Skip to main content

Soil Contamination, Nutritive Value, and Human Health Risk Assessment of Heavy Metals: An Overview

  • Chapter
  • First Online:

Abstract

Globally, rapidly increasing industrialization and urbanization have resulted in the accumulation of higher concentrations of heavy metals in soils. The highly contaminated soil has therefore become unsuitable for cultivation probably because of the deleterious metal effects on the fertility of soils among various other soil characteristics. In addition, the uptake of heavy metals by agronomic crops and later on consumption of contaminated agri-foods have caused a serious threat to vulnerable human health. Considering these, a genuine attempt is made to address various aspects of metal contamination of soils. In addition, the nutritive value of some metals for bacteria and plants is briefly discussed. Here, we have also tried to understand how heavy metals risk to human health could be identified. These pertinent and highly demanding discussions are likely help to strategize the management options by policy makers/public for metal toxicity caused to various agro-ecosystems and for human health program.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abaye DA, Lawlor K, Hirsch PR, Brookes PC (2005) Changes in the microbial community of an arable soil caused by long-term metal contamination. Eur J Soil Sci 56:93–102

    CAS  Google Scholar 

  • Adachi K, Tainosho Y (2004) Characterization of heavy metal particles embedded in tire dust. Environ Int 30:1009–1017

    PubMed  CAS  Google Scholar 

  • Adelekan BA, Abegunde KD (2011) Heavy metals contamination of soil and groundwater at automobile mechanic villages in Ibadan Nigeria. Int J Phys Sci 6:1045–1058

    CAS  Google Scholar 

  • Ademorati CMA (1996) Soil water and air, Environmental chemistry and toxicology. Foludex, Ibadan, pp 30–34

    Google Scholar 

  • Aghili F, Khoshgoftarmanesh AH, Afyuni M, Schulin R (2009) Health risks of heavy metals through consumption of greenhouse vegetables grown in central Iran. Hum Ecol Risk Assess 15:999–1015

    CAS  Google Scholar 

  • Akoumianakis KA, Passam HC, Barouchas PE, Moustakas NK (2009) Effect of cadmium on yield and cadmium concentration in the edible tissues of endive (Cichorium endivia L.) and rocket (Eruca sativa Mill.). J Food Agric Environ 6:206–209

    Google Scholar 

  • Alloway BJ (1995) Soil processes and the behavior of heavy metals. In: Alloway B (ed) Heavy metals in soils. Chapman and Hall, New York, NY, pp 11–37

    Google Scholar 

  • Alloway BJ (2009) Factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548

    PubMed  CAS  Google Scholar 

  • Anderson P, Davidson CM, Duncan AL, Littlejohn D, Ure AM, Garden LM (2000) Column leaching and sorption experiments to assess the mobility of potentially toxic elements to assess the mobility of potentially toxic elements in industrially contaminated land. J Environ Monit 2:234–239

    PubMed  CAS  Google Scholar 

  • Antonyuk LP, Smirnova VE, Kamnev AA, Serebrennikova OB, Vanoni MA, Zanetti G, Kudelina IA, Sokolov OI, Ignatov VV (2001) Influence of divalent cations on the catalytic properties and secondary structure of unadenylylated glutamine synthetase from Azospirillum brasilense. Biometals 14:13–22

    PubMed  CAS  Google Scholar 

  • Ata S, Moore F, Modabberi S (2009) Heavy metal contamination and distribution in the Shiraz industrial complex zone soil, South Shiraz, Iran. World Appl Sci J 6:413–425

    Google Scholar 

  • Atayese MO, Eigbadon AI, Oluwa KA, Adesodun JK (2009) Heavy metal contamination of amaranthus grown along major high ways in Lagos. Afr Crop Sci J 16:225–235

    Google Scholar 

  • Avila A, Alarcon M, Queralt I (1998) The chemical composition of dust transported in red rains-its contribution to the biogeochemical cycle of a Holm Oak forest in Catalonia (Spain). Atmos Environ 32:179–191

    CAS  Google Scholar 

  • Baes CF, Sharp RD, Sjoreen AL, Shor RW (1984) A review and analysis of parameters for assessing transport of environmentally released radionuclides through agriculture. Health and safety research division, US department of energy under contract No. DE-AC05-84OR21400

    Google Scholar 

  • Baker AJM, Walker PL (1989) Ecophysiology of metal uptake by tolerant plants, In: Heavy metal tolerance in plants – Evolutionary aspects. Shaw A (ed) CRC Press, pp 155–177

    Google Scholar 

  • Balogh GT, Illés J, Székely Z, Forrai E, Gere A (2003) Effect of different metal ions on the oxidative damage and antioxidant capacity of hyaluronic acid. Arch Biochem Biophys 410:76–82

    PubMed  CAS  Google Scholar 

  • Barajas-Aceves M (2005) Comparison of different microbial biomass and activity measurement methods in metal-contaminated soils. Bioresour Technol 96:1405–1414

    PubMed  CAS  Google Scholar 

  • Basu M, Bhadoria PBS, Mahapatra SC (2006) Influence of microbial culture in combination with micronutrient in improving the groundnut productivity under alluvial soil of India. Acta Agric Slov 87:435–444

    Google Scholar 

  • Batisani N, Yarnal B (2010) Rainfall variability and trends in semi-arid Botswana: implications for climate change adaptation policy. Appl Geogr 30:483–489

    Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese and iron-dependent marine methane oxidation. Science 325:184–187

    PubMed  CAS  Google Scholar 

  • Bergbäck B, Johansson K, Molhander U (2001) Urban metal flows-a case study of Stockholm: review and conclusions. Water Air Soil Pollut Focus 1:3–24

    Google Scholar 

  • Berraho EL, Lesueur D, Diem HG, Sasson A (1997) Iron requirement and siderophore production in Rhizobium ciceri during growth on an iron-deficient medium. World J Microbiol Biotechnol 13:501–510

    CAS  Google Scholar 

  • Beveridge TJ, Schultze-Lam S, Thompson JB (1995) Detection of anionic sites on bacterial walls, their ability to bind toxic heavy metals and form sedimentable flocs and their contribution to mineralization in natural freshwater environments. In: Allen HE, Huang CP et al (eds) Metal speciation and contamination of soil. Lewis, Boca Raton, FL, pp 183–200

    Google Scholar 

  • Bohn HL, McNeal BL, Connor AGO (1985) Soil chemistry, 2nd edn. Wiley-Interscience, New York, NY

    Google Scholar 

  • Boukhalfa C (2007) Heavy metals in the water and sediments of Oued Es-Souk, Algeria, a river receiving acid effluents from an abandoned mine. Afr J Aquat Sci 32:245–249

    CAS  Google Scholar 

  • Brookes PC, McGrath SP (1984) Effect of metal toxicity on the size of microbial biomass. J Soil Sci 35:341–346

    CAS  Google Scholar 

  • Broos K, Macdonald LM, Warne MSJ, Heemsbergen DA, Barnes MB, Bell M, Mc Laughlin MJ (2007) Limitations of soil microbial biomass carbon as an indicator of soil pollution in the field. Soil Biol Biochem 39:2693–2695

    CAS  Google Scholar 

  • Bunemann EK, Schwenke GD, Van Zwieten L (2006) Impact of agricultural inputs on soil organisms – a review. Aust J Soil Res 44:379–406

    Google Scholar 

  • Callender E, Rice K (2000) The urban environmental gradient: anthropogenic influences on the spatial and temporal distributions of lead and zinc in sediments. Environ Sci Technol 34:232–238

    CAS  Google Scholar 

  • Celik U, Oehlenschlager J (2007) High contents of cadmium, lead, zinc and copper in popular fishery products sold in Turkish super markets. Food Control 18:258–261

    CAS  Google Scholar 

  • Chander K, Joergensen RG (2001) Decomposition of 14C glucose in two soils with different amounts of heavy metal contamination. Soil Biol Biochem 33:1811–1816

    CAS  Google Scholar 

  • Chander K, Klein T, Eberhardt U, Joergensen RG (2002) Decomposition of carbon-14-labelled wheat straw in repeatedly fumigated and non-fumigated soils with different levels of heavy metal contamination. Biol Fertil Soils 35:86–91

    CAS  Google Scholar 

  • Chary NS, Kamala CT, Raj DSS (2008) Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol Environ Saf 69:513–524

    PubMed  CAS  Google Scholar 

  • Chen Y, Wang C, Wang Z (2005) Residues and source identification of persistent organic pollutants in farmland soils irrigated by effluents from biological treatment plants. Environ Int 31:778–783

    PubMed  CAS  Google Scholar 

  • Chen ZF, Zhao Y, Zhu Y, Yang X, Qiao J, Tian Q, Zhang Q (2010) Health risks of heavy metals in sewage-irrigated soils and edible seeds in Langfang of Hebei province, China. J Sci Food Agric 90:314–320

    PubMed  CAS  Google Scholar 

  • Chen X, Wang J, Shiy ZMQ, Chi GY (2011) Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Bot Stud 52:41–46

    CAS  Google Scholar 

  • Chien LC, Hung TC, Chaong KY, Yeh CY, Meng PJ, Shieh MJ (2002) Daily intake of TBT, Cu, Zn, Cd, and As for fishermen in Taiwan. Sci Total Environ 285:177–185

    PubMed  CAS  Google Scholar 

  • Clemente R, Dickinson NM, Lepp NW (2008) Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environ Pollut 155:254–261

    PubMed  CAS  Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40

    CAS  Google Scholar 

  • Collins JC (1981) In: Lepp NW (ed) Effect of heavy metal pollution on plants, vol 1. Applied Science, London, p 145

    Google Scholar 

  • Cope CM, Mackenzie AM, Wilde D, Sinclair LA (2009) Effects of level and form of dietary zinc on dairy cow performance and health. J Dairy Sci 92:2128–2135

    PubMed  CAS  Google Scholar 

  • Cortez H, Pingarrón J, Muñoz JA, Ballester A, Blázquez ML, González F, García C, Coto O (2010) Bioremediation of soils contaminated with metalliferous mining wastes. In: Plaza G (ed) Trends bioremediation phytoremediation. Research Signpost, Trivandrum, pp 283–299

    Google Scholar 

  • Crawford AJ, Bhattacharya SK (1987) Excessive intracellular zinc accumulation in cardiac and skeletal muscles of dystrophic hamsters. Exp Neurol 95:265–276

    PubMed  CAS  Google Scholar 

  • Crusius J, Schroth AW, Gassó S, Moy CM, Levy RC, Gatica M (2011) Glacial flour dust storms in the Gulf of Alaska: hydrologic and meteorological controls and their importance as a source of bioavailable iron. Geophys Res Lett 38:5

    Google Scholar 

  • Cukrowska EM, Govender K, Viljoen M (2004) Ion mobility based on column leaching of South African gold tailings dam with chemometric evaluation. Chemosphere 56:39–50

    PubMed  CAS  Google Scholar 

  • D’Mello JPF (2003) Food safety: contaminants and toxins. CABI, Wallingford, Oxon, p 480

    Google Scholar 

  • Dalal RC, Henry RJ (1986) Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry. Soil Sci Soc Am J 50:120–123

    CAS  Google Scholar 

  • Das DK (2000) Micronutrients: their behaviour in soil and plants. Kalyani, UP

    Google Scholar 

  • Davis JG, Parker MB (1993) Zinc toxicity symptom development partitioning of biomass and zinc in peanut plants. J Plant Nutr 16:2353–2369

    CAS  Google Scholar 

  • Davis JG, Weeks G, Kvien CK (1995) Varietal tolerance of zinc toxicity in peanuts. J Plant Nutr 18:2157–2178

    CAS  Google Scholar 

  • DEFRA (Department of Environment, Food and Rural Affairs) (1999) Total diet study-aluminium, arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, tin and zinc. The Stationery Office, London

    Google Scholar 

  • Dragović S, Ušćumlić M, Radojević V, Cicmil M (2008) Water quality for vegetable irrigation from the aspect of safety. Ekološki Pokret Novog Sada, Novi Sad, special edition, II international ECO-conference “SAFE FOOD”, pp 75–81

    Google Scholar 

  • EEA (2010) European Union emission inventory report 1990–2008 under the UNECE convention on long-range transboundary air pollution (LRTAP). Copenhagen, Technical report number 7

    Google Scholar 

  • Efendioglu A, Yagan M, Bati B (2007) Bi(III)4-methylpiperdine dithiocarbamate coprecipitation procedure for separation pre-concentration of trace metal ions in water samples by flame atomic absorption spectrometric determination. J Hazard Mater 149:160–165

    PubMed  CAS  Google Scholar 

  • Eide DJ (2004) The SLC39 family of metal ion transporters. Pflugers Arch 447:796–800

    PubMed  CAS  Google Scholar 

  • Eitinger T, Mandrand-Berthelot MA (2000) Nickel transport systems in microorganisms. Arch Microbiol 173:1–9

    PubMed  CAS  Google Scholar 

  • EMEP/EEA (2009) The EMEP/EEA air pollutant emission inventory guidebook

    Google Scholar 

  • Eriyamremu GE, Asagba SO, Ojeaburu A (2005) Evaluation of lead and cadmium levels in some commonly consumed vegetables in the Niger-Delta oil area of Nigeria. Bull Environ Contam Toxicol 75:278–283

    PubMed  CAS  Google Scholar 

  • Ernst WHO (1998) The origin and ecology of contaminated, stabilized and non-pristine soils. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soil. Springer, New York, pp 17–29

    Google Scholar 

  • European Union (2002) Heavy metals in wastes, European commission on environment. http://ec.europa.eu/environment/waste/studies/pdf/heavymetalsreport.pdf

  • Fergusson JE, Kim ND (1991) Trace elements in street and house dusts: sources and speciation. Sci Total Environ 100:125–150

    PubMed  CAS  Google Scholar 

  • Fernández-Olmo I, Lasa C, Irabien A (2007) Modelling of zinc solubility in stabilized/solidified electric arc furnace dust. J Hazard Mater 144:720–724

    PubMed  Google Scholar 

  • Frostegard A, Tunlid A, Baath E (1993) Phospholipid fatty-acid composition, biomass, and activity of microbial communities from 2 soil types experimentally exposed to different heavy-metals. Appl Environ Microbiol 59:3605–3617

    PubMed  CAS  Google Scholar 

  • Fu C, Olson JW, Maier RJ (1995) HypB protein of Bradyrhizobium japonicum is a metal-binding GTPase capable of binding 18 divalent nickel ions per dimer. Proc Natl Acad Sci USA 92:2333–2337

    PubMed  CAS  Google Scholar 

  • Fu Q, Hu H, Li J, Huang L, Yang H, Lv Y (2009) Effects of soil polluted by cadmium and lead on production and quality of pepper (Capsicum annuum L.) and radish (Raphanus sativus L.). J Food Agric Environ 7:698–702

    CAS  Google Scholar 

  • Gadd GM (2005) Microorganisms in toxic metal polluted soils. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin, pp 325–356

    Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bio-weathering and bioremediation. Mycol Res 111:3–49

    PubMed  CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    PubMed  CAS  Google Scholar 

  • Gaillardet J, Viers J, Dupre B (2003) Trace elements in river waters. In: Drever JI (ed) Treatise on geochemistry, vol 5. Elsevier-Pergamon, Oxford, pp 225–272

    Google Scholar 

  • Geagea ML, Stille P, Millet M, Perrone T (2007) REE characteristics and Pb, Sr and Nd isotopic compositions of steel plant emissions. Sci Total Environ 373:404–419

    PubMed  CAS  Google Scholar 

  • Gholizadeh A, Ardalan AM, Mohammadi MT, Hosseini HM, Karimian N (2009) Solubility test in some phosphate rocks and their potential for direct application in soil. World Appl Sci J 6:182–190

    CAS  Google Scholar 

  • Gómez D, Santos MD, Fujiwara F, Polla G, Marrero J, Dawidowski L, Smichowski P (2007) Fractionation of metals and metalloids by chemical bonding from particles accumulated by electrostatic precipitation in an Argentine thermal power plant. Microchem J 85:276–284

    Google Scholar 

  • Gruiz K (2005) Soil testing triad and interactive ecotoxicity tests for contaminated soil. In: Fava F, Canepa P (eds) Soil remediation, vol 6. INCA, Venice, pp 45–70

    Google Scholar 

  • Gybina AA, Prohaska JR (2008) Copper deficiency results in AMP-activated protein kinase activation and acetylCoA carboxylase phosphorylation in rat cerebellum. Brain Res 1204:69–76

    PubMed  CAS  Google Scholar 

  • Hausinger RP (2003) Ni and CO: more surprises. Nat Struct Biol 10:234–236

    PubMed  CAS  Google Scholar 

  • Hermans C, Chen J, Coppens F, Inzé D, Verbruggen N (2011) Low magnesium status in plants enhances tolerance to cadmium exposure. New Phytol 192(2):428–436. doi:10.1111/j.1469-8137.2011.03814.x

    PubMed  CAS  Google Scholar 

  • Horowitz AJ (2009) Monitoring suspended sediments and associated chemical constituents in urban environments: lessons from the city of Atlanta, Georgia, USA water quality monitoring program. J Soils Sediments 9:342–363

    CAS  Google Scholar 

  • Hough RL, Young SD, Crout NMJ (2003) Modelling of Cd, Cu, Ni, Pb and Zn uptake, by winter wheat and forage maize, from a sewage disposal farm. Soil Use Manag 19:19–27

    Google Scholar 

  • Hough RL, Breward N, Young SD, Crout NMJ, Tye AM, Moir AM, Thornton I (2004) Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. Environ Health Perspect 112:215–221

    PubMed  CAS  Google Scholar 

  • Huang QY, Wu J, Chen W (2000) Adsorption of Cd on soil colloids and minerals in presence of rhizobia. Pedosphere 10:299–307

    CAS  Google Scholar 

  • Huang QY, Chen WL, Guo XJ (2002) Sequential fractionation of Cu, Zn and Cd in soils in the absence and presence of rhizobia. In: Proceedings of 17th WCSS, Thailand, p 1453

    Google Scholar 

  • Iijima A, Sato K, Yano K, Tago H, Kato M, Kimura H, Furuta N (2007) Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmos Environ 41:4908–4919

    CAS  Google Scholar 

  • Intawongse M, Dean JR (2006) Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Addit Contam 23:36–48

    PubMed  CAS  Google Scholar 

  • Integrated Risk Information System report (IRIS) (2003) http://www.epa.gov/iris/

  • IOCC (1996) Heavy metals report. COWBISCO, pp 1–11

    Google Scholar 

  • Islam E, Yang XE, He ZL, Mahmood Q (2007) Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J Zhejiang Univ Sci B 8:1–13

    PubMed  Google Scholar 

  • Jackson AP, Alloway BJ (1992) The transfer of cadmium from agricultural soils to human food chain. In: Adriano DC (ed) Biogeochem of trace metals. Lewis, Boca Raton, FL, pp 109–158

    Google Scholar 

  • Jan FA, Ishaq M, Khan S, Ihsanullah I, Ahmad I, Shakirullah M (2010) A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir). J Hazard Mater 179:612–621

    PubMed  CAS  Google Scholar 

  • Kamnev AA, Antonyuk LP, Smirnova VE, Kulikov LA, Perfiliev YD, Kudelina IA, Kuzmann E, Vértes A (2004) Structural characterization of glutamine synthetase from Azospirillum brasilense. Biopolymers 74:64–68

    PubMed  CAS  Google Scholar 

  • Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367

    PubMed  CAS  Google Scholar 

  • Karlin KD (1993) Metalloenzymes, structural motifs, and inorganic models. Science 261:701–708

    PubMed  CAS  Google Scholar 

  • Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008a) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152:686–692

    PubMed  CAS  Google Scholar 

  • Khan S, Lin A, Zhang S, Huc Q, Zhu Y (2008b) Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term waste water irrigation. J Hazard Mater 152:506–515

    PubMed  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009a) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Google Scholar 

  • Khan S, Farooq R, Shahbaz S, Khan MA, Sadique M (2009b) Health risk assessment of heavy metals for population via consumption of vegetables. World Appl Sci J 6:1602–1606

    CAS  Google Scholar 

  • Khan S, Ael-L H, Qiao M, Rehman S, He JZ (2010) Effects of Cd and Pb on soil microbial community structure and activities. Environ Sci Pollut Res Int 17:288–296

    PubMed  CAS  Google Scholar 

  • Kim S, Lim H, Lee I (2010) Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. J Biosci Bioeng 109:47–50

    PubMed  CAS  Google Scholar 

  • Kimball BA, Runkel RL, Walton-Day K (2010) An approach to quantify sources, seasonal change, and biogeochemical processes affecting metal loading: facilitating decisions for remediation of mine drainage. Appl Geochem 25:728–740

    CAS  Google Scholar 

  • Kneer R, Zenk MH (1992) Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry 31:2663–2667

    CAS  Google Scholar 

  • Kobayashi M, Shimizu S (1998) Metalloenzyme nitrile hydratase: structure, regulation, and application to biotechnology. Nat Biotechnol 16:733–736

    PubMed  CAS  Google Scholar 

  • Korashy HM, El-Kadi AOS (2008) Modulation of TCDD-mediated induction of cytochrome P4501A1 by mercury, lead, and copper in human HepG2 cell line. Toxicol In Vitro 22:154–158

    PubMed  CAS  Google Scholar 

  • Kosolapov DB, Kuschk P, Vainshtein MB, Vatsourina AV, Wiebner A, Kastner M, Muller RA (2004) Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands. Eng Life Sci 4:403–411

    CAS  Google Scholar 

  • Lagisz M, Laskowski R (2008) Evidence for between-generation effects in carabids exposed to heavy metals pollution. Ecotoxicology 17:59–66

    PubMed  CAS  Google Scholar 

  • Ledin M, Krantz-Rulcker C, Allard B (1996) Zn, Cd and Hg accumulation by microorganisms, organic and inorganic soil components in multi-compartment system. Soil Biol Biochem 28:791–799

    CAS  Google Scholar 

  • Li X, Poon C, Liu PS (2001) Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl Geo chem 16:1361–1368

    Google Scholar 

  • Li XD, Thornton I (2001) Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Appl Geochem 16:1693–1706

    CAS  Google Scholar 

  • Lindemann MD, Cromwell GL, Monegue HJ, Purser KW (2008) Effect of chromium source on tissue concentration of chromium in pigs. J Anim Sci 86:2971–2978

    PubMed  CAS  Google Scholar 

  • Lovell MA (2009) A potential role for alterations of zinc and zinc transport proteins in the progression of Alzheimer’s disease. J Alzheimers Dis 16:471–483

    PubMed  CAS  Google Scholar 

  • Luo YM, Christie P (1998) Bioavailability of copper and zinc in soils treated with alkaline stabilized sewage sludges. J Environ Qual 27:335–342

    CAS  Google Scholar 

  • MacGrath SP (1994) Effects of heavy metals from sewage sludge on soil microbes in agricultural ecosystems. In: Ross SM (ed) Toxic metals in soil-plant systems. Wiley, Chichester, pp 242–274

    Google Scholar 

  • Maldonado VM (2008) Heavy metal content in soils under different wastewater irrigation patterns in Chihuahua, Mexico. Int J Environ Res Public Health 5:441–449

    PubMed  CAS  Google Scholar 

  • Marshall FM, Holden J, Ghose C, Chisala B, Kapungwe E, Volk J, Agrawal M, Agrawal R, Sharma RK, Singh RP (2007) Contaminated irrigation water and food safety for the urban and periurban poor: appropriate measures for monitoring and control from field research in India and Zambia. Incpetion report DFID Enkar R8160, SPRU, University of Sussex. http://www.pollutionandfood.net

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New York, pp 31–62

    Google Scholar 

  • McGrath SP, Cegarra J (1992) Chemical extractability of heavy metals during and after long-term applications of sewage sludge to soil. J Soil Sci 43:313–321

    CAS  Google Scholar 

  • McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J Ind Microbiol 14:94–104

    PubMed  CAS  Google Scholar 

  • McGrath DG, Almeida OT, Crossa M, Cardosa A, Cunha M (2005) Working towards community-based management of the Lower Amazon floodplain, PLEC news and views, news series, number 6

    Google Scholar 

  • Mishra S, Bhalke S, Saradhi IV, Suseela B, Tripathi RM, Pandit GG, Puranik VD (2007) Trace metals and organometals in selected marine species and preliminary risk assessment to human beings in Thane Creek are, Mumbai. Chemosphere 69:972–978

    PubMed  CAS  Google Scholar 

  • Moore F, Shakeri A, Modabberi S (2009) Heavy metal contamination and distribution in the Shiraz industrial complex zone soil, South Shiraz, Iran. World Appl Sci J 6:413–425

    Google Scholar 

  • Mortvedt JJ (1996) Heavy metal contaminants in inorganic and organic fertilizers. Fertil Res 43:55–61

    Google Scholar 

  • Moura JJG, Barata BAS (1994) Aldehyde oxidoreductases and other molybdenum-containing enzymes. Methods Enzymol 243:24–42

    CAS  Google Scholar 

  • Moura JJG, Brondino CD, Trincao J, Romao MJ (2004) Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases. J Biol Inorg Chem 9:791–799

    PubMed  CAS  Google Scholar 

  • Moura JJG, Gonzalez P, Moura I, Fauque G (2007) Dissimilatory nitrate and nitrite ammonification by sulphate reducing bacteria. In: Barton LL, Hamilton WA (eds) Sulphate reducing bacteria: environment and engineered systems. Cambridge University Press, Cambridge, pp 241–246

    Google Scholar 

  • Muchuweti M, Birkett JW, Chinyanga E, Zvauya R, Scrimshaw MD, Lester JN (2006) Heavy metal content of vegetables irrigated with mixture of waste water and sewage sludge in Zimbabwe: implications for human health. Agric Ecosyst Environ 112:41–48

    CAS  Google Scholar 

  • Mulrooney SB, Hausinger RP (2003) Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev 27:239–261

    PubMed  CAS  Google Scholar 

  • Mushak P, Davis JM, Crocetti AF, Grant LD (1989) Prenatal and postnatal effects of low-level lead exposure: integrated summary of a report to the U.S. Congress on childhood lead poisoning. Environ Res 50:11–36

    PubMed  CAS  Google Scholar 

  • Nabulo G, Young SD, Black CR (2010) Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils. Sci Total Environ 408:5338–5351

    PubMed  CAS  Google Scholar 

  • Nabuloa G, Oryem-Origa H, Diamond M (2006) Assessment of lead, cadmium and zinc contamination of roadside soils, surface films and vegetables in Kampala City, Uganda. Environ Res 101:42–52

    Google Scholar 

  • Nicholson FA, Smith SR, Alloway BJ, Carlton-Smith C, Chambers BJ (2003) An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci Total Environ 311:205–219

    PubMed  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    PubMed  CAS  Google Scholar 

  • Nolan K (2003) Copper toxicity syndrome. J Orthomol Psychiatry 12:270–282

    Google Scholar 

  • Odokuma LO, Akponah E (2010) Effect of nutrient supplementation on biodegradation and metal uptake by three bacteria in crude oil impacted fresh and brackish waters of the Niger Delta. J Cell Anim Biol 4:001–018

    CAS  Google Scholar 

  • Ogbonna PC, Okezie N (2011) Heavy metal level and macronutrient contents of roadside soil and vegetation in Umuahia, Nigeria. Terr Aquat Environ Toxicol 5:35–39

    Google Scholar 

  • Ogwuegbu MOC, Muhanga W (2005) Investigation of lead concentration in the blood of people in the copper belt province of Zambia. J Environ 1:66–75

    Google Scholar 

  • Oste LA, Dolfing J, Ma W, Lexmond TM (2001) Cadmium uptake by earthworms as related to the availability in the soil and the intestine. Environ Toxicol Chem 20:1785–1791

    PubMed  CAS  Google Scholar 

  • Pandey J, Pandey U (2008) Accumulation of heavy metals in dietary vegetables and cultivated soil horizon in organic farming system in relation to atmospheric deposition in a seasonally dry tropical region of India. Environ Monit Assess 148(1–4):1–14

    Google Scholar 

  • Pandey P, Tripathi AK (2011) Effect of heavy metals on morphological and biochemical characteristics of Albizia procera (Roxb.) Benth. seedlings. Int J Environ Sci 5:1009–1018

    Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian central Himalaya. Curr Microbiol 53:102–107

    PubMed  CAS  Google Scholar 

  • Paudyal SP, Aryal RR, Chauhan SVS, Maheshwari DK (2007) Effect of heavy metals on growth of Rhizobium strains and symbiotic efficiency of two species of tropical legumes. Sci World 5:5

    Google Scholar 

  • Paustenbach DJ, Panko JM, Fredrick MM, Finley BL, Proctor DM (1997) Urinary chromium as a biological marker of environmental exposure: what are the limitations? Regul Toxicol Pharmacol 26:S23–S34

    CAS  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    PubMed  CAS  Google Scholar 

  • Qiu RL, Thangavel P, Hu PJ, Senthilkumar P, Ying RR, Tang YT (2010) Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii. J Hazard Mater 186:1425–1430

    PubMed  Google Scholar 

  • Quartacci MF, Irtelli B, Gonnelli C, Gabbrielli R, Navari-Izzo F (2009) Naturally-assisted metal phytoextraction by Brassica carinata: role of root exudates. Environ Pollut 157:2697–2703

    PubMed  CAS  Google Scholar 

  • Rattan RK, Datta SP, Chhonkar PK, Suribabu K, Singh AK (2005) Long term impact of irrigation with sewage effluents on heavy metal contents in soils, crops and ground water – a case study. Agric Ecosyst Environ 109:310–322

    CAS  Google Scholar 

  • Rebelo J, Maciera S, Dias JM, Huber R, Ascenso CS, Rusnak F, Moura JJG, Moura I, Romao MJ (2000) Gene sequence and crystal structure of the aldehyde oxidoreductase from Desulfovibrio desulfuricans ATCC 27774. J Mol Biol 297:135–146

    PubMed  CAS  Google Scholar 

  • Reddy MS, Basha S, Joshi HV, Jha B (2005) Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion. J Hazard Mater 123:242–249

    PubMed  CAS  Google Scholar 

  • Reglero MM, Taggart MA, Monsalve-González L, Mateo R (2009) Heavy metal exposure in large game from a lead mining area: effects on oxidative stress and fatty acid composition in liver. Environ Pollut 157:1388–1395

    PubMed  CAS  Google Scholar 

  • Rehman F, Khan FA, Varshney D, Naushin F, Rastogi J (2011) Effect of cadmium on the growth of tomato. Biol Med 3:187–190

    CAS  Google Scholar 

  • Reilly C (1991) Metal contamination of food, 2nd edn. Elsevier Applied Science, London

    Google Scholar 

  • Robidoux PY, Gong P, Sarrazin M, Bardai G, Paquet L, Hawari J, Dubois C, Sunahara GI (2004) Toxicity assessment of contaminated soils from an antitank firing range. Ecotoxicol Environ Saf 58:300–313

    PubMed  CAS  Google Scholar 

  • Ross S (1994) Toxic metals in soil-plant systems. Wiley, Chichester

    Google Scholar 

  • Sadik NAH (2008) Effects of diallyl sulphide and zinc on testicular steroidogenesis in cadmium-treated male rats. J Biochem Mol Toxicol 22:345–353

    PubMed  CAS  Google Scholar 

  • Salvatore MD, Carratù G, Carafa AM (2009) Assessment of heavy metals transfer from a moderately polluted soil into the edible parts of vegetables. J Food Agric Environ 7:683–688

    Google Scholar 

  • Sammut ML, Noack Y, Rose J (2006) Zinc speciation in steel plant atmospheric emissions, a multi-technical approach. J Geochem Explor 88:239–242

    CAS  Google Scholar 

  • Sandmann G, Bflger P (1980) Copper-mediated lipid peroxidation processes in photosynthetic membranes. Plant Physiol 66:797–800

    PubMed  CAS  Google Scholar 

  • Sathawara NG, Parikh DJ, Agarwal YK (2004) Essential heavy metals in environmental samples from Western India. Bull Environ Contam Toxicol 73:756–761

    PubMed  CAS  Google Scholar 

  • Sauvé S, Dumestre A, McBride M, Hendershot W (1998) Derivation of soil quality criteria using predicted chemical speciation of Pb2+ and Cu2+. Environ Toxicol Chem 17:1481–1489

    Google Scholar 

  • Sexton K, Beck BD, Bingham E, Brain JD, DeMarini DM, Hertzberg RC, O’Flaherty EJ, Pounds JG (1995) Chemical mixtures from a public health perspective: the importance of research for informed decision making. Toxicology 105:429–441

    PubMed  CAS  Google Scholar 

  • Sharma RK, Agrawal M, Marshall FM (2007) Heavy metals contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol Environ Saf 66:258–266

    CAS  Google Scholar 

  • Singh MV (2008) Micronutrient deficiencies in crops and soils in India. In: Alloway VJ (ed) Micronutrient deficiencies in global crop production. Springer Science + Buisness Media, Berlin, pp 93–125

    Google Scholar 

  • Singh OV, Labana S, PandeyG BR, Jain RK (2003) Phytoremediation: an overview of metallicion decontamination from soil. Appl Microbiol Biotechnol 61:405–412

    PubMed  CAS  Google Scholar 

  • Singh A, Sharma RK, Agrawal M, Marshall FM (2010) Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem Toxicol 48:611–619

    PubMed  CAS  Google Scholar 

  • Somasundaram R, Muthuchelian K, Murugesan S (1994) Inhibition of chlorophyll, protein, photosynthesis, nitrate reductase and nitrate content by vanadium in Oryza sativa L. J Environ Biol 15:41–48

    CAS  Google Scholar 

  • Sörme L, Lagerkvist R (2002) Sources of heavy metals in urban wastewater in Stockholm. Sci Total Environ 298:131–145

    PubMed  Google Scholar 

  • Sridhara Chary N, Kamala CT, Suman RDS (2008) Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol Environ Saf 69:513–524

    PubMed  Google Scholar 

  • Steeland K, Boffetta P (2000) Lead and cancer in humans: where are we now? Am J Ind Med 38:295–299

    Google Scholar 

  • Stobart AK, Griffiths WT, Ameen-Bukhari I, Sherwood RP (1985) The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant 63:293–298

    CAS  Google Scholar 

  • Stobrawa K, Lorenc-Plucińska G (2008) Thresholds of heavy-metal toxicity in cuttings of European black poplar (Populus nigra L.) determined according to antioxidant status of fine roots and morphometrical disorders. Sci Total Environ 390:86–96

    PubMed  CAS  Google Scholar 

  • Stoyanova Z, Doncheva S (2002) The effect of zinc supply and succinate treatment on plant growth and mineral uptake in pea plant. Braz J Plant Physiol 14:111–116

    CAS  Google Scholar 

  • Sugio T, Tsujita Y, Inagaki K, Tano T (1990) Reduction of cupric ions with elemental sulfur by Thiobacillus ferrooxidans. Appl Environ Microbiol 3:693–696

    Google Scholar 

  • Suzuki K, Yabuki T, Ono Y (2008) Roadside Rhododendron pulchrum leaves as bioindicators heavy metal pollution in traffic areas of Okayama, Japan. Environ Monit Assess 149:133–141

    PubMed  Google Scholar 

  • Tsui MTK, Chu LM (2003) Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52:1189–1197

    PubMed  CAS  Google Scholar 

  • Turabelidze G, Schootman M, Zhu BP, Malone JL, Horowitz S, Weidinger J, Williamson D, Simoes E (2008) Multiple sclerosis prevalence and possible lead exposure. J Neurol Sci 269:158–162

    PubMed  CAS  Google Scholar 

  • Tyler G (1993) Critical concentrations of heavy metals in the mor horizon of Swedish forests. Department of Ecology, University of Lund, Lund

    Google Scholar 

  • Ure AM (1996) Single extraction schemes for soil analysis and related application. Sci Total Environ 178:3–10

    CAS  Google Scholar 

  • USGS (United States Geological Survey) (2009) Page maintained by: rcallaghan@usgs.gov. URL: http://minerals.usgs.gov/minerals/pubs/myb.html, EDT, 10:11–25

  • Vaajasaari K, Joutti A, Schultz E, Selonen S, Westerholm H (2002) Comparisons of terrestrial and aquatic bioassays for oil-contaminated soil toxicity. J Soils Sediments 2:194–202

    CAS  Google Scholar 

  • Vainshtein M, Suzina N, Kudryashova E, Ariskina E (2002) New magnet-sensitive structures in bacterial and archaeal cells. Biol Cell 94:29–35

    PubMed  CAS  Google Scholar 

  • van Beelen P, Doelman P (1997) Significance and application of microbial toxicity tests in assessing ecotoxicological risks of contaminants in soil and sediment. Chemosphere 34:455–499

    Google Scholar 

  • Waalkes MP, Rehm S (1994) Cadmium and prostate cancer. J Toxicol Environ Health 43:251–269

    PubMed  CAS  Google Scholar 

  • Wang X, Sato T, Xing B, Tao S (2005) Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci Total Environ 350:28–37

    PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS (2011) Heavy metal toxicity and their remediation by soil microbes: effect of heavy metals and their detoxification by plant growth promoting rhizobacteria. LAP LAMBERT Academic Publishing GmbH & Co. KG, Saarbrücken

    Google Scholar 

  • WHO (1992a) Cadmium. Environmental health criteria, vol 134. WHO, Geneva

    Google Scholar 

  • WHO (1992b) Lead. Environmental health criteria, vol 165. WHO, Geneva

    Google Scholar 

  • Williams RJP (2001) Chemical selection of elements by cells. Coord Chem Rev 216–217:583–595

    Google Scholar 

  • Witter E, Gong P, Baath E, Marstorp H (2000) A study of the structure and metal tolerance of the soil microbial community six years after cessation of sewage sludge applications. Environ Toxicol Chem 19:1983–1991

    CAS  Google Scholar 

  • Xie W, Zhou J, Wang H, Liu Q, Xia J, Lv X (2011) Cu and Pb accumulation in maize (Zea mays L.) and soybean (Glycine max L.) as affected by N, P and K application. Afr J Agric Res 6:1469–1476

    Google Scholar 

  • Xue ZJ, Liu SQ, Liu YL, Yan YL (2011) Health risk assessment of heavy metals for edible parts of vegetables grown in sewage-irrigated soils in suburbs of Baoding City, China. Environ Monit Assess (in press)

    Google Scholar 

  • Yadav DV, Khanna SS (1988) Role of cobalt in nitrogen fixation: a review. Agric Rev 9:180–182

    Google Scholar 

  • Yang QW, Xu X, Liu SJ, He JF, Long FY (2011) Concentration and potential health risk of heavy metals in market vegetables in Chongqing, China. Ecotoxicol Environ Saf 74:1664–1669

    PubMed  CAS  Google Scholar 

  • Young RA (2005) Toxicity profiles: toxicity summary for cadmium, risk assessment information system. University of Tennessee, rais.ornl.Gov/tox/profiles/cadmium.html

    Google Scholar 

  • Zarei M, Mollaie A, Eskandari MH, Pakfetrat S, Shekarforoush S (2010) Histamine and heavy metals content of canned tuna fish. Global Veterinaria 5:259–263

    CAS  Google Scholar 

  • Zhang YL, Dai JL, Wang RQ, Zhang J (2008) Effects of long term sewage irrigation on agricultural soil microbial structural and functional characterizations in Shandong, China. Eur J Soil Biol 44:84–91

    Google Scholar 

  • Zheng N, Wang Q, Zhang X, Zheng D, Zhang Z, Zhang S (2007) Population health risk due to dietary intake of heavy metals in the industrial area of Huludao city, China. Sci Total Environ 387:96–104

    PubMed  CAS  Google Scholar 

  • Zhuang P, McBride MB, Xia H, Li N, Li Z (2009a) Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ 407:1551–1561

    PubMed  CAS  Google Scholar 

  • Zhuang P, Zou B, Li NY, Li ZA (2009b) Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health. Environ Geochem Health 31:707–715

    CAS  Google Scholar 

  • Zou C, Gao X, Shi R, Fan X, Zhang F (2008) Micronutrient deficiencies in crop production in China. In: Alloway BJ (ed) Micronutrient deficiencies in global crop production. Springer, Dordrecht, pp 127–148

    Google Scholar 

  • Zwieg RD, Morton JD, Stewart MM (1999) Source water quality for aquaculture: a guide for assessment. The International Bank for Reconstruction and Development, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Oves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Oves, M., Khan, M.S., Zaidi, A., Ahmad, E. (2012). Soil Contamination, Nutritive Value, and Human Health Risk Assessment of Heavy Metals: An Overview. In: Zaidi, A., Wani, P., Khan, M. (eds) Toxicity of Heavy Metals to Legumes and Bioremediation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0730-0_1

Download citation

Publish with us

Policies and ethics