Skip to main content

Drug Targets, Drug Effectors, and Drug Targeting and Delivery

  • Chapter
  • First Online:
Book cover Drug Resistance in Leishmania Parasites

Summary

The chemotherapy of leishmaniases has undergone significant improvements during the last decade with the use of liposomal amphotericin B formulation (AmBisome®) and miltefosine as the first orally active drug. However, whatever the proposed treatment, limitations such as adverse effects and the emergence of drug resistance justify the search for new therapies. One way to overcome these limitations is to improve the classical treatments by drug association, which appears to be successful at the clinical level for leishmaniasis, mainly by associating AmBisome® with miltefosine. Another approach consists in designing new formulations of classical drugs able to limit adverse effects by concentrating the drug at its site of action in the case of visceral leishmaniasis or, on the other hand, by spreading the drug over the whole body to treat diffuse leishmaniasis. Progress in nanotechnology will open the way for new low-cost formulations during the next decade.

The identification of new targets that are specific of the parasite remains a priority to design new chemical leads having low toxicity for the host. Such targets should be validated as necessary for the parasite survival. However, common enzyme systems present in both the parasite and the host should not be neglected since alpha-difluoromethylornithine is a successful example of this approach in the field of human African trypanosomiasis. The knowledge of the molecular and mechanistic differences between parasite and host functional proteins, completed by computer-aided drug design, is still awaited for the emergence of new drugs.

The identification of new leads includes systematic evaluation of extracts from natural origin based on bio-guided fractionation. Compounds obtained from such investigations, such as licochalcone and quinolines, are in predevelopment. More efforts in this direction should yield results, taking advantage of the biodiversity not only of plants but also of animals. In parallel to this approach, many chemical series known for their antileishmanial activities are being revisited using rational pharmacomodulation in order to improve their bioavailability, to diminish their toxicity and to focus the drug on its target. Another promising approach is the design of multi-target-directed ligands in order to affect at least two targets within the parasite. All these investigations should provide new tools for the antileishmanial chemotherapy of tomorrow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams M, Kwon GS (2004) Spectroscopic investigation of the aggregation state of amphotericin B during loading, freeze-drying and reconstitution of polymeric micelles. J Pharm Pharmaceut Sci 7(S1):1–6

    CAS  Google Scholar 

  • Adler-Moore JP, Proffitt R (2002) AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J Antimicrob Ther 49(Suppl 1):21–30

    CAS  Google Scholar 

  • Agrawal AJ, et al (2002) Superior chemotherapeutic efficacy of amphotericin B in tuftsin-bearing liposomes against Leishmania donovani infection in hamsters. J Drug Target 10:41–45

    CAS  PubMed  Google Scholar 

  • Alvar J, et al (2008) The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev 21:334–359

    CAS  PubMed  Google Scholar 

  • Alvarez N, et al (2002) Inhibition of parasite protein kinase C by new antileishmanial imidazolidin-2-one compounds. J Enzyme Inhib Med Chem 17:443–447

    PubMed  Google Scholar 

  • Antimisiaris SG, Ioannou PV (2010) Arsonoliposomes: preparation and physicochemical characterization. Methods Mol Biol 605:147–162

    CAS  PubMed  Google Scholar 

  • Antimisiaris SG, Ioannou PV, Loiseau PM (2003) In-vitro antileishmanial and trypanocidal activities of arsonoliposomes and preliminary in-vivo distribution in BALB/C mice. J Pharm Pharmacol 55:647–652

    CAS  PubMed  Google Scholar 

  • Ariza A, et al (2005) Crystallization and preliminary X-ray analysis of Leishmania major glyoxalase I. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:769–772

    PubMed  Google Scholar 

  • Aronov AM, et al (1999) Structure-based design of submicromolar, biologically active inhibitors of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 96:4273–4278

    CAS  PubMed  Google Scholar 

  • Baig MS, et al (2010) Characterization of dipeptidylcarboxypeptidase of Leishmania donovani: a molecular model for structure based design of antileishmanials. J Comput Aided Mol Des 24:77–87

    CAS  PubMed  Google Scholar 

  • Bakker BM, et al (2000) Metabolic control analysis of glycolysis in trypanosomes as an approach to improve selectivity and effectiveness of drugs. Mol Biochem Parasitol 106:1–10

    CAS  PubMed  Google Scholar 

  • Banerjee G, et al (1996) Drug delivery system: targeting of pentamidines to specific sites using sugar grafted liposomes. J Antimicrob Chemother 38:145–150

    CAS  PubMed  Google Scholar 

  • Banerjee G, Medda S, Basu MK (1998) A novel peptide-grafted liposomal delivery system targeted to macrophages. Antimicrob Agents Chemother 42:348–351

    CAS  PubMed  Google Scholar 

  • Bang J-Y, et al (2008) Cytotoxicity of amphotericin B-incorporated polymeric micelles composed of poly(DL-lactide-co-glycolide)/dextran graft copolymer. Arch Pharm Res 31:1463–1469

    CAS  PubMed  Google Scholar 

  • Barratt G (2003) Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci 60:21–37

    CAS  PubMed  Google Scholar 

  • Barratt G, Bretagne S (2007) Optimizing efficacy of amphotericin B through nanomodification. Int J Nanomed 2:301–313

    CAS  Google Scholar 

  • Barratt G, Schuber F (1993) Targeting of liposomes with mannose terminated ligands. In: Gregoriadis G (ed) Liposome technology, vol III, 2nd edn. CRC Press, Boca Raton, pp 199–218

    Google Scholar 

  • Bello AR, et al (1994) PTR1: a reductase mediating salvage of oxidized pteridines and methotrexate resistance in the protozoan parasite Leishmania major. Proc Natl Acad Sci USA 91:11442–11446

    CAS  PubMed  Google Scholar 

  • Berg M, et al (2009) Synthesis of bicyclic N-arylmethyl-substituted iminoribitol derivatives as selective nucleoside hydrolase inhibitors. Chem Med Chem 4:249–260

    CAS  PubMed  Google Scholar 

  • Berg M, et al (2010) Inhibitors of the purine salvage pathway: a valuable approach for antiprotozoal chemotherapy? Curr Med Chem 17:2456–2481

    CAS  PubMed  Google Scholar 

  • Berman JD, Gallalee JV, Best JM (1987) Sodium stibogluconate (Pentostam) inhibition of glucose catabolism via the glycolytic pathway, and fatty acid beta-oxidation in Leishmania mexicana amastigotes. Biochem Pharmacol 36:197–201

    CAS  PubMed  Google Scholar 

  • Blackwell JM (1985) Receptors and recognition mechanisms of Leishmania species. Trans R Soc Trop Med Hyg 79:606–612

    CAS  PubMed  Google Scholar 

  • Brannigan JA, et al (2010) N-myristoyltransferase from Leishmania donovani: structural and functional characterisation of a potential drug target for visceral leishmaniasis. J Mol Biol 396:985–999

    CAS  PubMed  Google Scholar 

  • Cáceres AJ, Michels PA, Hannaert V (2010) Genetic validation of aldolase and glyceraldehyde-3-phosphate dehydrogenase as drug targets in Trypanosoma brucei. Mol Biochem Parasitol 169:50–54

    Google Scholar 

  • Carneiro G, et al (2010) Topical delivery and in vivo antileishmanial activity of paromomycin-loaded liposomes for treatment of cutaneous leishmaniasis. J Liposome Res 20:16–23

    CAS  PubMed  Google Scholar 

  • Carter NS, et al (2008) Purine and pyrimidine metabolism in Leishmania. Adv Exp Med Biol 625:141–154

    CAS  PubMed  Google Scholar 

  • Castro-Pinto DB, et al (2004) Trypanothione reductase activity is prominent in metacyclic promastigotes and axenic amastigotes of Leishmania amazonesis. Evaluation of its potential as a therapeutic target. J Enzyme Inhib Med Chem 19:57–63

    CAS  PubMed  Google Scholar 

  • Castro-Pinto DB, et al (2007) Leishmania amazonensis trypanothione reductase: evaluation of the effect of glutathione analogs on parasite growth, infectivity and enzyme activity. J Enzyme Inhib Med Chem 22:71–75

    CAS  PubMed  Google Scholar 

  • Cavalli A, Bolognesi ML (2009) Neglected tropical diseases: multi-target-directed ligands in the search for novel lead candidates against Trypanosoma and Leishmania. J Med Chem 52:7339–7359

    CAS  PubMed  Google Scholar 

  • Cavazzuti A, et al (2008) Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development. Proc Natl Acad Sci USA 105:1448–1453

    CAS  PubMed  Google Scholar 

  • Chakravarty J, Sundar S (2010) Drug resistance in leishmaniasis. J Glob Infect Dis 2:167–176

    PubMed  Google Scholar 

  • Chowdhury SF, et al (2002) Synthesis and testing of 5-benzyl-2,4-diaminopyrimidines as potential inhibitors of leishmanial and trypanosomal dihydrofolate reductase. J Enzyme Inhib Med Chem 17:293–302

    CAS  PubMed  Google Scholar 

  • Chowdhury AR, et al (2003) Dihydrobetulinic acid induces apoptosis in Leishmania donovani by targeting DNA topoisomerase I and II: implications in antileishmanial therapy. Mol Med 9:26–36

    CAS  PubMed  Google Scholar 

  • Concu R, et al (2009) Prediction of enzyme classes from 3D structure: a general model and examples of experimental-theoretic scoring of peptide mass fingerprints of Leishmania proteins. J Proteome Res 8:4372–4382

    CAS  PubMed  Google Scholar 

  • Conover CD, et al (2003) Utility of poly(ethylene glycol) conjugation to create prodrugs of amphotericin B. Bioconjugate Chem 14:661–666

    CAS  Google Scholar 

  • Cordeiro AT, et al (2004a) Leishmania mexicana mexicana glucose-6-phosphate isomerase: crystallization, molecular-replacement solution and inhibition. Acta Crystallogr D Biol Crystallogr 60:915–919

    PubMed  Google Scholar 

  • Cordeiro AT, et al (2004b) The crystal structure of glucose-6-phosphate isomerase from Leishmania mexicana reveals novel active site features. Eur J Biochem 271:2765–2772

    CAS  PubMed  Google Scholar 

  • Dangi JS, Vyas SP, Dixit VK (1998) Effect of various lipid-bile salt mixed micelles on the intestinal absorption of amphotericin B in rat. Drug Dev Ind Pharm 24:631–635

    CAS  PubMed  Google Scholar 

  • Das BB, et al (2006) Topoisomerase research of kinetoplastid parasite Leishmania, with special reference to development of therapeutics. Indian J Med Res 123:221–232

    CAS  PubMed  Google Scholar 

  • Das BB, Ganguly A, Majumder HK (2008) DNA topoisomerases of Leishmania: the potential targets for anti-leishmanial therapy. Adv Exp Med Biol 625:103–115

    CAS  PubMed  Google Scholar 

  • Davis AJ, et al (2004) Properties of GDP-mannose pyrophosphorylase, a critical enzyme and drug target in Leishmania mexicana. J Biol Chem 279:12462–12468

    CAS  PubMed  Google Scholar 

  • De Sousa JM, et al (2003) Characterization of Leishmania chagasi DNA topoisomerase II: a potential chemotherapeutic target. Scand J Infect Dis 35:826–829

    PubMed  Google Scholar 

  • De Walque S, Opperdoes FR, Michels PA (1999) Cloning and characterization of Leishmania mexicana fructose-1,6-bisphosphate aldolase. Mol Biochem Parasitol 103:279–283

    PubMed  Google Scholar 

  • Delmas G, et al (2002) Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis. Antimicrob Agents Chemother 46:2704–2707

    CAS  PubMed  Google Scholar 

  • Denny PW, et al (2006) The protozoan inositol phosphorylceramide synthase: a novel drug target that defines a new class of sphingolipid synthase. J Biol Chem 281:28200–28209

    CAS  PubMed  Google Scholar 

  • Durand R, et al (1997) Activity of pentamidine-loaded poly (D, L-lactide) nanoparticles against Leishmania infantum in a murine model. Parasite 4:331–336

    CAS  PubMed  Google Scholar 

  • Egito EST, et al (1996) In-vitro and in-vivo evaluation of a new amphotericin B emulsion-based delivery system. J Antimicrob Chemother 38:485–497

    Google Scholar 

  • Ehrenfreund-Kleinman T, Domb AJ, Jaffe CL, Nasereddin A, Leshem B, Golenser J (2005) The effect of amphotericin B derivatives on Leishmania and immune infections. J Parasitol 91:158–163

    Google Scholar 

  • Ehrenfreund-Kleinman T, et al (2002) Synthesis and characterization of novel water soluble amphotericin B-arabinogalactan conjugates. Biomaterials 23:1327–1335

    CAS  PubMed  Google Scholar 

  • El Fadili A, et al (2004) Inactivation of the Leishmania tarentolae pterin transporter (BT1) and reductase (PTR1) genes leads to viable parasites with changes in folate metabolism and hypersensitivity to the antifolate methotrexate. J Biol Chem 279:18575–18582

    CAS  PubMed  Google Scholar 

  • Espiau B, et al (2006) A soluble pyrophosphatase, a key enzyme for polyphosphate metabolism in Leishmania. J Biol Chem 281:1516–1523

    CAS  PubMed  Google Scholar 

  • Espuelas MS, et al (1998a) Interactions of amphotericin B with polymeric colloids. A spectroscopic study. Colloids Surf B Biointerface 11:141–151

    CAS  Google Scholar 

  • Espuelas MS, et al (1998b) Interactions of amphotericin B with polymeric colloids. 2. Effect of poloxamer on the adsorption of amphotericin B onto poly(ε-caprolactone) nanospheres. Colloids Surf B Biointerface 11:203–212

    CAS  Google Scholar 

  • Espuelas MS, et al (2000) In vitro reversion of amphotericin B resistance in Leishmania donovani by poloxamer 188. Antimicrob Agents Chemother 44:2190–2192

    CAS  PubMed  Google Scholar 

  • Espuelas MS, et al (2002) In vitro antileishmanial activity of amphotericin B loaded in poly(epsilon-caprolactone) nanospheres. J Drug Target 10:593–599

    CAS  PubMed  Google Scholar 

  • Ferreira LS, et al (2004) In vitro skin permeation and retention of paromomycin from liposomes for topical treatment of the cutaneous leishmaniasis. Drug Dev Ind Pharm 30:289–296

    CAS  PubMed  Google Scholar 

  • Frézard F, Demicheli C, Ribeiro RR (2009) Pentavalent antimonials: new perspectives for old drugs. Molecules 14:2317–2336

    PubMed  Google Scholar 

  • Fukui H, et al (2003) Comparison of LNS-AmB, a novel low-dose formulation of amphotericin B with lipid nano-sphere (LNS®), with commercial lipid-based formulations. Int J Pharm 267:101–112

    CAS  PubMed  Google Scholar 

  • Galindo MM, et al (2009) A heat-activated and thermoresistant telomerase activity in Leishmania major Friedlin. Acta Trop 111:86–89

    CAS  PubMed  Google Scholar 

  • Gaspar R, et al (1992) Drug targeting with polyalkylcyanoacrylate nanoparticles: in vitro activity of primaquine-loaded nanoparticles against intracellular Leishmania donovani. Ann Trop Med Parasitol 86:41–49

    CAS  PubMed  Google Scholar 

  • Genestra M, Cysne-Finkelstein L, Leon L (2004) Protein kinase A activity is associated with metacyclogenesis in Leishmania amazonensis. Cell Biochem Funct 22:315–320

    CAS  PubMed  Google Scholar 

  • Gershkovich P, et al (2009) Pharmacokinetics and biodistribution of amphotericin B in rats following oral administration in a novel lipid-based formulation. J Antimicrob Chemother 64:101–108

    CAS  PubMed  Google Scholar 

  • Giam CZ, Boros I (1988) In vivo and in vitro autoprocessing of immunodeficiency virus protease expressed in human Escherichia coli. J Biol Chem 263:14617–14620

    Google Scholar 

  • Goyal N, et al (2006) Cloning and characterization of angiotensin converting enzyme related dipeptidylcarboxypeptidase from Leishmania donovani. Mol Biochem Parasitol 145:147–157

    CAS  PubMed  Google Scholar 

  • Gradoni L, Gramiccia M, Scalone A (2004) Change in human visceral leishmaniasis treatment in Italy: retrospective study of 630 patients. Parassitologia 46:199–201

    CAS  PubMed  Google Scholar 

  • Grant KM, et al (2004) Inhibitors of Leishmania mexicana CRK3 cyclin-dependent kinase: chemical library screen and antileishmanial activity. Antimicrob Agents Chemother 48:3033–3042

    CAS  PubMed  Google Scholar 

  • Guo LSS (2001) Amphotericin B colloidal dispersion: an improved antifungal therapy. Adv Drug Deliv Rev 47:149–163

    CAS  PubMed  Google Scholar 

  • Gupta S, Vyas SP (2007) Development and characterization of amphotericin B bearing emulsomes for passive and active macrophage targeting. J Drug Target 15:206–217

    CAS  PubMed  Google Scholar 

  • Gupta S, et al (2005) Designing and testing of an effective oil-in-water microemulsion drug delivery system for in vivo application. Drug Deliv 12:267–273

    CAS  PubMed  Google Scholar 

  • Gupta S, Dube A, Vyas SP (2007) Antileishmanial efficacy of amphotericin B bearing emulsomes against experimental visceral leishmaniasis. J Drug Target 15:437–444

    CAS  PubMed  Google Scholar 

  • Hanke T, et al (2003) Cloning, functional analysis and post-transcriptional regulation of a type II DNA topoisomerase from Leishmania infantum. A new potential target for anti-parasite drugs. Nucleic Acids Res 31:4917–4928

    CAS  PubMed  Google Scholar 

  • Hansen J, Billich S, Schulze T, Sukrow S, Moelling K (1988) Partial purification and substrate analysis of bacterially expressed HIV protease by means of monoclonal antibody. EMBO J 7:1785–1791

    Google Scholar 

  • Heath S, Chance ML, New RR (1984) Quantitative and ultrastructural studies on the uptake of drug loaded liposomes by mononuclear phagocytes infected with Leishmania donovani. Mol Biochem Parasitol 12:49–60

    CAS  PubMed  Google Scholar 

  • van Heeswijk RP, Veldkamp A, Mulder JW, Meenhorst PL, Lange JM, Beijnen JH, Hoetelmans RM (2001) Combination of protease inhibitors for the treatment of HIV-1-infected patients: a review of pharmacokinetics and clinical experience. Antivir Ther 6:201–229

    Google Scholar 

  • Italia JL, et al (2009) Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone. Pharm Res 26:1324–1331

    CAS  PubMed  Google Scholar 

  • Janoff AS, et al (1993) Amphotericin B lipid complex (ABLC™): a molecular rationale for the attenuation of amphotericin B-related toxicites. J Liposome Res 3:451–471

    CAS  Google Scholar 

  • Jiménez-Jiménez C, et al (2008) Delta24(25)-sterol methenyltransferase: intracellular localization and azasterol sensitivity in Leishmania major promastigotes overexpressing the enzyme. Mol Biochem Parasitol 160:52–59

    PubMed  Google Scholar 

  • Kadam RU, Kiran VM, Roy N (2006) Comparative protein modeling and surface analysis of Leishmania sirtuin: a potential target for antileishmanial drug discovery. Bioorg Med Chem Lett 16:6013–6018

    CAS  PubMed  Google Scholar 

  • Kadam RU, et al (2008) Structure function analysis of Leishmania sirtuin: an ensemble of in silico and biochemical studies. Chem Biol Drug Des 71:501–506

    CAS  PubMed  Google Scholar 

  • Kaur J, et al (2009) Leishmania donovani: a glycosyl dihydropyridine analogue induces apoptosis like cell death via targeting pteridine reductase 1 in promastigotes. Exp Parasitol 123:258–264

    CAS  PubMed  Google Scholar 

  • Kaur S, et al (2010a) Antileishmanial effect of cisplatin against murine visceral leishmaniasis. Parasitol Int 59:62–69

    CAS  PubMed  Google Scholar 

  • Kaur J, et al (2010b) Leishmania donovani: oral therapy with glycosyl 1,4-dihydropyridine analogue showing apoptosis like phenotypes targeting pteridine reductase 1 in intracellular amastigotes. Exp Parasitol 125:310–314

    CAS  PubMed  Google Scholar 

  • Kaur J, Sundar S, Singh N (2010c) Molecular docking, structure-activity relationship and biological evaluation of the anticancer drug monastrol as a pteridine reductase inhibitor in a clinical isolate of Leishmania donovani. J Antimicrob Chemother 65:1742–1748

    CAS  PubMed  Google Scholar 

  • Kayser O, et al (2003) Formulation of amphotericin B as nanosuspension for oral administration. Int J Pharm 254:73–75

    CAS  PubMed  Google Scholar 

  • Keegan FP, Blum JJ (1992) Utilization of a carbohydrate reserve comprised primarily of mannose by Leishmania donovani. Mol Biochem Parasitol 53:193–200

    Google Scholar 

  • Khan W, Kumar N (2010) Drug targeting to macrophages using paromomycin-loaded albumin microspheres for treatment of visceral leishmaniasis: an in vitro evaluation. J Drug Target. doi:10.3109/1061186X.2010.492524, e-pub Jun 14

  • Kumar P, et al (2008) Leishmania donovani pteridine reductase 1: biochemical properties and structure-modeling studies. Exp Parasitol 120:73–79

    CAS  PubMed  Google Scholar 

  • Lackovic K, et al (2010) Inhibitors of Leishmania GDP-mannose pyrophosphorylase identified by high-throughput screening of small-molecule chemical library. Antimicrob Agents Chemother 54:1712–1719

    CAS  PubMed  Google Scholar 

  • Ladame S, et al (2001) Selective inhibition of Trypanosoma brucei GAPDH by 1,3-bisphospho-D-glyceric acid (1,3-diPG) analogues. Bioorg Med Chem 9:773–783

    CAS  PubMed  Google Scholar 

  • Lafrance-Vanasse J, Sygusch J (2007) Carboxy-terminus recruitment induced by substrate binding in eukaryotic fructose bis-phosphate aldolases. Biochemistry 46:9533–9540

    CAS  PubMed  Google Scholar 

  • Lala S, et al (2006) Critical evaluation of the therapeutic potential of bassic acid incorporated in oil-in-water microemulsions and poly-D, L-lactide nanoparticles against experimental leishmaniasis. J Drug Target 14:171–179

    CAS  PubMed  Google Scholar 

  • Larabi M, et al (2003) Toxicity and antileishmanial activity of a new stable lipid suspension of amphotericin B. Antimicrob Agents Chemother 47:3774–3779

    CAS  PubMed  Google Scholar 

  • Larabi M, et al (2004a) New lipid formulation of amphotericin B: spectral and microscopic analysis. BBA Biomemb 1664:172–181

    CAS  Google Scholar 

  • Larabi M, et al (2004b) Study of the toxicity of a new formulation of amphotericin B. J Antimicrob Chemother 53:81–88

    CAS  PubMed  Google Scholar 

  • Lincopan N, et al (2006) Toxicity of an effective amphotericin B formulation at high cationic lipid to drug molar ratio. Exp Toxicol Pathol 58:175–183

    CAS  PubMed  Google Scholar 

  • Lira CB, et al (2009) DNA and heparin chaperone the refolding of purified recombinant replication protein A subunit 1 from Leishmania amazonensis. Biochim Biophys Acta 1790:119–125

    CAS  PubMed  Google Scholar 

  • Lopez-Berestein G, et al (1983) Effects of sterols on the therapeutic efficacy of liposomal amphotericin B in murine candidiasis. Cancer Drug Deliv 1:37–42

    CAS  PubMed  Google Scholar 

  • Ma XH, et al (2010) In-silico approaches to multi-target drug discovery: computer aided multi-target drug de-sign, multi-target virtual screening. Pharm Res 27:739–749

    CAS  PubMed  Google Scholar 

  • Maganti L, Manoharan P, Ghoshal N (2010) Probing the structure of Leishmania donovani chagasi DHFR-TS: comparative protein modeling and protein-ligand interaction studies. J Mol Model 16:1539–1547

    Google Scholar 

  • Mastrolorenzo A, Rusconi S, Scozzafava A, Barbaro G, Supuran CT (2007) Inhibitors of HIV-1 protease: current state of the art 10 years after their introduction. From antiretroviral drugs to antifungal, antibacterial and antitumor agents based on aspartic protease inhibitors. Curr Med Chem 14:2734–2748

    Google Scholar 

  • McLuskey K, et al (2004) Inhibition of Leishmania major pteridine reductase by 2,4,6-triaminoquinazoline: structure of the NADPH ternary complex. Acta Crystallogr D Biol Crystallogr 60:1780–1785

    PubMed  Google Scholar 

  • Ménez C, et al (2006a) Modulation of intestinal barrier properties by miltefosine. Biochem Pharmacol 71:486–496

    PubMed  Google Scholar 

  • Ménez C, et al (2006b) Interaction between miltefosine and amphotericin B: consequences for their activity towards intestinal epithelial cells and L. donovani promastigotes in vitro. Antimicrob Agents Chemother 50:3793–3800

    PubMed  Google Scholar 

  • Mina JG, et al (2010) A plate-based assay system for analyses and screening of the Leishmania major inositol phosphorylceramide synthase. Int J Biochem Cell Biol 42:1553–1561

    Google Scholar 

  • Moore EM, Lockwood DN (2010) Treatment of visceral leishmaniasis. J Glob Infect Dis 2:151–158

    CAS  PubMed  Google Scholar 

  • Murray HW (2001) Clinical and experimental advances in treatment of visceral leishmaniasis. Antimicrob Agents Chemother 45:2185–2197

    CAS  PubMed  Google Scholar 

  • Murta SM, et al (2009) Methylene tetrahydrofolate dehydrogenase/cyclohydrolase and the synthesis of 10-CHO-THF are essential in Leishmania major. Mol Microbiol 71:1386–1401

    CAS  PubMed  Google Scholar 

  • Nahar M, Jain NK (2009) Preparation, characterization and evaluation of targeting potential of amphotericin B-loaded engineered PLGA nanoparticles. Pharm Res 26:2588–2598

    CAS  PubMed  Google Scholar 

  • Nahar M, et al (2010) In vitro evaluation of surface functionalized gelatin nanoparticles for macrophage targeting in the therapy of visceral leishmaniasis. J Drug Target 18:93–105

    CAS  PubMed  Google Scholar 

  • Naula C, Parsons M, Mottram JC (2005) Protein kinases as drug targets in trypanosomes and Leishmania. Biochim Biophys Acta 1754:151–159

    CAS  PubMed  Google Scholar 

  • Nelson KG, et al (2006) Nanodisk-associated amphotericin B clears Leishmania major cutaneous infections in susceptible BALB/C mice. Antimicrob Agents Chemother 50:1238–1244

    CAS  PubMed  Google Scholar 

  • New RR, Chance M (1980) Treatment of experimental cutaneous leishmaniasis by liposome-entrapped Pentostam. Acta Trop 37:253–256

    CAS  PubMed  Google Scholar 

  • New RR, et al (1978) Antileishmanial activity of antimonials entrapped in liposomes. Nature 272:55–56

    CAS  PubMed  Google Scholar 

  • New RR, Chance ML, Heath S (1981) Antileishmanial activity of amphotericin and other antifungal agents entrapped in liposomes. J Antimicrob Chemother 8:371–381

    CAS  PubMed  Google Scholar 

  • Nicoletti S, Seifert K, Gilbert IH (2010) Water-soluble polymer-drug conjugates for combination chemotherapy against visceral leishmaniasis. Bioorg Med Chem 18:2559–2565

    CAS  PubMed  Google Scholar 

  • Nishi KK, et al (2007) Amphotericin B-gum arabic conjugates: synthesis, toxicity, bioavailability, and activities against Leishmania and fungi. Pharm Res 24:971–980

    CAS  PubMed  Google Scholar 

  • Nowicki MW, et al (2008) Design, synthesis and trypanocidal activity of lead compounds based on inhibitors of parasite glycolysis. Bioorg Med Chem 16:5050–5061

    CAS  PubMed  Google Scholar 

  • Oda MN, et al (2006) Reconstituted high-density lipoprotein enriched with the polyene antibiotic amphotericin B. J Lipid Res 47:260–267, errata p1114

    CAS  PubMed  Google Scholar 

  • Olivier M et al (2003) The pathogenesis of Leishmania/HIV co-infection: cellular and immunological mechanisms. Ann Trop Med Parasitol 1:79–98

    Google Scholar 

  • Padmanabhan PK, et al (2005) Glyoxalase I from Leishmania donovani: a potential target for anti-parasite drug. Biochem Biophys Res Commun 337:1237–1248

    CAS  PubMed  Google Scholar 

  • Padmanabhan PK, Mukherjee A, Madhubala R (2006) Characterization of the gene encoding glyoxalase II from Leishmania donovani: a potential target for anti-parasite drugs. Biochem J 393:227–234

    CAS  PubMed  Google Scholar 

  • Pandey VP, et al (2010) Synthesis and molecular docking studies of 1-phenyl-4-glycosyl-dihydropyridines as potent antileishmanial agents. Eur J Med Chem 45:2381–2388

    CAS  PubMed  Google Scholar 

  • Papagiannaros A, et al (2005) Antileishmanial and trypanocidal activities of new miltefosine liposomal formulations. Biomed Pharmacother 59:545–550

    CAS  PubMed  Google Scholar 

  • Patterson S, et al (2009) Synthesis and evaluation of 1-(1-(Benzo[b]thiophen-2-yl)cyclohexyl)piperidine (BTCP) analogues as inhibitors of trypanothione reductase. ChemMedChem 4:1341–1353

    CAS  PubMed  Google Scholar 

  • Paul M, et al (1998) Physicochemical characteristics of pentamidine-loaded polymethacrylate nanoparticles: implication in the intracellular drug release in Leishmania major infected mice. J Drug Target 5:481–490

    CAS  PubMed  Google Scholar 

  • Pourshafie M, Morand S, Virion A, Rakotomanga M, Dupuy C, Loiseau PM (2004) Cloning of S-adenosyl-L-methionine:C-24-Delta-sterol-methyltransferase (ERG6) from Leishmania donovani and characterization of mRNAs in wild-type and amphotericin B-Resistant promastigotes. Antimicrob Agents Chemother 48:2409–2414

    Google Scholar 

  • Prado-Prado FJ, et al (2008) Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. Bioorg Med Chem 16:5871–5880

    CAS  PubMed  Google Scholar 

  • Price HP, et al (2003) Myristoyl-CoA: protein N-myristoyltransferase, an essential enzyme and potential drug target in kinetoplastid parasites. J Biol Chem 278:7206–7214

    CAS  PubMed  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2007) Cholesterol: a potential therapeutic target in Leishmania infection? Trends Parasitol 23:49–53

    CAS  PubMed  Google Scholar 

  • Rakotomanga M, Blanc S, Gaudin K, Chaminade P, Loiseau PM (2007) Miltefosine affects lipid metabolism in Leishmania donovani promastigotes. Antimicrob Agents Chemother 51:1425–1430

    Google Scholar 

  • Rama Iňiguez S, et al (2006) Real-time reverse transcription-PCR quantification of cytokine mRNA expression in golden Syrian hamster infected with Leishmania infantum and treated with a new amphotericin B formulation. Antimicrob Agents Chemother 50:1195–1201

    PubMed  Google Scholar 

  • Reguera RM, et al (2006) DNA topoisomerase I from parasitic protozoa: a potential target for chemotherapy. Biochim Biophys Acta 1759:117–131

    CAS  PubMed  Google Scholar 

  • Reguera RM, et al (2008) Characterizing the bi-subunit type IB DNA topoisomerase of Leishmania parasites; a novel scenario for drug intervention in trypanosomatids. Curr Drug Target 9:966–978

    CAS  Google Scholar 

  • Ribeiro RR, et al (2008) Reduced tissue parasitic load and infectivity to sand flies in dogs naturally infected by Leishmania chagasi following treatment with a liposome formulation of meglumine antimoniate. Antimicrob Agents Chemother 52:2564–2572

    CAS  PubMed  Google Scholar 

  • Ribeiro RR, et al (2010) Prolonged absorption of antimony (V) by the oral route from non-inclusion meglumine antimoniate-beta-cyclodextrin conjugates. Biopharm Drug Dispos 31:109–119

    CAS  PubMed  Google Scholar 

  • Richardson JL, et al (2009) Improved tricyclic inhibitors of trypanothione reductase by screening and chemical synthesis. Chem Med Chem 4:1333–1340

    CAS  PubMed  Google Scholar 

  • Roberts CW, et al (2003) Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. Mol Biochem Parasitol 126:129–142

    CAS  PubMed  Google Scholar 

  • Rodrigues JM Jr, et al (1994) The activity and ultrastructural localization of primaquine-loaded poly (d, l-lactide) nanoparticles in Leishmania donovani infected mice. Trop Med Parasitol 45:223–228

    CAS  PubMed  Google Scholar 

  • Rodrigues JC, Urbina JA, de Souza W (2005) Antiproliferative and ultrastructural effects of BPQ-OH, a specific inhibitor of squalene synthase, on Leishmania amazonensis. Exp Parasitol 111:230–238

    CAS  PubMed  Google Scholar 

  • Ruhela D, Chatterjee P, Vishwakarma RA (2005) 1-Oxabicyclic beta-lactams as new inhibitors of elongating MPT – a key enzyme responsible for assembly of cell-surface phosphoglycans of Leishmania parasite. Org Biomol Chem 21:1043–1048

    Google Scholar 

  • Salerno C, Carlucci AM, Bregni C (2010) Study of in vitro drug release and percutaneous absorption of fluconazole from topical dosage forms. AAPS PharmSciTech 11:986–993

    CAS  PubMed  Google Scholar 

  • Sánchez-Brunete JA, et al (2004) Treatment of experimental visceral leishmaniasis with amphotericin B in stable albumin microspheres. Antimicrob Agents Chemother 48:3246–3252

    PubMed  Google Scholar 

  • Sánchez-Brunete JA, et al (2005) Influence of the vehicle on the properties and efficacy of microparticles containing amphotericin B. J Drug Target 13:225–233

    PubMed  Google Scholar 

  • Santangelo R, et al (2000) Efficacy of oral cochleate-amphotericin B in a mouse model of systemic candidiasis. Antimicrob Agents Chemother 44:2356–2360

    CAS  PubMed  Google Scholar 

  • Santos LO, et al (2009) HIV aspartyl peptidase inhibitors interfere with cellular proliferation, ultrastructure and macrophage infection of Leishmania amazonensis. PLoS One 4:e4918

    PubMed  Google Scholar 

  • Schettini DA, et al (2003) Distribution of liposome-encapsulated antimony in dogs. Braz J Med Biol Res 36:269–272

    CAS  PubMed  Google Scholar 

  • Schnell JR, Dyson HJ, Wright PE (2004) Structure, dynamics, and catalytic function of dihydrofolate reductase. Ann Rev Biophys Biomol Struct 33:119–140

    CAS  Google Scholar 

  • Seelmeier S, Schmidt H, Turk V, von der Helm K (1988) Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin A. Proc Natl Acad Sci USA 85:6612–6616

    Google Scholar 

  • Sen SS, et al (2009) Membrane bound pyrophosphatase and P-type adenosine triphosphatase of Leishmania donovani as possible chemotherapeutic targets: similarities and differences in inhibitor sensitivities. Biochemistry (Mosc) 74:1382–1387

    CAS  Google Scholar 

  • Sheng C, et al (2009) Homology modeling and molecular dynamics simulation of N-myristoyltransferase from protozoan parasites: active site characterization and insights into rational inhibitor design. J Comput Aided Mol Des 23:375–389

    CAS  PubMed  Google Scholar 

  • Shi W, Schramm VL, Almo SC (1999) Nucleoside hydrolase from Leishmania major. Cloning, expression, catalytic properties, transition state inhibitors, and the 2.5-å crystal structure. J Biol Chem 274:21114–21120

    CAS  PubMed  Google Scholar 

  • Silva MS, et al (2008) Catalysis and structural properties of Leishmania infantum glyoxalase II: trypanothione specificity and phylogeny. Biochemistry 47:195–204

    CAS  PubMed  Google Scholar 

  • Singh BK, et al (2008) Modeled structure of trypanothione reductase of Leishmania infantum. BMB Rep 41:444–447

    CAS  PubMed  Google Scholar 

  • Sokolsky-Papkov M, Domb AJ, Golenser J (2006) Impact of aldehyde content on amphotericin B-dextran imine conjugate toxicity. Biomacromolecules 7:1529–1535

    CAS  PubMed  Google Scholar 

  • Sousa Silva M, et al (2005) Quantitative assessment of the glyoxalase pathway in Leishmania infantum as a therapeutic target by modelling and computer simulation. FEBS J 272:2388–2398

    CAS  PubMed  Google Scholar 

  • Sundar S, Chakravarty J (2010) Liposomal amphotericin B and leishmaniasis: dose and response. J Glob Infect Dis 2:159–166

    PubMed  Google Scholar 

  • Sundar S, et al (2002) Oral miltefosine for Indian visceral leishmaniasis. N Engl J Med 347:1739–1746

    CAS  PubMed  Google Scholar 

  • Sundar S, Jha TK, Sindermann H, Junge K, Bachmann P, Berman J (2003) Oral miltefosine treatment in children with mild to moderate Indian visceral leishmaniasis. Pediatr Infect Dis J 22:434–438

    Google Scholar 

  • Sundar S, et al (2004) Amphotericin B treatment for Indian visceral leishmaniasis: conventional versus lipid formulations. Clin Infect Dis 38:377–383

    CAS  PubMed  Google Scholar 

  • Szoka FC, Milholland D, Barza M (1987) Effect of lipid composition and liposome size on toxicity and in vitro fungicidal activity of liposome-intercalated amphotericin B. Antimicrob Agents Chemother 31:421–429

    CAS  PubMed  Google Scholar 

  • Tanaka AK, et al (2007) Inhibition of Leishmania (Leishmania) amazonensis growth and infectivity by aureobasidin A. J Antimicrob Chemother 59:487–492

    CAS  PubMed  Google Scholar 

  • Tavares J, et al (2010) Bisnaphthalimidopropyl derivatives as inhibitors of Leishmania SIR2 related protein 1. ChemMedChem 5:140–147

    CAS  PubMed  Google Scholar 

  • Tempone AG, et al (2010) Therapeutic evaluation of free and liposome-loaded furazolidone in experimental visceral leishmaniasis. Int J Antimicrob Agents 36:159–163

    CAS  PubMed  Google Scholar 

  • Tiyaboonchai W, Limpeanchob N (2007) Formulation and characterization of amphotericin B-chitosan-dextran sulphate nanoparticles. Int J Pharm 329:142–149

    CAS  PubMed  Google Scholar 

  • Tulloch LB, et al (2010) Structure-based design of pteridine reductase inhibitors targeting African sleeping sickness and the leishmaniases. J Med Chem 53:221–229

    CAS  PubMed  Google Scholar 

  • Valdivieso E, Dagger F, Rascón A (2007) Leishmania mexicana: identification and characterization of an aspartyl proteinase activity. Exp Parasitol 116:77–82

    Google Scholar 

  • Valdivieso E, et al (2010) Effects of HIV aspartyl-proteinase inhibitors on Leishmania sp. Exp Parasitol 126:557–563

    CAS  PubMed  Google Scholar 

  • Vandermeulen G, et al (2006) Encapsulation of amphotericin B in poly(ethylene glycol) -block-poly(ε-caprolactone-co-trimethylenecarbonate) polymeric micelles. Int J Pharm 309:234–240

    CAS  PubMed  Google Scholar 

  • Veerareddy PR, Vobalaboina V, Ali N (2009) Antileishmanial activity, pharmacokinetics and tissue distribution studies of mannose-grafted amphotericin B lipid nanospheres. J Drug Target 17:140–147

    CAS  PubMed  Google Scholar 

  • Venier-Julienne MC, et al (1995) In vitro study of the anti-leishmanial activity of biodegradable nanoparticles. J Drug Target 3:23–29

    CAS  PubMed  Google Scholar 

  • Venkatesan SK, Shukla AK, Dubey VK (2010) Molecular docking studies of selected tricyclic and quinone derivatives on trypanothione reductase of Leishmania infantum. J Comput Chem 31:2463–2475

    Google Scholar 

  • Vergnes B, et al (2005) Targeted disruption of cytosolic SIR2 deacetylase discloses its essential role in Leishmania survival and proliferation. Gene 363:85–96

    CAS  PubMed  Google Scholar 

  • Vickers TJ, Greig N, Fairlamb AH (2004) A trypanothione-dependent glyoxalase I with a prokaryotic ancestry in Leishmania major. Proc Natl Acad Sci USA 101:13186–13191

    CAS  PubMed  Google Scholar 

  • Vyas SP, et al (2000) Ligand directed macrophage targeting of amphotericin B loaded liposomes. Int J Pharm 210:1–14

    CAS  PubMed  Google Scholar 

  • Wang Q, et al (2005) LmxMPK4, a mitogen-activated protein (MAP) kinase homologue essential for promastigotes and amastigotes of Leishmania mexicana. Kinetoplastid Biol Dis 4:6

    PubMed  Google Scholar 

  • Wenzel IN, Wong PE, Maes L, Müller TJ, Krauth-Siegel RL, Barrett MP, Davioud-Charvet E (2009) Unsaturated Mannich bases active against multidrug-resistant Trypanosoma brucei brucei strains. ChemMedChem 4:339–351

    Google Scholar 

  • Xingi E, et al (2009) 6-Br-5methylindirubin-3’oxime (5-Me-6-BIO) targeting the leishmanial glycogen synthase kinase-3 (GSK-3) short form affects cell-cycle progression and induces apoptosis-like death: exploitation of GSK-3 for treating leishmaniasis. Int J Parasitol 39:1289–1303

    CAS  PubMed  Google Scholar 

  • Zarif L (2005) Drug delivery by lipid cochleates. Meth Enzymol 391:314–329

    CAS  PubMed  Google Scholar 

  • Zhang K, Beverley SM (2010) Phospholipid and sphingolipid metabolism in Leishmania. Mol Biochem Parasitol 170:55–64

    CAS  PubMed  Google Scholar 

  • Zufferey R, Mamoun CB (2002) Choline transport in Leishmania major promastigotes and its inhibition by choline and phosphocholine analogs. Mol Biochem Parasitol 125:127–134

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe M. Loiseau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Loiseau, P.M., Barratt, G. (2013). Drug Targets, Drug Effectors, and Drug Targeting and Delivery. In: Ponte-Sucre, A., Diaz, E., Padrón-Nieves, M. (eds) Drug Resistance in Leishmania Parasites. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1125-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1125-3_16

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0238-1

  • Online ISBN: 978-3-7091-1125-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics