Skip to main content

Rhizoremediation: A Pragmatic Approach for Remediation of Heavy Metal-Contaminated Soil

  • Chapter
  • First Online:
Book cover Toxicity of Heavy Metals to Legumes and Bioremediation

Abstract

Soil pollution is the primary source that transmits pollutants like heavy metals from environment to living organisms. From soil, plants adsorb and accumulate heavy metals. Through the food chain, heavy metals enter the animal kingdom including humans and cause health risks. Few physicochemical and phytoremediation approaches have been proved effective in removing heavy metals from contaminated soils. However, soil characteristics and recycling of soil constituents have made their practicability questionable. One pragmatic way to reduce the deleterious effect of heavy metals in soil is rhizoremediation, in which plant–microbe interaction is explored for remediation purposes. In this strategy, the plant growth-promoting rhizobacteria (PGPR) either accumulate or detoxify the heavy metals and thereby prevent the uptake and accumulation of heavy metals in plants. In addition, PGPRs act as biofertilizer that enhance the crop yields in different ecological niches. In this chapter, rhizoremediation strategy is described and portrayed as the pragmatic way for remediation of heavy metals in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad M, Khan MS (2011) Functional aspects of plant growth promoting rhizobacteria: recent advancements. Insight Microbiol 1:39–54

    Article  Google Scholar 

  • Aiking HH, Goves H, Riet JV (1985) Detoxification of mercury, cadmium and lead in Klebsiella aerogenes NCTC418 growing in continuous culture. Appl Environ Microbiol 50:1262–1267

    PubMed  CAS  Google Scholar 

  • Appenroth K (2010) Definition of “heavy metals” and their role in biological systems. In: Sherameti I, Varma A (eds) Soil heavy metals, vol 19, Soil biology., pp 19–29

    Chapter  Google Scholar 

  • Arteca RN, Arteca JM (2007) Heavy metal-induced ethylene production in Arabidopsis thaliana. Plant Physiol 164:1480–1488

    Article  CAS  Google Scholar 

  • Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6:189–213

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements–a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Beyersmann D (2002) Effects of carcinogenic metals on gene expression. Toxicol Lett 127:63–68

    Article  PubMed  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  PubMed  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed  CAS  Google Scholar 

  • Carcer DA, Martin M, Mackova M, Macek T, Karlson U, Rivilla R (2007) The introduction of genetically modified microorganisms designed for rhizoremediation induces changes on native bacteria in the rhizosphere but not in the surrounding soil. ISME 1:205–223

    Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40

    Article  CAS  Google Scholar 

  • Cowan A, Cairns A, Bartels-Rahm B (1999) Regulation of abscisic acid metabolism towards a metabolic basis for abscisic acid-cytokinin antagonism. J Exp Bot 50:595–603

    Article  CAS  Google Scholar 

  • Drum DA (2009) Are toxic biometals destroying your children’s future? Biometals 22:697–700

    Article  PubMed  CAS  Google Scholar 

  • Dube A, Zbytnieski R, Kowalkowski T, Cukrowska E, Buszewski B (2001) Adsorption and migration of heavy metals in soil. Pol J Environ Stud 10:1–10

    CAS  Google Scholar 

  • Duffus JH (2002) “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118

    Google Scholar 

  • Emmanouil-Nikolussi EN (2007) The role of heavy metals in environmental toxicity and pregnancy outcomes. Reprod Toxicol 24:80

    Article  Google Scholar 

  • Faisal M, Hasnain S (2005) Bacterial Cr (VI) reduction concurrently improves sunflower (Helianthus annuus L.) growth. Biotechnol Lett 27:943–947

    Article  PubMed  CAS  Google Scholar 

  • Fuhrer J (1982) Ethylene biosynthesis and cadmium toxicity in leaf tissue of beans Phaseolus vulgaris L. Plant Physiol 70:162–167

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    Article  CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  PubMed  CAS  Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a heavy metal resistant plant growth promoting rhizopseudomonad. Curr Microbiol 56:403–407

    Article  PubMed  CAS  Google Scholar 

  • Glass DJ (1999) Economic potential of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Gupta A, Rai V, Bagdwal N, Geol R (2005) In situ characterization of mercury-resistant growth-promoting fluorescent pseudomonads. Microbiol Res 160:385–388

    Article  PubMed  CAS  Google Scholar 

  • Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467

    Article  PubMed  CAS  Google Scholar 

  • Han FX, Banin A, Su Y, Monts LM, Plodinec MJ, Kingery WL, Triplett GE (2002) Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenshaften 89:497–504

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, van Staden J (1997) The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul 23:79–103

    Article  CAS  Google Scholar 

  • Heggo A, Angle JS (1990) Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biol Biochem 22:865–869

    Article  CAS  Google Scholar 

  • Hemalatha S, Anburaj A, Francis K (1997) Effect of heavy metals on certain biochemical constituents and nitrate reductase activity in Orzya sativa L. seedlings. J Environ Biol 18:313–319

    CAS  Google Scholar 

  • Hong S, Candelone J, Boutron CF (1996) Deposition of atmospheric heavy metals to the Greenland ice sheet from the 1783–1784 volcanic eruption of Laki, Iceland. Earth Planet Sci Lett 144:605–610

    Article  CAS  Google Scholar 

  • Howlett NG, Avery SV (1997) Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol 63:2971–2976

    PubMed  CAS  Google Scholar 

  • Hsu YT, Kao CH (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 26:867–874

    Article  PubMed  CAS  Google Scholar 

  • Huang YZ, Wei K, Yang J, Dai F, Zhang GP (2007) Interaction of salinity and cadmium stresses on mineral nutrients, sodium, and cadmium accumulation in four barley genotypes. J Zhejiang Univ Sci B 8:476–485

    Article  PubMed  CAS  Google Scholar 

  • Indian Council of Medical Research (2003) ICMR, New Delhi, India

    Google Scholar 

  • Kelly JJ, Haggblom M, Tatelll RL (1999) Effects of the land application of sewage sludge on soil heavy metal concentrations and soil microbial communities. Soil Biol Biochem 31:1467–1470

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Ahemad M, Oves M (2009) Functional diversity among plant growth-promoting rhizobacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Heidelberg, pp 105–132

    Chapter  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Koo SY, Cho KS (2009) Isolation and characterization of plant growth-promoting rhizobacterium, Serratia sp., SY5. J Microbiol Biotechnol 19:1431–1438

    PubMed  CAS  Google Scholar 

  • Kramer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15

    Article  PubMed  CAS  Google Scholar 

  • Lambert M, Leven BA, Green RM (2000) New methods of cleaning up heavy metal in soils and water. Environmental science and technology briefs for citizens. Kansas State University, Manhattan, KS

    Google Scholar 

  • Llorens N, Arola L, Blade C, Mas A (2001) Effects of copper exposure upon nitrogen metabolism in tissue cultured Vitis vinifera. Plant Physiol 160:159–163

    Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 20:541–546

    Article  Google Scholar 

  • Madhaiyan N, Poonguzhali S, Sa T (2007) Metal tolerating methylotropic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    Article  PubMed  CAS  Google Scholar 

  • Marshall F, Agarwal R et al (2003) Heavy metal contamination of vegetables in Delhi. Executive summary of technical report. Imperial College, London

    Google Scholar 

  • Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • McGrath D, Tunney H (2010) Accumulation of cadmium, fluorine, magnesium, and zinc in soil after application of phosphate fertilizer for 31 years in a grazing trial. J Plant Nutr Soil Sci 173:548–553

    Article  CAS  Google Scholar 

  • Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tobaccum L plant. Theor Appl Genet 78:16–18

    Article  Google Scholar 

  • Mortvedt JJ (1996) Heavy metal contaminants in inorganic and organic fertilizers. Fertil Res 43:55–61

    Article  Google Scholar 

  • Manios T, Stentiford EI, Millner P (2002) The effect of heavy metals on the total protein concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metalliferous wastewater. J Environ Sci Health A Tox Hazard Subst Environ Eng 37:1441–1451

    Article  PubMed  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) An evaluation of technologies for the heavy metal remediation of dredged sediments. J Hazard Mater 85:145–163

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    PubMed  CAS  Google Scholar 

  • Nriagu JO (1996) A history of global metal pollution. Science 272:223–224

    Article  CAS  Google Scholar 

  • Pandey P, Tripathi AK (2011) Effect of heavy metals on morphological and biochemical characteristics of Albizia procera (Roxb.) Benth. seedlings. Int J Environ Sci 5:1009–1018

    Google Scholar 

  • Pajuelo E, Dary M, Palomares AJ, Rodriguez-Llorente ID, Carrasco JA, Chamber MA (2008) Biorhizoremediation of heavy metals toxicity using rhizobium-legume symbiosis, Biological nitrogen fixation: towards poverty alleviation through sustainable agriculture. Springer, New York

    Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of 1-aminocylcopropane carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth promoting rhizobacteria. Can J Microbiol 47:368–372

    Article  PubMed  CAS  Google Scholar 

  • Priti B, Chaturvedi AK, Prasad P (2009) Effect of enhanced lead and cadmium in soil on physiological and biochemical attributes of Phaseolus vulgaris L. Nat Sci 7:63–75

    Google Scholar 

  • Raskin I, Ensley BD (eds) (2002) Phytoremediation of toxic metals using plants to clean the environment. Wiley, New York

    Google Scholar 

  • Reichman SM (2007) The potential use of the legume-Rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol Biochem 39:2587–2593

    Article  CAS  Google Scholar 

  • Rivetta A, Negrini N, Cocucci M (1997) Involvement of Ca2+ -calmodulin in Ca2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ 20:600–608

    Article  CAS  Google Scholar 

  • Roy N, Chakrabartty K (2000) Effect of aluminium on the production of siderophore by Rhizobium sp. (Cicer arietinum). Curr Microbiol 41:5–10

    Article  PubMed  CAS  Google Scholar 

  • Rubio MI, Escrig I, Martinez-Cortina C, Lopez-Benet FJ, Sanz A (1994) Cadmium and nickel accumulation in rice plants. Effects on mineral nutrition and possible interactions of abscisic acid and gibberellic acids. Plant Growth Nutr 14:151–157

    Article  CAS  Google Scholar 

  • Saraswat S, Rai JPN (2011) Mechanism of metal tolerance and detoxification in mycorrhizal fungi. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal-contaminated soils. Springer, The Netherlands, pp 225–240

    Chapter  Google Scholar 

  • Shcherbov BL, Zavgorodnyaya NV, Lazareva EV (2008) Ecogeochemical consequences of forest fires in Belt Pine forests of Altai Krai. Cont Prob Ecol 1:459–466

    Article  Google Scholar 

  • Silby MW, Levy SB (2004) Use of in vivo expression technology to identify genes important in growth and survival of Pseudomonas fluorescens Pf0-1 in soil: discovery of expressed sequences with novel genetic organization. J Bacteriol 186:7411–7419

    Article  PubMed  CAS  Google Scholar 

  • Silver S (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    Article  PubMed  CAS  Google Scholar 

  • Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56:55–60

    Article  PubMed  CAS  Google Scholar 

  • Somasundaram R, Muthuchelian K, Murugesan S (1994) Inhibition of chlorophyll, protein, photosynthesis, nitrate reductase and nitrate content by vanadium in Oryza sativa L. J Environ Biol 15:41–48

    CAS  Google Scholar 

  • Stobrawa K, Lorenc-Plucińska G (2007) Changes in carbohydrate metabolism in fine roots of the native European black poplar (Populus nigra L.) in a heavy-metal-polluted environment. Sci Total Environ 373:157–165

    Article  PubMed  CAS  Google Scholar 

  • Sugita M (1978) The biological half-time of heavy metals. Int Arch Occup Environ Health 41:25–40

    Article  PubMed  CAS  Google Scholar 

  • Susan E, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Article  Google Scholar 

  • Van Assche FJ (1998) A stepwise model to quantify the relative contribution of different environmental sources to human cadmium exposure. Proceedings of the 8th international nickel-cadmium battery conference, Prague, Czech Republic, 21–22 Sept 1998

    Google Scholar 

  • Veselov D, Kudoyarova G, Symonyan M, Veselov St. (2003) Effect of cadmium on ion uptake, transcription and cytokinin content in what seedlings. Bulg J Plant Physiol Special Issue:353–359

    Google Scholar 

  • Vincent JB (2000) Elucidating a biological role for chromium at a molecular level. Acc Chem Res 33:503–510

    Article  PubMed  CAS  Google Scholar 

  • Vivas A, Biro B, Ruiz-Lozano JM, Barea JM, Azcon R (2006) Two bacterial strains isolated Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62:1523–1533

    Article  PubMed  CAS  Google Scholar 

  • Waldemar M (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187

    Article  Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Zaidi A, Khan MS (2009) Chromium reducing and plant growth promoting potential of Mesorhizobium species under chromium stress. Bioremediation J 13:121–129

    Article  CAS  Google Scholar 

  • Weast RC (1984) Handbook of chemistry and physics, 64th edn. CRC, Boca Raton, FL

    Google Scholar 

  • White C, Sayer JA, Gadd GM (1997) Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol Rev 20:503–516

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (1987) Air Quality Guidelines. Copenhagen: WHO Regional Office for Europe

    Google Scholar 

  • Wong PK (1988) Mutagenicity of heavy metals. Bull Environ Contam Toxicol 40:597–603

    Article  PubMed  CAS  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering Plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  PubMed  CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  PubMed  CAS  Google Scholar 

  • Zaidi A, Khan MS (2007) Stimulatory effects of dual inoculation with phosphate solubilizing microorganisms and arbuscular mycorrhizal fungus on chickpea. Aust J Exp Agric 47:1016–1022

    Article  CAS  Google Scholar 

  • Zhang Q, Wang GH, Feng YK, Sun QZ, Witt C, Dobermann A (2006) Changes in soil phosphorus fractions in a calcareous paddy soil under intensive rice cropping. Plant Soil 288:141–154

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velmurugan Ganesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Ganesan, V. (2012). Rhizoremediation: A Pragmatic Approach for Remediation of Heavy Metal-Contaminated Soil. In: Zaidi, A., Wani, P., Khan, M. (eds) Toxicity of Heavy Metals to Legumes and Bioremediation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0730-0_9

Download citation

Publish with us

Policies and ethics