Skip to main content

Neuroanatomische Grundlagen der Nacken-Kiefer-Koordination

  • Conference paper
Vertigo — Kontroverses und Bewährtes
  • 1049 Accesses

Zusammenfassung

Das Öffnen und Schließen des Mundes betrifft nicht nur das Kiefergelenk und die Kaumuskulatur, sondern bezieht auch den arthro-muskulären Apparat des Halses und, vermittelt über deszendierende Rückenmarksbahnen, auch Rumpf und Extremitäten mit ein. In dieser Übersicht sollen die wichtigsten funktionell-anatomischen Gegebenheiten zusammengefasst werden, die ein balanciertes Zusammenspiel von Kau- und Halsmuskulatur mit dem übrigen Bewegungsapparat gewährleisten. Anhand von Beispielen aus der neueren experimentellen Literatur sollen die Störmöglichkeiten dieser Balance kurz dargelegt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alstermark B, Kummel H, Pinter MJ, Tantisira B (1990) Integration in descending motor pathways controlling the forelimb in the cat. 17. Axonal projection and termination of C3–C4 propriospinal neurones in the C6-Th1 segments. Exp Brain Res 81: 447–461

    Article  PubMed  CAS  Google Scholar 

  2. Alstermark B, Lundberg A, Pinter M, Sasaki S (1987) Subpopulations and functions of long C3–C5 propriospinal neurones. Brain Res 404: 395–400

    Article  PubMed  CAS  Google Scholar 

  3. Banks RW (2006) An allometric analysis of the number of muscle spindles in mammalian skeletal muscles. J Anat 208: 753–768

    Article  PubMed  CAS  Google Scholar 

  4. Craig AD (2003) A new view of pain as a homeostatic emotion. Trends Neurosci 26: 303–307

    Article  PubMed  CAS  Google Scholar 

  5. De Laat A, Meuleman H, Stevens A, Verbeke G (1998) Correlation between cervical spine and temporomandibular disorders. Clin Oral Invest 2: 54–57

    Article  Google Scholar 

  6. Dessem D., Luo P (1999) Jaw-muscle spindle afferent feedback to the cervical spinal cord in the rat. Exp Brain Res 128: 451–459

    Article  PubMed  CAS  Google Scholar 

  7. Eriksson PO, Zafar H, Häggman-Henrikson B (2004) Deranged jaw-neck motor control in whiplash-associated disorders. Eur J Oral Sci 112: 25–32

    Article  PubMed  Google Scholar 

  8. Fuss FK (1990) Kinematik und Dynamik des Kiefergelenks und der Bewegungen der Mandibula. Gegenbaurs morphol Jahrb 136: 37–68

    PubMed  CAS  Google Scholar 

  9. Häggman-Henrikson B, Zafar H, Eriksson PO (2002) Disturbed jaw behavior in whiplashassociated disorders during rhythmic jaw movements. J Dent Res 81: 747–751

    Article  PubMed  Google Scholar 

  10. Hellström F, Thunberg J, Bergenheim M, Sjolander P, Pedersen J, Johansson H (2000) Elevated intramuscular concentration of bradykinin in jaw muscles increases the fusimotor drive to neck muscles in the cat. J Dent Res 79: 1815–1822

    Article  PubMed  Google Scholar 

  11. Hellström F, Thunberg J, Bergenheim M, Sjolander P, Djupsjobacka M, Johansson H (2002) Increased intra-articular concentration of bradykinin in the temporomandibular joint changes the sensitivity of muscle spindles in dorsal neck muscles in the cat. Neurosci Res 42: 91–99

    Article  PubMed  Google Scholar 

  12. Hellström F, Roatta S, Thunberg J, Passatore M, Djupsjobacka M (2005) Responses of muscle spindles in feline dorsal neck muscles to electrical stimulation of the cervical sympathetic nerve. Exp Brain Res 165: 328–342

    Article  PubMed  Google Scholar 

  13. Hülse M (2005) Das sogenannte Schleudertrauma der HWS. In: Hülse M, Neuhuber W, Wolff HD (Hrsg) Die obere Halswirbelsäule. Springer, Heidelberg, pp 216–221

    Chapter  Google Scholar 

  14. Klobas L, Tegelberg A, Axelsson S (2004) Symptoms and signs of temporomandibular disorders in individuals with chronic whiplash-associated disorders. Swed Dent J 28: 29–36

    PubMed  Google Scholar 

  15. Knese KH (1949) Kopfgelenk, Kopfhaltung und Kopfbewegung des Menschen. Z Anat Entwickl Gesch 114: 67–107

    Article  Google Scholar 

  16. Kubik S, Manestar M (1975) The role of the suoccipital nerve in the sensory innervation of the occipital region. 10th Int Cong Anat Tokyo: 224A

    Google Scholar 

  17. Liu Y, Broman J, Edvinsson L (2004) Central projections of sensory innervation of the rat superior sagittal sinus. Neuroscience 129: 431–437

    Article  PubMed  CAS  Google Scholar 

  18. Liu Y, Zhang M, Broman J, Edvinsson L (2003) Central projections of sensory innervation of the rat superficial temporal artery. Brain Res 966: 126–133

    Article  PubMed  CAS  Google Scholar 

  19. Masri R, Ro JY, Capra N (2005) The effect of experimental muscle pain on the amplitude and velocity sensitivity of jaw closing muscle spindle afferents. Brain Res 1050: 138–147

    Article  PubMed  CAS  Google Scholar 

  20. Mense S (1993) Nociception from skeletal muscle in relation to clinical muscle pain. Pain 54: 241–289

    Article  PubMed  CAS  Google Scholar 

  21. Mense S (2003) The pathogenesis of muscle pain. Curr Pain Headache Rep 7: 419–425

    Article  PubMed  Google Scholar 

  22. Mense S, Skeppar P (1991) Discharge behaviour of feline gamma-motoneurones following induction of an artificial myositis. Pain 46: 201–210

    Article  PubMed  CAS  Google Scholar 

  23. Neuhuber W (2004a) Hirnstamm. In: Drenckhahn D (Hrsg) Benninghoff, Anatomie, Bd 2, 16. Aufl., Urban & Fischer, München, pp 326–383

    Google Scholar 

  24. Neuhuber W (2004b) Hirnnerven. In: Drenckhahn D (Hrsg) Benninghoff, Anatomie, Bd 2, 16. Aufl., Urban & Fischer, München, pp 547–565

    Google Scholar 

  25. Neuhuber W (2005a) M. longissimus als Vermittler zwischen kraniozervikalem Übergang und Becken. Eine Hypothese. Manuelle Medizin 43: 395–399

    Article  Google Scholar 

  26. Neuhuber W (2005b) Funktionelle Neuroanatomie des kraniozervikalen Übergangs. In: Hülse M, Neuhuber W, Wolff HD (Hrsg) Die obere Halswirbelsäule. Springer, Heidelberg, pp 55–71

    Chapter  Google Scholar 

  27. Neuhuber WL, Zenker W (1989) The central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal and upper thoracic spinal nuclei. J Comp Neurol 280: 231–253

    Article  PubMed  CAS  Google Scholar 

  28. Saigusa H, Yamashita K, Tanuma K, Saigusa M, Niimi S (2004) Morphological studies for retrusive movement of the human adult tongue. Clin Anat 17: 93–98

    Article  PubMed  Google Scholar 

  29. Sessle BJ, Hu JW, Amano N, Zhong G (1986) Convergence of cutaneous, tooth pulp, visceral, neck and muscle afferents onto nociceptive and non-nociceptive neurones in trigeminal subnucleus caudalis (medullary dorsal horn) and its implications for referred pain. Pain 27: 219–235

    Article  PubMed  CAS  Google Scholar 

  30. Wang K, Sessle BJ, Svensson P, Arendt-Nielsen L (2004) Glutamate evoked neck and jaw muscle pain facilitate the human jaw stretch reflex. Clin Neurophysiol 115: 1288–1295

    Article  PubMed  CAS  Google Scholar 

  31. Zafar H, Nordh E, Eriksson PO (2000) Temporal coordination between mandibular and head-neck movements during jaw opening-closing tasks in man. Arch Oral Biol 45: 675–682

    Article  PubMed  CAS  Google Scholar 

  32. Zhang J, Luo P, Pendlebury WW (2001) Light and electron microscopic observations of a direct projection from mesencephalic trigeminal nucleus neurons to hypoglossal motoneurons in the rat. Brain Res 917: 67–80

    Article  PubMed  CAS  Google Scholar 

  33. Zhang J, Yang R, Pendlebery W, Luo P (2005) Monosynaptic circuitry of trigeminal proprioceptive afferents coordinating jaw movements with visceral and laryngeal activities in rats. Neuroscience 135: 497–505

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag / Wien

About this paper

Cite this paper

Neuhuber, W.L. (2011). Neuroanatomische Grundlagen der Nacken-Kiefer-Koordination. In: Iro, H., Waldfahrer, F. (eds) Vertigo — Kontroverses und Bewährtes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0736-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0736-2_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0735-5

  • Online ISBN: 978-3-7091-0736-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics