–270

    Article  CAS  Google Scholar 

  • Laan P, Berrevoets MJ, Lythe S, Armstrong W, Blom CWPM (1989) Root morphology and aerenchyma formation as indicators of the flood-tolerance of Rumex species. J Ecol 77:693–703

    Article  Google Scholar 

  • Lempe J, Stevens KJ, Peterson RL (2001) Shoot responses of six Lythraceae species to flooding. Plant Biol 3:186–193

    Article  Google Scholar 

  • Liang F, Shen LZ, Chen M, Yang Q (2008) Formation of intercellular gas space in the diaphragm during the development of aerenchyma in the leaf petiole of Sagittaria trifolia. Aquat Bot 88:185–195

    Article  Google Scholar 

  • Loureiro MF, De Faria SM, James EK, Pott A, Franco AA (1994) Nitrogen-fixing stem nodules of the legume, Discolobium pulchellum Benth. New Phytol 128:283–295

    Article  CAS  Google Scholar 

  • Malik AI, Colmer TD, Lambers H, Schortemeyer M (2003) Aerenchyma formation and radial O2 loss along adventitious roots of wheat with only the apical root portion exposed to O2 deficiency. Plant Cell Environ 26:1713–1722

    Article  Google Scholar 

  • Malik AI, Islam AKMR, Colmer TD (2011) Transfer of the barrier to radial oxygen loss in roots of Hordeum marinum to wheat (Triticum aestivum): evaluation of four H. marinum-wheat amphiploids. New Phytol 190:499–508

    Article  CAS  PubMed  Google Scholar 

  • Mano Y, Omori F (2008) Verification of QTL controlling root aerenchyma formation in a maize × teosinte “Zea nicaraguensis” advanced backcross population. Breed Sci 58:217–223

    Article  Google Scholar 

  • Mano Y, Omori F (2009) High-density linkage map around the root aerenchyma locus Qaer1. 06 in the backcross populations of maize Mi29 × teosinte “Zea nicaraguensis”. Breed Sci 59:427–433

    Article  CAS  Google Scholar 

  • Mano Y, Omori F (2013) Relationship between constitutive root aerenchyma formation and flooding tolerance in Zea nicaraguensis. Plant Soil 370:447–460

    Article  CAS  Google Scholar 

  • Mano Y, Omori F, Takamizo T, Kindiger B, Bird RMK, Loaisiga CH (2006) Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings. Plant Soil 281:269–279

    Article  CAS  Google Scholar 

  • Matsukura C, Kawai M, Toyofuku K, Barrero RA, Uchimiya H, Yamaguchi J (2000) Transverse vein differentiation associated with gas space formation—fate of the middle cell layer in leaf sheath development of rice. Ann Bot 85:19–27

    Article  Google Scholar 

  • McDonald MP, Galwey NW, Colmer TD (2001) Waterlogging tolerance in the tribe Triticeae: the adventitious roots of Critesion marinum have a relatively high porosity and a barrier to radial oxygen loss. Plant Cell Environ 24:585–596

    Article  Google Scholar 

  • McPherson DC (1939) Cortical air spaces in the roots of Zea mays L. New Phytol 38:190–202

    Article  CAS  Google Scholar 

  • Minchin FR (1997) Regulation of oxygen diffusion in legume nodules. Soil Biol Biochem 29:881–888

    Article  CAS  Google Scholar 

  • Nishiuchi S, Yamauchi T, Takahashi H, Kotula L, Nakazono M (2012) Mechanisms for coping with submergence and waterlogging in rice. Rice 5:2

    Article  Google Scholar 

  • Parlanti S, Kudahettige NP, Lombardi L, Mensuali-Sodi A, Alpi A, Perata P, Pucciariello C (2011) Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance. Ann Bot 107:1335–1343

    Article  CAS  PubMed  Google Scholar 

  • Parsons R, Day DA (1990) Mechanism of soybean nodule adaptation to different oxygen pressures. Plant Cell Environ 13:501–512

    Article  Google Scholar 

  • Postma JA, Lynch JP (2011) Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium. Plant Physiol 156:1190–1201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol 190:351–368

    Article  CAS  PubMed  Google Scholar 

  • Ranathunge K, Steudle E, Lafitte R (2003) Control of water uptake by rice (Oryza sativa L.): role of the outer part of the root. Planta 217:193–205

    CAS  PubMed  Google Scholar 

  • Saraswati R, Matoh T, Sekiya J (1992) Nitrogen fixation of Sesbania rostrata: contribution of stem nodules to nitrogen acquisition. Soil Sci Plant Nutr 38:775–780

    Article  Google Scholar 

  • Sato M, Bremner I (1993) Oxygen free radicals and metallothionein. Free Radic Biol Med 14:325–337

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schussler EE, Longstreth DJ (1996) Aerenchyma develops by cell lysis in roots and cell separation in leaf petioles in Sagittaria lancifolia (Alismataceae). Am J Bot 83:1266–1273

    Article  Google Scholar 

  • Scott DH, Wager H (1888) On the floating-root of Sesbania aculeata, Pers. Ann Bot 1:308–314

    Google Scholar 

  • Seago JL Jr, Peterson CA, Enstone DE (1999) Cortical ontogeny in roots of the aquatic plant, Hydrocharis morsus-ranae L. Can J Bot 77:113–121

    Google Scholar 

  • Seago JL Jr, Marsh LC, Stevens KJ, Soukup A, Votrubova O, Enstone DE (2005) A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma. Ann Bot 96:565–579

    Article  PubMed  Google Scholar 

  • Setter TL, Waters I (2003) Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil 253:1–34

    Article  CAS  Google Scholar 

  • Shiba H, Daimon H (2003) Histological observation of secondary aerenchyma formed immediately after flooding in Sesbania cannabina and S. rostrata. Plant Soil 255:209–215

    Article  CAS  Google Scholar 

  • Shimamura S, Mochizuki T, Nada Y, Fukuyama M (2002) Secondary aerenchyma formation and its relation to nitrogen fixation in root nodules of soybean plants (Glycine max) grown under flooded conditions. Plant Prod Sci 5:294–300

    Article  CAS  Google Scholar 

  • Shimamura S, Mochizuki T, Nada Y, Fukuyama M (2003) Formation and function of secondary aerenchyma in hypocotyl, roots and nodules of soybean (Glycine max) under flooded conditions. Plant Soil 251:351–359

    Article  CAS  Google Scholar 

  • Shimamura S, Yoshida S, Mochizuki T (2007) Cortical aerenchyma formation in hypocotyl and adventitious roots of Luffa cylindrica subjected to soil flooding. Ann Bot 100:1431–1439

    Article  PubMed  Google Scholar 

  • Shimamura S, Yamamoto R, Nakamura T, Shimada S, Komatsu S (2010) Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Ann Bot 106:277–284

    Article  PubMed  Google Scholar 

  • Shiono K, Takahashi H, Colmer TD, Nakazono M (2008) Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Sci 175:52–58

    Article  CAS  Google Scholar 

  • Shiono K, Ogawa S, Yamazaki S, Isoda H, Fujimura T, Nakazono M, Colmer TD (2011) Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Ann Bot 107:89–99

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N, Crawford RMM (1983) Variation in the structure and response to flooding of root aerenchyma in some wetland plants. Ann Bot 51:237–249

    Google Scholar 

  • Steffens B, Sauter M (2009) Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. Plant Cell 21:184–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steffens B, Geske T, Sauter M (2011) Aerenchyma formation in the rice stem and its promotion by H2O2. New Phytol 190:369–378

    Article  CAS  PubMed  Google Scholar 

  • Stevens KJ, Peterson RL, Stephenson GR (1997) Morphological and anatomical responses of Lythrum salicaria L. (purple loosestrife) to an imposed water gradient. Int J Plant Sci 158:172–183

    Article  Google Scholar 

  • Stevens KJ, Peterson RL, Reader RJ (2002) The aerenchymatous phellem of Lythrum salicaria (L.): a pathway for gas transport and its role in flood tolerance. Ann Bot 89:621–625

    Article  PubMed  Google Scholar 

  • Subbaiah CC, Sachs MM (2003) Molecular and cellular adaptations of maize to flooding stress. Ann Bot 90:119–127

    Article  CAS  Google Scholar 

  • Subbaiah CC, Bush DS, Sachs MM (1994) Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells. Plant Cell 6:1747–1762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teakle NL, Armstrong J, Barrett-Lennard EG, Colmer TD (2011) Aerenchymatous phellem in hypocotyl and roots enables O2 transport in Melilotus siculus. New Phytol 190:340–350

    Article  CAS  PubMed  Google Scholar 

  • Thomas AL, Guerreiro SMC, Sodek L (2005) Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Ann Bot 96:1191–1198

    Article  CAS  PubMed  Google Scholar 

  • Thornalley PJ, Vašák M (1985) Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta 827:36–44

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Trought MCT, Drew MC (1980) The development of waterlogging damage in young wheat plants in anaerobic solution cultures. J Exp Bot 31:1573–1585

    Article  CAS  Google Scholar 

  • Verboven P, Pedersen O, Herremans E, Ho QT, Nicolaï BM, Colmer TD, Teakle N (2012) Root aeration via aerenchymatous phellem: three-dimensional micro-imaging and radial O2 profiles in Melilotus siculus. New Phytol 193:420–431

    Article  CAS  PubMed  Google Scholar 

  • Visser EJW, Bögemann GM (2006) Aerenchyma formation in the wetland plant Juncus effusus is independent of ethylene. New Phytol 171:305–314

    Article  CAS  PubMed  Google Scholar 

  • Visser EJW, Voesenek LACJ (2004) Acclimation to soil flooding—sensing and signal-transduction. Plant Soil 254:197–214

    Google Scholar 

  • Visser EJW, Colmer TD, Blom CWPM, Voesenek LACJ (2000) Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ 23:1237–1245

    Article  Google Scholar 

  • Walker BA, Pate JS, Kuo J (1983) Nitrogen fixation by nodulated roots of Viminaria juncea (Schrad. & Wendl.) Hoffmans. (Fabaceae) when submerged in water. Aust J Plant Physiol 10:409–421

    Article  CAS  Google Scholar 

  • Winkel A, Borum J (2009) Use of sediment CO2 by submersed rooted plants. Ann Bot 103:1015–1023

    Article  CAS  PubMed  Google Scholar 

  • Witty JF (1991) Microelectrode measurements of hydrogen concentrations and gradients in legume nodules. J Exp Bot 42:765–771

    Article  CAS  Google Scholar 

  • Witty JF, Skøt L, Revsbech NP (1987) Direct evidence for changes in the resistance of legume root nodules to O2 diffusion. J Exp Bot 38:1129–1140

    Article  Google Scholar 

  • Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135:1447–1456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C (2009) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot 60:339–349

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Rajhi I, Nakazono M (2011) Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signal Behav 6:759–761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamauchi T, Shimamura S, Nakazono M, Mochizuki T (2013) Aerenchyma formation in crop species: a review. Field Crops Res 152:8–16

    Article  Google Scholar 

  • Zhu J, Brown KM, Lynch JP (2010) Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant Cell Environ 33:740–749

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. W. Armstrong (University of Hull) and S. Nishiuchi (Nagoya University) for their critical readings and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Nakazono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Takahashi, H., Yamauchi, T., Colmer, T.D., Nakazono, M. (2014). Aerenchyma Formation in Plants. In: van Dongen, J., Licausi, F. (eds) Low-Oxygen Stress in Plants. Plant Cell Monographs, vol 21. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1254-0_13

Download citation

Publish with us

Policies and ethics