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Preface

Throughout the history of Earth, a tight relationship was established between the

high availability of oxygen in the atmosphere and the biological population.

Oxygen enrichment of the Archean Earth’s atmosphere was initiated by

cyanobacteria and further boosted as a consequence of the colonization of the

planet’s surface by photosynthetic and multicellular eukaryotes which developed

into land plants (Bendall et al. 2008). Nowadays, oxygen accounts for about

one-fifth of our atmosphere and represents an essential element, which sustains

the life of most multicellular organisms, including fungi, animals, and plants. Not

only oxygen is required as terminal electron acceptor to ensure respiratory energy

production via oxidative phosphorylation, but it also acts as primary substrate in a

majority of metabolic reactions that produce structural and signaling components

throughout all kingdoms of life. Consequently, when oxygen availability is reduced

below the levels required to sustain these biological processes, a situation of crisis is

generated. This is especially serious for sessile organisms, such as plants, which are

limited in their possibility to move towards area where oxygen availability is

sufficient.

For plants, the most common case of restriction in oxygen availability is caused

by submergence, due to the slower diffusion of gases in water than in air and

exacerbated by the competition for oxygen consumption by soil microorganisms,

whose anaerobic metabolism in turn leads to the accumulation of phytotoxic

metabolites (Bailey-Serres and Voesenek 2008). Plants do not need to be

completely submerged to suffer from oxygen deficiency: reduced oxygen levels

(hypoxia) or complete absence of oxygen (anoxia) in waterlogged soil is sufficient

to put plant’s survival at stakes and has dramatic effect on crop yield (Ahmed

et al. 2013). The consequent reduction in size and functionality of the root apparatus

of a flooded or waterlogged plant reduce water and nutrient transport towards the

shoot. The high probability that every plant will experience restriction in oxygen

availability at sometimes throughout its lifespan suggested the concept that these

organisms must have evolved efficient strategies to cope with this situation orches-

trated by perception and signaling mechanism that integrated them into develop-

mental and growth programs (Bailey-Serres et al. 2012). Additionally, the notion
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that oxygen availability is not equal to all plant cell types and certain tissues or

organs actually develop at oxygen levels lower than those available in the atmo-

sphere put this element in the perspective of a developmental signal.

Initially, research on plant anaerobiosis developed in the fields of biochemistry,

due to its direct effect on primary metabolism, and ecology, as broad differences in

tolerance to flooding were traditionally known in wild and cultivated species.

Biochemical studies first focused on the metabolic switch from the aerobic respi-

ration to fermentative pathways (reviewed in Davies 1980), but later explored the

global adjustment and re-routing of primary metabolic reactions opening the debate

over an adaptation of respiratory rates to hypoxia. On the other hand, ecophysio-

logical approaches aimed at the identification and characterization of the strategies

adopted by different plant species to restricted oxygen availability throughout

evolution (Jackson and Colmer 2005). The characterization of the molecular ele-

ments, involved in low oxygen sensing and signaling, initiated at the end of the

1990s and beginning of the current century (Hoeren et al. 1998; Klok et al. 2002)

but, in comparison with other abiotic stresses such as heat, cold, and high salinity,

knowledge in this field lagged behind. Nevertheless at the descriptive level, very

detailed overviews of the transcriptomic adjustment to oxygen deprivation were

produced, including time-, oxygen-concentration-, and cell type-specific-resolved

analyses (Mustroph et al. 2009; Mustroph et al. 2010). This generated a deep

knowledge related to the dynamics of the anaerobic response and greatly contrib-

uted to the identification of general and tissue-specific responses. In the last

10 years, two main breakthrough set milestones in the applied and theoretic

knowledge with respect to the plant adaptation to low oxygen availability, respec-

tively. First, a joint team of agronomists, physiologists, and molecular biologists

revealed the genetic basis for submergence tolerance in wild rice varieties and

described for the first time a quiescent metabolic adaptation aimed at saving energy

and resources for short-lasting floods (Xu et al. 2006). An opposite strategy was

shown a couple of years later to occur in deep-water rice varieties (Hattori

et al. 2009). More recently, studies conducted in Arabidopsis converged to the

identification of an oxygen-dependent pathway for the degradation of transcription

factors that orchestrate the core of the anaerobic response in plants (Gibbs

et al. 2011; Licausi et al. 2011). Not surprisingly, these three studies hit on the

same class of transcription factors, suggesting that species-specific modes of action

to respond to low-oxygen stress evolved from the same basic genetic elements.

Concomitantly, the gaseous phytohormone ethylene emerged as a key-regulator of

the response to flooding and its interaction with other growth regulators such as

gibberellins, auxin, and abscisic acid was shown to shape plant growth (Bailey-

Serres and Voesenek 2008).

With this book, we bring together the different fields of research which deal with

low oxygen conditions in plants and algae to provide an overview of the deep

interconnection between their achievements. The monograph consists of seven

sections, starting from the mechanisms adopted by plant cells to perceive oxygen
availability and initiate the signaling cascade that leads to the activation of

conserved and species-specific adaptive responses. In this section, both direct
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oxygen sensing (Kosmacz and Weits, Chap. 1) and biochemical parameters that are

affected as consequence of decreased oxygen availability are discussed, including

the level of reactive oxygen species (Blokhina et al., Chap. 2), nitric oxide

(Igamberdiev et al., Chap. 3), and pH (Ishizawa, Chap. 4). The molecular response
of plants to hypoxia is presented in the following section, with a focus at the

transcriptional (Giuntoli and Perata, Chap. 5) and the posttranscriptional (Sorenson

and Bailey-Serres, Chap. 6) level with an additional chapter dedicated to the

hormonal interplay that integrate the adaption to oxygen deficiency into growth

and developmental programs (Steffens and Sauter, Chap. 7). The third section of

this book is dedicated to the metabolic adaptations that take place as consequence
of a decrease in the oxygen—and thus energy—availability. This section is not

limited to higher plants but takes into consideration also green algae whose

anaerobic metabolism is of potential economic interest, such as Chlamydomonas
reinhardtii (Yang et al., Chap. 8). The role of alternative energy storage units, such
as PPi, is discussed by Mustroph et al. (Chap. 9) while the effect of changing

oxygen availability on respiratory energy production is described by Paepke et al.

(Chap. 10). Oxygen-dependent effect on nitrogen and amino acid metabolism is

reviewed by Limami (Chap. 11) and Geigenberger (Chap. 12) describes storage

metabolism under oxygen limitations. Most of the molecular and metabolic

changes described in the previous sections are ultimately aimed at sustaining

prolonged conditions of hypoxia, which is also achieved via morphological adap-
tations that ameliorate oxygen supply and transport within the plant tissues (Arm-

strong and Armstrong, Chap. 14), namely the formation of aerenchyma (Takahashi

et al., Chap. 13) and the production of adventitious roots (Sauter and Steffens,

Chap. 15). Species-specific strategies which have been developed by plants to

maintain photosynthetic activity under water (Pedersen and Colmer, Chap. 16)

and cope with flooding conditions (van Veen et al., Chap. 17) are discussed in a

specific section dedicated to the ecophysiological aspects of the response to low

oxygen. Furthermore, the occurrence and impact of low oxygen responses in

agricultural practice are discussed taking into consideration the difficulty of oxygen

diffusion into bulky fruits (Nicolai et al., Chap. 18), the oxygen supply in artificial

substrates used in horticulture (Wessel et al., Chap. 19), and presenting the effect of

herbicides that mimic the hypoxic response in plants (Zabalza and Royuela,

Chap. 20). Our book concludes with a review about the state-of-the-art techniques

used in the past to measure oxygen concentrations in vivo and the novel molecular

strategies that are being developed to do so in the least intrusive way (Ast and

Draaijer, Chap. 21).

We expect that the detailed survey about the various aspects of low-oxygen

stress in plants as it is discussed in this monograph will not just contribute to our

understanding of the adaptation of plant to low oxygen stress but also extend its

potential to the improvement of crops against the damage caused by flooding. Even

more so, we hope it will pave the way towards new discoveries that are expected to

further boost our knowledge in this field in the next years.
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