Skip to main content

Cartilage Engineering: Current Status and Future Trends

  • Chapter
Biomaterials for Tissue Engineering Applications

Abstract

Articular cartilage provides the surface of articulating joints with frictionless movement while absorbing loading forces. The tissue’s extracellular matrix (ECM) is comprised mainly of type II collagen and proteoglycans which are maintained by chondrocytes, the resident cell population. Cartilage is a structurally complex tissue, with zones that exhibit different cell morphologies and extracellular matrix structure depending on distance from the articulating surface. The tissue is both alymphatic and avascular. All nutrient, oxygen, and waste exchange occurs through diffusion. This, along with low cell density and proliferation, contributes to the tissue’s limited ability to repair ECM damage. The high number of people suffering from arthritis has led to a plethora of cartilage engineering research. Recent efforts have focused on aiding the body in cartilage restoration through both cell-based and acellular biomaterials. A variety of synthetic and natural polymers have been created for this purpose, each with their benefits and drawbacks. To date, an ideal biomaterial has yet to be created that can optimally repair or regenerate damaged cartilage. Here we highlight current biomaterial trends in cartilage engineering and examine future directions within the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McDevitt, C.A., Biochemistry of articular cartilage. Nature of proteoglycans and collagen of articular cartilage and their role in ageing and in osteoarthrosis. Ann Rheum Dis, 1973. 32(4): p. 364–78.

    Article  CAS  Google Scholar 

  2. Ulrich-Vinther, M., et al., Articular cartilage biology. J Am Acad Orthop Surg, 2003. 11(6): p. 421–30.

    Google Scholar 

  3. Mollenhauer, J.A., Perspectives on articular cartilage biology and osteoarthritis. Injury, 2008. 39(Suppl 1): p. S5–12.

    Article  Google Scholar 

  4. Kuettner, K.E., Biochemistry of articular cartilage in health and disease. Clin Biochem, 1992. 25(3): p. 155–63.

    Article  CAS  Google Scholar 

  5. Yoon, D.M. and J.P. Fisher, Chondrocyte signaling and artificial matrices for articular cartilage engineering. Adv Exp Med Biol, 2006. 585: p. 67–86.

    Article  CAS  Google Scholar 

  6. Archer, C.W. and P. Francis-West, The chondrocyte. Int J Biochem Cell Biol, 2003. 35(4): p. 401–4.

    Article  CAS  Google Scholar 

  7. Lin, Z., et al., The chondrocyte: biology and clinical application. Tissue Eng, 2006. 12(7): p. 1971–84.

    Article  CAS  Google Scholar 

  8. Elisseeff, J.H., et al., Biological response of chondrocytes to hydrogels. Ann N Y Acad Sci, 2002. 961: p. 118–22.

    Article  CAS  Google Scholar 

  9. Wong, M., et al., Zone-specific cell biosynthetic activity in mature bovine articular cartilage: a new method using confocal microscopic stereology and quantitative autoradiography. J Orthop Res, 1996. 14(3): p. 424–32.

    Article  CAS  Google Scholar 

  10. Jiang, J., et al., Interaction between zonal populations of articular chondrocytes suppresses chondrocyte mineralization and this process is mediated by PTHrP. Osteoarthritis Cartilage, 2008. 16(1): p. 70–82.

    Article  CAS  Google Scholar 

  11. Aydelotte, M.B., R.R. Greenhill, and K.E. Kuettner, Differences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism. Connect Tissue Res, 1988. 18(3): p. 223–34.

    Article  CAS  Google Scholar 

  12. Aydelotte, M.B. and K.E. Kuettner, Differences between sub-populations of cultured bovine articular chondrocytes. I. Morphology and cartilage matrix production. Connect Tissue Res, 1988. 18(3): p. 205–22.

    Article  CAS  Google Scholar 

  13. Huber, M., S. Trattnig, and F. Lintner, Anatomy, biochemistry, and physiology of articular cartilage. Invest Radiol, 2000. 35(10): p. 573–80.

    Article  CAS  Google Scholar 

  14. Khalafi, A., et al., Increased accumulation of superficial zone protein (SZP) in articular cartilage in response to bone morphogenetic protein-7 and growth factors. J Orthop Res, 2007. 25(3): p. 293–303.

    Article  CAS  Google Scholar 

  15. Kim, T.K., et al., Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthritis Cartilage, 2003. 11(9): p. 653–64.

    Article  Google Scholar 

  16. Lu, X.L. and V.C. Mow, Biomechanics of articular cartilage and determination of material properties. Med Sci Sports Exerc, 2008. 40(2): p. 193–9.

    Article  Google Scholar 

  17. Chen, F.H., K.T. Rousche, and R.S. Tuan, Technology insight: adult stem cells in cartilage regeneration and tissue engineering. Nat Clin Pract Rheumatol, 2006. 2(7): p. 373–82.

    Article  CAS  Google Scholar 

  18. Abramson, S.B. and M. Attur, Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther, 2009. 11(3): p. 227.

    Article  Google Scholar 

  19. Cancedda, R., et al., Tissue engineering and cell therapy of cartilage and bone. Matrix Biol, 2003. 22(1): p. 81–91.

    Article  CAS  Google Scholar 

  20. Bliddal, H. and R. Christensen, The treatment and prevention of knee osteoarthritis: a tool for clinical decision-making. Expert Opin Pharmacother, 2009. 10(11): p. 1793–804.

    Article  CAS  Google Scholar 

  21. Borrelli, J., Jr. and W.M. Ricci, Acute effects of cartilage impact. Clin Orthop Relat Res, 2004. (423): p. 33–9.

    Google Scholar 

  22. Vinatier, C., et al., Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy. Curr Stem Cell Res Ther, 2009. 4(4): p. 318–29.

    Article  CAS  Google Scholar 

  23. Jackson, D.W., T.M. Simon, and H.M. Aberman, Symptomatic articular cartilage degeneration: the impact in the new millennium. Clin Orthop Relat Res, 2001. (391 Suppl): p. S14–25.

    Google Scholar 

  24. Lawrence, R.C., et al., Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum, 2008. 58(1): p. 26–35.

    Article  Google Scholar 

  25. Clouet, J., et al., From osteoarthritis treatments to future regenerative therapies for cartilage. Drug Discov Today, 2009. 14(19–20): p. 913–25.

    Article  CAS  Google Scholar 

  26. Hepper, C.T., et al., The efficacy and duration of intra-articular corticosteroid injection for knee osteoarthritis: a systematic review of level I studies. J Am Acad Orthop Surg, 2009. 17(10): p. 638–46.

    Google Scholar 

  27. Rainsford, K.D., Importance of pharmaceutical composition and evidence from clinical trials and pharmacological studies in determining effectiveness of chondroitin sulphate and other glycosaminoglycans: a critique. J Pharm Pharmacol, 2009. 61(10): p. 1263–70.

    Article  CAS  Google Scholar 

  28. Martinez de Aragon, J.S., et al., Early outcomes of pyrolytic carbon hemiarthroplasty for the treatment of trapezial-metacarpal arthritis. J Hand Surg Am, 2009. 34(2): p. 205–12.

    Article  CAS  Google Scholar 

  29. Clair, B.L., A.R. Johnson, and T. Howard, Cartilage repair: current and emerging options in treatment. Foot Ankle Spec, 2009. 2(4): p. 179–88.

    Article  Google Scholar 

  30. Richter, W., Mesenchymal stem cells and cartilage in situ regeneration. J Intern Med, 2009. 266(4): p. 390–405.

    Article  CAS  Google Scholar 

  31. Torun Kose, G. and V. Hasirci, Cartilage tissue engineering. Adv Exp Med Biol, 2004. 553: p. 317–29.

    Google Scholar 

  32. Pelttari, K., A. Wixmerten, and I. Martin, Do we really need cartilage tissue engineering? Swiss Med Wkly, 2009. 139(41–42): p. 602–9.

    CAS  Google Scholar 

  33. Sharma, B. and J.H. Elisseeff, Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng, 2004. 32(1): p. 148–59.

    Article  Google Scholar 

  34. Stoop, R., Smart biomaterials for tissue engineering of cartilage. Injury, 2008. 39(Suppl 1): p. S77–87.

    Article  Google Scholar 

  35. Randolph, M.A., K. Anseth, and M.J. Yaremchuk, Tissue engineering of cartilage. Clin Plast Surg, 2003. 30(4): p. 519–37.

    Article  Google Scholar 

  36. Elisseeff, J., Hydrogels: structure starts to gel. Nat Mater, 2008. 7(4): p. 271–3.

    Article  CAS  Google Scholar 

  37. Kreuz, P.C., et al., Treatment of focal degenerative cartilage defects with polymer-based autologous chondrocyte grafts: four-year clinical results. Arthritis Res Ther, 2009. 11(2): p. R33.

    Article  CAS  Google Scholar 

  38. Guo, J.F., G.W. Jourdian, and D.K. MacCallum, Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect Tissue Res, 1989. 19(2–4): p. 277–97.

    Article  CAS  Google Scholar 

  39. Hauselmann, H.J., et al., Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci, 1994. 107(Pt 1): p. 17–27.

    Google Scholar 

  40. Murphy, C.L. and A. Sambanis, Effect of oxygen tension and alginate encapsulation on restoration of the differentiated phenotype of passaged chondrocytes. Tissue Eng, 2001. 7(6): p. 791–803.

    Article  CAS  Google Scholar 

  41. Yoon, D.M., et al., Effect of construct properties on encapsulated chondrocyte expression of insulin-like growth factor-1. Biomaterials, 2007. 28(2): p. 299–306.

    Article  CAS  Google Scholar 

  42. Yoon, D.M., et al., Addition of hyaluronic acid to alginate embedded chondrocytes interferes with insulin-like growth factor-1 signaling in vitro and in vivo. Tissue Eng Part A, 2009. 15(11): p. 3449–59.

    Article  CAS  Google Scholar 

  43. Peretti, G.M., et al., Review of injectable cartilage engineering using fibrin gel in mice and swine models. Tissue Eng, 2006. 12(5): p. 1151–68.

    Article  CAS  Google Scholar 

  44. Lee, C.R., et al., Articular cartilage chondrocytes in type I and type II collagen-GAG matrices exhibit contractile behavior in vitro. Tissue Eng, 2000. 6(5): p. 555–65.

    Article  CAS  Google Scholar 

  45. Hunter, C.J., et al., Mechanical compression alters gene expression and extracellular matrix synthesis by chondrocytes cultured in collagen I gels. Biomaterials, 2002. 23(4): p. 1249–59.

    Article  CAS  Google Scholar 

  46. van Susante, J.L.C., et al., Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro. Biomaterials, 2001. 22(17): p. 2359–69.

    Article  Google Scholar 

  47. Perka, C., et al., The use of fibrin beads for tissue engineering and subsequential transplantation. Tissue Eng, 2001. 7(3): p. 359–61.

    Article  CAS  Google Scholar 

  48. Almqvist, K.F., et al., Culture of chondrocytes in alginate surrounded by fibrin gel: characteristics of the cells over a period of eight weeks. Ann Rheum Dis, 2001. 60(8): p. 781–90.

    Article  CAS  Google Scholar 

  49. Middleton, J.C. and A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 2000. 21(23): p. 2335–46.

    Article  CAS  Google Scholar 

  50. Grande, D.A., et al., Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res, 1997. 34(2): p. 211–20.

    Article  CAS  Google Scholar 

  51. Freed, L.E., et al., Chondrogenesis in a cell-polymer-bioreactor system. Exp Cell Res, 1998. 240(1): p. 58–65.

    Article  CAS  Google Scholar 

  52. Zhu, L., et al., Engineered cartilage with internal porous high-density polyethylene support from bone marrow stromal cells: a preliminary study in nude mice. Br J Oral Maxillofac Surg, 2010. 48(6): p. 462–5.

    Article  Google Scholar 

  53. Ishaug-Riley, S.L., et al., Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films. Biomaterials, 1999. 20(23–24): p. 2245–56.

    Article  CAS  Google Scholar 

  54. Bryant, S.J., et al., Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnol Bioeng, 2004. 86(7): p. 747–55.

    Article  CAS  Google Scholar 

  55. Martens, P.J., S.J. Bryant, and K.S. Anseth, Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules, 2003. 4(2): p. 283–92.

    Article  CAS  Google Scholar 

  56. Rice, M.A. and K.S. Anseth, Encapsulating chondrocytes in copolymer gels: bimodal degradation kinetics influence cell phenotype and extracellular matrix development. J Biomed Mater Res A, 2004. 70(4): p. 560–8.

    Article  CAS  Google Scholar 

  57. Bryant, S.J., J.A. Arthur, and K.S. Anseth, Incorporation of tissue-specific molecules alters chondrocyte metabolism and gene expression in photocrosslinked hydrogels. Acta Biomater, 2005. 1(2): p. 243–52.

    Article  Google Scholar 

  58. Bryant, S.J. and K.S. Anseth, The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials, 2001. 22(6): p. 619–26.

    Article  CAS  Google Scholar 

  59. Elisseeff, J., et al., Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res, 2000. 51(2): p. 164–71.

    Article  CAS  Google Scholar 

  60. Gooch, K.J., et al., IGF-I and mechanical environment interact to modulate engineered cartilage development. Biochem Biophys Res Commun, 2001. 286(5): p. 909–15.

    Article  CAS  Google Scholar 

  61. Darling, E.M. and K.A. Athanasiou, Growth factor impact on articular cartilage subpopulations. Cell Tissue Res, 2005. 322(3): p. 463–73.

    Article  CAS  Google Scholar 

  62. Koay, E.J., G. Ofek, and K.A. Athanasiou, Effects of TGF-beta1 and IGF-I on the compressibility, biomechanics, and strain-dependent recovery behavior of single chondrocytes. J Biomech, 2008. 41(5): p. 1044–52.

    Article  Google Scholar 

  63. Yoon, D.M. and J.P. Fisher, Effects of exogenous IGF-1 delivery on the early expression of IGF-1 signaling molecules by alginate embedded chondrocytes. Tissue Eng Part A, 2008. 14(7): p. 1263–73.

    Article  CAS  Google Scholar 

  64. Klein, T.J., et al., Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng Part B Rev, 2009. 15(2): p.143–57.

    Article  CAS  Google Scholar 

  65. Buckley, M.R., et al., Mapping the depth dependence of shear properties in articular cartilage. J Biomech, 2008. 41(11): p. 2430–7.

    Article  Google Scholar 

  66. Hidaka, C., et al., Maturational differences in superficial and deep zone articular chondrocytes. Cell Tissue Res, 2006. 323(1): p. 127–35.

    Article  CAS  Google Scholar 

  67. Siczkowski, M. and F.M. Watt, Subpopulations of chondrocytes from different zones of pig articular cartilage. Isolation, growth and proteoglycan synthesis in culture. J Cell Sci, 1990. 97(Pt 2): p. 349–60.

    CAS  Google Scholar 

  68. Ng, K.W., et al., A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs. J Orthop Res, 2005. 23(1): p. 134–41.

    Article  Google Scholar 

  69. Sharma, B., et al., Designing zonal organization into tissue-engineered cartilage. Tissue Eng, 2007. 13(2): p. 405–14.

    Article  CAS  Google Scholar 

  70. Gleghorn, J.P., et al., Adhesive properties of laminated alginate gels for tissue engineering of layered structures. J Biomed Mater Res A, 2008. 85(3): p. 611–8.

    Google Scholar 

  71. Ng, K.W., G.A. Ateshian, and C.T. Hung, Zonal chondrocytes seeded in a layered agarose hydrogel create engineered cartilage with depth-dependent cellular and mechanical inhomogeneity. Tissue Eng Part A, 2009. 15(9): p. 2315–24.

    Article  CAS  Google Scholar 

  72. Pelttari, K., E. Steck, and W. Richter, The use of mesenchymal stem cells for chondrogenesis. Injury, 2008. 39(Suppl 1): p. S58–65.

    Article  Google Scholar 

  73. Hwang, N.S. and J. Elisseeff, Application of stem cells for articular cartilage regeneration. J Knee Surg, 2009. 22(1): p. 60–71.

    Article  Google Scholar 

  74. Salinas, C.N. and K.S. Anseth, Decorin moieties tethered into PEG networks induce chondrogenesis of human mesenchymal stem cells. J Biomed Mater Res A, 2009. 90(2): p. 456–64.

    Google Scholar 

  75. Sharma, B., et al., In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast Reconstr Surg, 2007. 119(1): p. 112–20.

    Article  CAS  Google Scholar 

  76. Wakitani, S., et al., Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology (Oxford), 2003. 42(1): p. 162–5.

    Article  CAS  Google Scholar 

  77. Wakitani, S., et al., Embryonic stem cells form articular cartilage, not teratomas, in osteochondral defects of rat joints. Cell Transplant, 2004. 13(4): p. 331–6.

    Article  Google Scholar 

  78. Kramer, J., et al., Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev, 2000. 92(2): p. 193–205.

    Article  CAS  Google Scholar 

  79. Koay, E.J., G.M. Hoben, and K.A. Athanasiou, Tissue engineering with chondrogenically differentiated human embryonic stem cells. Stem Cells, 2007. 25(9): p. 2183–90.

    Article  CAS  Google Scholar 

  80. Nakayama, N., et al., Macroscopic cartilage formation with embryonic stem-cell-derived mesodermal progenitor cells. J Cell Sci, 2003. 116(Pt 10): p. 2015–28.

    Article  CAS  Google Scholar 

  81. Olivier, E.N., A.C. Rybicki, and E.E. Bouhassira, Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells. Stem Cells, 2006. 24(8): p. 1914–22.

    Article  CAS  Google Scholar 

  82. Hwang, N.S., et al., Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels. Tissue Eng, 2006. 12(9): p. 2695–706.

    Article  CAS  Google Scholar 

  83. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663–76.

    Article  CAS  Google Scholar 

  84. Lee, D.A., et al., Response of chondrocyte subpopulations cultured within unloaded and loaded agarose. J Orthop Res, 1998. 16(6): p. 726–33.

    Article  CAS  Google Scholar 

  85. Vanderploeg, E.J., C.G. Wilson, and M.E. Levenston, Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading. Osteoarthritis Cartilage, 2008. 16(10): p. 1228–36.

    Article  CAS  Google Scholar 

  86. Lane Smith, R., et al., Effects of shear stress on articular chondrocyte metabolism. Biorheology, 2000. 37(1–2): p. 95–107.

    CAS  Google Scholar 

  87. Li, Z., et al., Different response of articular chondrocyte subpopulations to surface motion. Osteoarthritis Cartilage, 2007. 15(9): p. 1034–41.

    Article  CAS  Google Scholar 

  88. Preiss-Bloom, O., et al., Real-time monitoring of force response measured in mechanically stimulated tissue-engineered cartilage. Artif Organs, 2009. 33(4): p. 318–27.

    Article  CAS  Google Scholar 

  89. Davisson, T., R.L. Sah, and A. Ratcliffe, Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng, 2002. 8(5): p. 807–16.

    Article  CAS  Google Scholar 

  90. Vunjak-Novakovic, G., et al., Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res, 1999. 17(1): p. 130–8.

    Article  CAS  Google Scholar 

  91. Cooper, J.A., Jr., et al., Encapsulated chondrocyte response in a pulsatile flow bioreactor. Acta Biomater, 2007. 3(1): p. 13–21.

    Article  CAS  Google Scholar 

  92. Lee, C.R., et al., Fibrin-polyurethane composites for articular cartilage tissue engineering: a preliminary analysis. Tissue Eng, 2005. 11(9–10): p. 1562–73.

    Article  CAS  Google Scholar 

  93. Zeltinger, J., et al., Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng, 2001. 7(5): p. 557–72.

    Article  CAS  Google Scholar 

  94. Erggelet, C., et al., Regeneration of ovine articular cartilage defects by cell-free polymer-based implants. Biomaterials, 2007. 28(36): p. 5570–80.

    Article  CAS  Google Scholar 

  95. Wang, D.A., et al., Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat Mater, 2007. 6(5): p. 385–92.

    Article  CAS  Google Scholar 

  96. Mercier, N.R., et al., Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering. Biomaterials, 2005. 26(14): p. 1945–52.

    Article  CAS  Google Scholar 

  97. Silva, S.S., et al., Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules, 2008. 9(10): p. 2764–74.

    Article  CAS  Google Scholar 

  98. Gellynck, K., et al., Silkworm and spider silk scaffolds for chondrocyte support. J Mater Sci Mater Med, 2008. 19(11): p. 3399–409.

    Article  CAS  Google Scholar 

  99. Wang, Y., et al., Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials, 2006. 27(25): p. 4434–42.

    Article  CAS  Google Scholar 

  100. Ito, Y., et al., Transplantation of tissue-engineered osteochondral plug using cultured chondrocytes and interconnected porous calcium hydroxyapatite ceramic cylindrical plugs to treat osteochondral defects in a rabbit model. Artif Organs, 2008. 32(1): p. 36–44.

    Google Scholar 

  101. Wiegandt, K., et al., In vitro generation of cartilage-carrier-constructs on hydroxylapatite ceramics with different surface structures. Open Biomed Eng J, 2008. 2: p. 64–70.

    Article  CAS  Google Scholar 

  102. Hao, T., et al., The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthritis Cartilage, 2010. 18(2): p. 257–65.

    Article  CAS  Google Scholar 

  103. Park, K.M., et al., Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater, 2009. 5(6): p. 1956–65.

    Article  CAS  Google Scholar 

  104. Lee, H. and T.G. Park, Photo-crosslinkable, biomimetic, and thermo-sensitive pluronic grafted hyaluronic acid copolymers for injectable delivery of chondrocytes. J Biomed Mater Res A, 2009. 88(3): p. 797–806.

    Google Scholar 

  105. Vinatier, C., et al., An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnol Bioeng, 2009. 102(4): p. 1259–67.

    Article  CAS  Google Scholar 

  106. Deng, Y., et al., Poly(hydroxybutyrate-co-hydroxyhexanoate) promoted production of extracellular matrix of articular cartilage chondrocytes in vitro. Biomaterials, 2003. 24(23): p. 4273–81.

    Article  CAS  Google Scholar 

  107. Wang, Y., et al., Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials, 2008. 29(19): p. 2858–68.

    Article  CAS  Google Scholar 

  108. Hu, X., et al., Gelatin hydrogel prepared by photo-initiated polymerization and loaded with TGF-beta1 for cartilage tissue engineering. Macromol Biosci, 2009. 9(12): p. 1194–201.

    Article  CAS  Google Scholar 

  109. Barbucci, R., et al., Proliferative and re-defferentiative effects of photo-immobilized micro-patterned hyaluronan surfaces on chondrocyte cells. Biomaterials, 2005. 26(36): p. 7596–605.

    Article  CAS  Google Scholar 

  110. Jian-Wei, X., et al., Producing a flexible tissue-engineered cartilage framework using expanded polytetrafluoroethylene membrane as a pseudoperichondrium. Plast Reconstr Surg, 2005. 116(2): p. 577–89.

    Article  CAS  Google Scholar 

  111. Jeong, C.G. and S.J. Hollister, Mechanical, permeability, and degradation properties of 3D designed poly(1,8 octanediol-co-citrate) scaffolds for soft tissue engineering. J Biomed Mater Res B Appl Biomater, 2010. 93(1): p. 141–9.

    Google Scholar 

  112. Kang, Y., et al., A new biodegradable polyester elastomer for cartilage tissue engineering. J Biomed Mater Res A, 2006. 77(2): p. 331–9.

    Google Scholar 

  113. Li, W.J., et al., Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J Tissue Eng Regen Med, 2009. 3(1): p. 1–10.

    Article  CAS  Google Scholar 

  114. Thorvaldsson, A., et al., Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules, 2008. 9(3): p. 1044–9.

    Article  CAS  Google Scholar 

  115. Mahmood, T.A., et al., Tissue engineering of bovine articular cartilage within porous poly(ether ester) copolymer scaffolds with different structures. Tissue Eng, 2005. 11(7–8): p. 1244–53.

    Article  CAS  Google Scholar 

  116. Brittberg, M., et al., Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop Relat Res, 1996. (326): p. 270–83.

    Google Scholar 

  117. Curtin, W., et al., The chondrogenic potential of carbon fiber and carbon fiber periosteum implants: an ultrastructural study in the rabbit. Osteoarthritis Cartilage, 1994. 2(4): p. 253–8.

    Article  CAS  Google Scholar 

  118. Petersen, J.P., et al., Long term results after implantation of tissue engineered cartilage for the treatment of osteochondral lesions in a minipig model. J Mater Sci Mater Med, 2008. 19(5): p. 2029–38.

    Article  CAS  Google Scholar 

  119. Hutcheon, G.A., S. Downes, and M.C. Davies, Interactions of chondrocytes with methacrylate copolymers. J Mater Sci Mater Med, 1998. 9(12): p. 815–8.

    Article  CAS  Google Scholar 

  120. Barry, J.J., et al., Porous methacrylate scaffolds: supercritical fluid fabrication and in vitro chondrocyte responses. Biomaterials, 2004. 25(17): p. 3559–68.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (CAREER Award to John P. Fisher #0448684), Arthritis Foundation (Arthritis Investigator Award to John P. Fisher), and the State of Maryland, Maryland Stem Cell Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Fisher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Coates, E.E., Fisher, J.P. (2011). Cartilage Engineering: Current Status and Future Trends. In: Burdick, J.A., Mauck, R.L. (eds) Biomaterials for Tissue Engineering Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0385-2_10

Download citation

Publish with us

Policies and ethics