Skip to main content

Adaptations of Nitrogen Metabolism to Oxygen Deprivation in Plants

  • Chapter
  • First Online:
Low-Oxygen Stress in Plants

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 21))

Abstract

Acclimation of plants to O2 deprivation depends on their ability to mitigate detrimental effects related to energy crisis and cytosolic acidosis. Accordingly, lactic and ethanol fermentative pathways are activated under low oxygen stress in order to regenerate NAD+ to maintain a high glycolysis rate that becomes the major route for ATP production. Paradoxically lactic acid worsens cytosolic acidosis and ethanol fermentation drains carbon for the production of a metabolically useless dead-end product. Nitrogen metabolism is profoundly affected by O2 deprivation. Interestingly hypoxic N metabolism not only contributes to tolerate O2 deprivation but also mitigates negative effects of lactic and ethanol fermentation. The most salient event is the concerted modulation of alanine and glutamate pathways that allow for the substitution of ATP-dependent enzymes glutamine synthetase (GS) and asparagine synthetase (AS) by alanine aminotransferase (AlaAT) and glutamate oxoglutarate aminotransferase (NADH-GOGAT) as essential enzymes of N assimilation. This adaptation saves ATP, regenerates NAD+, and saves carbon in the form of alanine, a C/N storage form readily remobilized upon recovery. As for acidosis amelioration, nitrogen metabolism participates in the cellular pH-stat through GABA and putrescine pathways. Alanine accumulation contributes indirectly to pH homeostasis by using pyruvate competitively with lactate dehydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht G, Mustroph A, Theodore C (2004) Sugar and fructan accumulation during metabolic adjustment between respiration and fermentation under low oxygen conditions in wheat roots. Physiol Plant 120:93–104

    Article  CAS  PubMed  Google Scholar 

  • Allègre A, Silvestre J, Morard P, Kallerhoff J, Pinelli E (2004) Nitrate reductase regulation in tomato roots by exogenous nitrate: a possible role in tolerance to long-term root anoxia. J Exp Bot 55:2625–2634

    Article  PubMed  Google Scholar 

  • Amir R (2010) Current understanding of the factors regulating methionine content in vegetative tissues of higher plants. Amino Acids 39:917–931

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Voesenek LA (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Fukao T, Gibbs DJ, Holdsworth MJ, Lee SC, Licausi F, Perata P, Voesenek LA, van Dongen JT (2012) Making sense of low oxygen sensing. Trends Plant Sci 17:129–138

    Article  CAS  PubMed  Google Scholar 

  • Botrel A, Kaiser WM (1997) Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta 201:496–501

    Article  CAS  PubMed  Google Scholar 

  • Bouché N, Fait A, Zik M, Fromm H (2004) The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis. Plant Mol Biol 55:315–325

    Article  PubMed  Google Scholar 

  • Bouché N, Yellin A, Snedden WA, Fromm H (2005) Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56:435–466

    Article  PubMed  Google Scholar 

  • Braun KP, Cody RB, Jones JDR, Peterson CM (1995) A structural assignment for a stable acetaldehyde-lysine adduct. J Biol Chem 270:11263–11266

    Article  CAS  PubMed  Google Scholar 

  • Carroll AD, Fox GG, Laurie S, Phillips R, Ratcliffe RG, Stewart GR (1994) Ammonium assimilation and the role of [gamma]-aminobutyric acid in pH homeostasis in carrot cell suspensions. Plant Physiol 106:513–520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davies DD (1987) The role of lactate dehydrogenase isozymes in controlling the cytosolic pH of plant cells. Isozymes Curr Top Biol Med Res 16:193–207

    CAS  PubMed  Google Scholar 

  • Davies DD, Patil KD (1974) Regulation of ‘malic’ enzyme of Solanum tuberosum by metabolites. Biochem J 137:45–53

    CAS  PubMed  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU, Manac’h N, Rivoal J, Hill RD (2003a) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J 35:763–770

    Article  CAS  PubMed  Google Scholar 

  • Dordas C, Rivoal J, Hill RD (2003b) Plant haemoglobins, nitric oxide and hypoxic stress. Ann Bot 91 Spec No: 173–178

    Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250. doi:10.1146/annurev.arplant.48.1.223

    Article  CAS  PubMed  Google Scholar 

  • Felle HH (1996) Control of cytoplasmic pH under anoxic conditions and its implication for plasma membrane proton transport in Medicago sativa root hairs. J Exp Bot 47:967–973. doi:10.1093/jxb/47.7.967

    Article  CAS  Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58:2339–2358

    Article  CAS  PubMed  Google Scholar 

  • Glevarec G, Bouton S, Jaspard E, Riou MT, Cliquet JB, Suzuki A, Limami AM (2004) Respective roles of the glutamine synthetase/glutamate synthase cycle and glutamate dehydrogenase in ammonium and amino acid metabolism during germination and post-germinative growth in the model legume Medicago truncatula. Planta 219:286–297

    Article  CAS  PubMed  Google Scholar 

  • Gout E, Boisson A, Aubert S, Douce R, Bligny R (2001) Origin of the cytoplasmic pH changes during anaerobic stress in higher plant cells. Carbon-13 and phosphorous-31 nuclear magnetic resonance studies. Plant Physiol 125:912–925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greenway H, Gibbs J (2003) Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct Plant Biol 30:37

    Article  Google Scholar 

  • Hebelstrup KH, van Zanten M, Mandon J, Voesenek LA, Harren FJ, Cristescu SM, Møller IM, Mur LA (2012) Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana. J Exp Bot 63:5581–5591

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Hill RD (2004) Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55:2473–2482

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Seregélyes C, Manac’h N, Hill RD (2004) NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin. Planta 219:95–102

    Article  CAS  PubMed  Google Scholar 

  • Ismond KP, Dolferus R, De Pauw M, Dennis ES, Good AG (2003) Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiol 132:1292–1302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson M (1985) Ethylene and responses of plants to soil waterlogging and submergence. Annu Rev Plant Physiol Plant Mol Biol 36:145–174

    Article  CAS  Google Scholar 

  • Jackson M, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287

    Article  CAS  Google Scholar 

  • Kaiser WM, Weiner H, Kandlbinder A, Tsai CB, Rockel P, Sonoda M, Planchet E (2002) Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction. J Exp Bot 53:875–882

    Article  CAS  PubMed  Google Scholar 

  • Kursteiner O, Dupuis I, Kuhlemeier C (2003) The pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmental stresses. Plant Physiol 132:968–978

    Article  PubMed Central  PubMed  Google Scholar 

  • Lasanthi-Kudahettige R, Magneschi L, Loreti E, Gonzali S, Licausi F, Novi G, Beretta O, Vitulli F, Alpi A, Perata P (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144:218–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee Y, Kende H (2001) Expression of beta-expansins is correlated with internodal elongation in deepwater rice. Plant Physiol 127:645–654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee Y, Kende H (2002) Expression of alpha-expansin and expansin-like genes in deepwater rice. Plant Physiol 130:1396–1405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Libourel IG, van Bodegom PM, Fricker MD, Ratcliffe RG (2006) Nitrite reduces cytoplasmic acidosis under anoxia. Plant Physiol 142:1710–1717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Limami AM, Glevarec G, Ricoult C, Cliquet J-B, Planchet E (2008) Concerted modulation of alanine and glutamate metabolism in young Medicago truncatula seedlings under hypoxic stress. J Exp Bot 59:2325–2335. doi:10.1093/jxb/ern102

    Article  CAS  PubMed  Google Scholar 

  • Loreti E, Poggi A, Novi G, Alpi A, Perata P (2005) A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant Physiol 137:1130–1138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma F, Lu R, Liu H, Shi B, Zhang J, Tan M, Zhang A, Jiang M (2012) Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize. J Exp Bot 63:4835–4847

    Article  CAS  PubMed  Google Scholar 

  • Masclaux-Daubresse C, Carrayol E, Valadier MH (2005) The two nitrogen mobilisation- and senescence-associated GS1 and GDH genes are controlled by C and N metabolites. Planta 221:580–588

    Article  CAS  PubMed  Google Scholar 

  • Melo-Oliveira R, Oliveira IC, Coruzzi GM (1996) Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation. Proc Natl Acad Sci U S A 93:4718–4723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Menegus F, Cattaruzza L, Mattana M, Beffagna N, Ragg E (1991) Response to anoxia in rice and wheat seedlings: changes in the pH of intracellular compartments, glucose-6-phosphate level, and metabolic rate. Plant Physiol 95:760–767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyashita Y, Good AG (2008) Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana. Plant Cell Physiol 49(1):92–102

    Article  CAS  PubMed  Google Scholar 

  • Miyashita Y, Dolferus R, Ismond KP, Good AG (2007) Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. Plant J 49:1108–1121

    Article  CAS  PubMed  Google Scholar 

  • Nada K, Iwatani E, Doi T, Tachibana S (2004) Effect of putrescine pretreatment to roots on growth and lactate metabolism in the root of tomato (Lycopersicum esculentum Mill.) under root-zone hypoxia. J Jpn Soc Hortic Sci 73:3

    Google Scholar 

  • Planchet E, Jagadis Gupta K, Sonoda M, Kaiser WM (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41:732–743

    Article  CAS  PubMed  Google Scholar 

  • Reggiani R, Hochkoeppler A, Bertani A (1989) Polyamines in rice seedlings under oxygen-deficit stress. Plant Physiol 91:1197–1201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reggiani R, Nebuloni M, Mattana M, Brambilla I (2000) Anaerobic accumulation of amino acids in rice roots: role of the glutamine synthetase/glutamate synthase cycle. Amino Acids 18:207–217

    Article  CAS  PubMed  Google Scholar 

  • Ricoult C, Cliquet J-B, Limami AM (2005) Stimulation of alanine amino transferase (AlaAT) gene expression and alanine accumulation in embryo axis of the model legume Medicago truncatula contribute to anoxia stress tolerance. Physiol Plant 123:30–39

    Article  CAS  Google Scholar 

  • Ricoult C, Echeverria LO, Cliquet JB, Limami AM (2006) Characterization of alanine aminotransferase (AlaAT) multigene family and hypoxic response in young seedlings of the model legume Medicago truncatula. J Exp Bot 57:3079–3089

    Article  CAS  PubMed  Google Scholar 

  • Roberts JKM, Chang K, Webster C, Callis J, Walbot V (1989) Dependence of ethanolic fermentation, cytoplasmic pH regulation, and viability on the activity of alcohol dehydrogenase in hypoxic maize root tips. Plant Physiol 89:1275–1278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rocha M, Licausi F, Araujo WL, Nunes-Nesi A, Sodek L, Fernie AR, van Dongen JT (2010) Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiol 152:1501–1513. doi:10.1104/pp. 109.150045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    Article  CAS  PubMed  Google Scholar 

  • Saglio P, Germain V, Richard B (1999) The response of plants to oxygen deprivation : role of enzyme induction in the improvement of tolerance to anoxia. In: Lerner HR (ed) Plant responses to environmental stresses. Marcel Dekker, New York, pp 373–393

    Google Scholar 

  • Sakihama Y, Nakamura S, Yamasaki H (2002) Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol 43:290–297

    Article  CAS  PubMed  Google Scholar 

  • Shelp BJ, Bozzo GG, Trobacher CP, Zarei A, Deyman KL, Brikis CJ (2012) Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci 193–194:130–135

    Article  PubMed  Google Scholar 

  • Shi K, Ding X-T, Don D-K, Zhou Y-H, Yu JQ (2008) Putrescine enhancement of tolerance to root-zone hypoxia in Cucumis sativus: a role in increased nitrate reductase. Funct Plant Biol 35:48

    CAS  Google Scholar 

  • Skopelitis DS, Paranychianakis NV, Paschalidis KA, Pliakonis ED, Delis ID, Yakoumakis DI, Kouvarakis A, Papadakis AK, Stephanou EG, Roubelakis-Angelakis KA (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18:2767–2781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stoimenova M, Igamberdiev AU, Gupta KJ, Hill RD (2007) Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta 226:465–474

    Article  CAS  PubMed  Google Scholar 

  • Talwar PS, Gupta R, Maurya AK, Deswal R (2012) Brassica juncea nitric oxide synthase like activity is stimulated by PKC activators and calcium suggesting modulation by PKC-like kinase. Plant Physiol Biochem 60:157–164

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129

    Article  PubMed  Google Scholar 

  • Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M (2007) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol 175:36–50

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

To Claudie Ricoult in memoriam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anis M. Limami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Limami, A.M. (2014). Adaptations of Nitrogen Metabolism to Oxygen Deprivation in Plants. In: van Dongen, J., Licausi, F. (eds) Low-Oxygen Stress in Plants. Plant Cell Monographs, vol 21. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1254-0_11

Download citation

Publish with us

Policies and ethics