Skip to main content

Biomechanics of Lower Extremity Movements and Injury in Basketball

  • Chapter
  • First Online:
Basketball Sports Medicine and Science

Abstract

Basketball is a multi-directional sport that has high lateral and vertical demands. Understanding the biomechanics of jumping, landing, and cutting can help coaches and clinicians better reduce the risk of injury in basketball athletes since abnormal movement strategies can lead to various lower extremity injuries especially to the foot, ankle, and knee. If injured, a rehabilitation and return-to-play plan should incorporate regional (hip-focused) and global (lateral and single-leg focused) interventions to elicit the athlete’s optimal performance and safety. This chapter will focus on the lower extremity movement demands characteristic to the sport of basketball as well as lower extremity joint biomechanics during basketball-specific movements, and biomechanical considerations of basketball-related lower extremity injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor JB, Wright AA, Dischiavi SL, Townsend MA, Marmon AR. Activity demands during multi-directional team sports: a systematic review. Sports Med. 2017;47(12):2533–51.

    PubMed  Google Scholar 

  2. Scanlan A, Dascombe B, Reaburn P. A comparison of the activity demands of elite and sub-elite Australian men’s basketball competition. J Sports Sci. 2011;29(11):1153–60.

    PubMed  Google Scholar 

  3. Scanlan AT, Dascombe BJ, Kidcaff AP, Peucker JL, Dalbo VJ. Gender-specific activity demands experienced during semiprofessional basketball game play. Int J Sports Physiol Perform. 2015;10(5):618–25.

    PubMed  Google Scholar 

  4. Scanlan AT, Dascombe BJ, Reaburn P, Dalbo VJ. The physiological and activity demands experienced by Australian female basketball players during competition. J Sci Med Sport. 2012;15(4):341–7.

    PubMed  Google Scholar 

  5. Scanlan AT, Tucker PS, Dascombe BJ, Berkelmans DM, Hiskens MI, Dalbo VJ. Fluctuations in activity demands across game quarters in professional and semiprofessional male basketball. J Strength Cond Res. 2015;29(11):3006–15.

    PubMed  Google Scholar 

  6. Matthew D, Delextrat A. Heart rate, blood lactate concentration, and time-motion analysis of female basketball players during competition. J Sports Sci. 2009;27(8):813–21.

    PubMed  Google Scholar 

  7. McInnes SE, Carlson JS, Jones CJ, McKenna MJ. The physiological load imposed on basketball players during competition. J Sports Sci. 1995;13(5):387–97.

    PubMed  CAS  Google Scholar 

  8. Ben Abdelkrim N, Castagna C, El Fazaa S, El Ati J. The effect of players’ standard and tactical strategy on game demands in men’s basketball. J Strength Cond Res. 2010;24(10):2652–62.

    PubMed  Google Scholar 

  9. Ben Abdelkrim N, Castagna C, Jabri I, Battikh T, El Fazaa S, El Ati J. Activity profile and physiological requirements of junior elite basketball players in relation to aerobic-anaerobic fitness. J Strength Cond Res. 2010;24(9):2330–42.

    PubMed  Google Scholar 

  10. Ben Abdelkrim N, El Fazaa S, El Ati J. Time-motion analysis and physiological data of elite under-19-year-old basketball players during competition. Br J Sports Med. 2007;41(2):69–75. discussion.

    Google Scholar 

  11. Steben RE, Steben AH. The validity of the stretch shortening cycle in selected jumping events. J Sports Med Phys Fitness. 1981;21(1):28–37.

    PubMed  CAS  Google Scholar 

  12. Ford KR, Myer GD, Smith RL, Byrnes RN, Dopirak SE, Hewett TE. Use of an overhead goal alters vertical jump performance and biomechanics. J Strength Cond Res. 2005;19(2):394–9.

    PubMed  Google Scholar 

  13. Bobbert MF, Gerritsen KG, Litjens MC, Van Soest AJ. Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc. 1996;28(11):1402–12.

    PubMed  CAS  Google Scholar 

  14. Aragon-Vargas LF, Gross MM. Kinesiological factors in vertical jump performance: differences among individuals. J Appl Biomech. 1997;13(1):24–44.

    Google Scholar 

  15. Ford KR, Nguyen AD, Hegedus EJ, Taylor JB. Vertical jump biomechanics altered with virtual overhead goal. J Appl Biomech. 2017;33(2):153–9.

    PubMed  Google Scholar 

  16. Ford KR, Myer GD, Brent JL, Hewett TE. Hip and knee extensor moments predict vertical jump height in adolescent girls. J Strength Cond Res. 2009;23(4):1327–31.

    PubMed  PubMed Central  Google Scholar 

  17. Ziv G, Lidor R. Vertical jump in female and male basketball players—a review of observational and experimental studies. J Sci Med Sport. 2010;13(3):332–9.

    PubMed  Google Scholar 

  18. Young W, MacDonald C, Heggen T, Fitzpatrick J. An evaluation of the specificity, validity and reliability of jumping tests. J Sports Med Phys Fitness. 1997;37(4):240–5.

    PubMed  CAS  Google Scholar 

  19. Wang LI. The lower extremity biomechanics of single- and double-leg stop-jump tasks. J Sports Sci Med. 2011;10(1):151–6.

    PubMed  PubMed Central  Google Scholar 

  20. van Soest AJ, Roebroeck ME, Bobbert MF, Huijing PA, van Ingen Schenau GJ. A comparison of one-legged and two-legged countermovement jumps. Med Sci Sports Exerc. 1985;17(6):635–9.

    PubMed  Google Scholar 

  21. Taylor JB, Ford KR, Nguyen AD, Shultz SJ. Biomechanical comparison of single- and double-leg jump landings in the sagittal and frontal plane. Orthop J Sports Med. 2016;4(6):2325967116655158.

    PubMed  PubMed Central  Google Scholar 

  22. Tai WH, Wang LI, Peng HT. Biomechanical comparisons of one-legged and two-legged running vertical jumps. J Hum Kinet. 2018;64:71–6.

    PubMed  PubMed Central  Google Scholar 

  23. Bobbert MF, Huijing PA, van Ingen Schenau GJ. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping. Med Sci Sports Exerc. 1987;19(4):332–8.

    PubMed  CAS  Google Scholar 

  24. Wilk KE, Voight ML, Keirns MA, Gambetta V, Andrews JR, Dillman CJ. Stretch-shortening drills for the upper extremities: theory and clinical application. J Orthop Sports Phys Ther. 1993;17(5):225–39.

    PubMed  CAS  Google Scholar 

  25. Myer GD, Ford KR, McLean SG, Hewett TE. The effects of plyometric versus dynamic stabilization and balance training on lower extremity biomechanics. Am J Sports Med. 2006;34(3):490–8.

    PubMed  Google Scholar 

  26. Myer GD, Faigenbaum AD, Chu DA, Falkel J, Ford KR, Best TM, et al. Integrative training for children and adolescents: techniques and practices for reducing sports-related injuries and enhancing athletic performance. Phys Sportsmed. 2011;39(1):74–84.

    PubMed  Google Scholar 

  27. Ford KR, Myer GD, Schmitt LC, Uhl TL, Hewett TE. Preferential quadriceps activation in female athletes with incremental increases in landing intensity. J Appl Biomech. 2011;27(3):215–22.

    PubMed  PubMed Central  Google Scholar 

  28. Taylor JB, Nguyen AD, Paterno MV, Huang B, Ford KR. Real-time optimized biofeedback utilizing sport techniques (ROBUST): a study protocol for a randomized controlled trial. BMC Musculoskelet Disord. 2017;18(1):71.

    PubMed  PubMed Central  Google Scholar 

  29. Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501.

    PubMed  Google Scholar 

  30. Koga H, Nakamae A, Shima Y, Iwasa J, Myklebust G, Engebretsen L, et al. Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. Am J Sports Med. 2010;38(11):2218–25.

    PubMed  Google Scholar 

  31. Hewett TE, Torg JS, Boden BP. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med. 2009;43(6):417–22.

    PubMed  CAS  Google Scholar 

  32. Taylor JB, Ford KR, Schmitz RJ, Ross SE, Ackerman TA, Shultz SJ. Biomechanical differences of multidirectional jump landings among female basketball and soccer players. J Strength Cond Res. 2017;31(11):3034–45.

    PubMed  Google Scholar 

  33. Taylor JB, Ford KR, Schmitz RJ, Ross SE, Ackerman TA, Shultz SJ. Biomechanical differences in female basketball and soccer players during multi-directional jump landings. J Strength Cond Res. 2017;31:3034–45.

    PubMed  Google Scholar 

  34. Cowley HR, Ford KR, Myer GD, Kernozek TW, Hewett TE. Differences in neuromuscular strategies between landing and cutting tasks in female basketball and soccer athletes. J Athl Train. 2006;41(1):67–73.

    PubMed  PubMed Central  Google Scholar 

  35. Leppanen M, Pasanen K, Kannus P, Vasankari T, Kujala UM, Heinonen A, et al. Epidemiology of overuse injuries in youth team sports: a 3-year prospective study. Int J Sports Med. 2017;38:847–56.

    PubMed  Google Scholar 

  36. Zuckerman SL, Wegner AM, Roos KG, Djoko A, Dompier TP, Kerr ZY. Injuries sustained in National Collegiate Athletic Association men’s and women’s basketball, 2009/2010–2014/2015. Br J Sports Med. 2018;52:261–8.

    PubMed  Google Scholar 

  37. Monfort SM, Comstock RD, Collins CL, Onate JA, Best TM, Chaudhari AM. Association between ball-handling versus defending actions and acute noncontact lower extremity injuries in high school basketball and soccer. Am J Sports Med. 2015;43:802–7.

    PubMed  Google Scholar 

  38. Andreoli CV, Chiaramonti BC, Buriel E, Pochini AC, Ejnisman B, Cohen M. Epidemiology of sports injuries in basketball: integrative systematic review. BMJ Open Sport Exerc Med. 2018;4(1):e000468.

    PubMed  PubMed Central  Google Scholar 

  39. Pasanen K, Ekola T, Vasankari T, Kannus P, Heinonen A, Kujala UM, et al. High ankle injury rate in adolescent basketball: a 3-year prospective follow-up study. Scand J Med Sci Sports. 2017;27(6):643–9.

    PubMed  CAS  Google Scholar 

  40. Clifton DR, Hertel J, Onate JA, Currie DW, Pierpoint LA, Wasserman EB, et al. The first decade of web-based sports injury surveillance: descriptive epidemiology of injuries in US High School Girls’ Basketball (2005–2006 through 2013–2014) and National Collegiate Athletic Association Women’s Basketball (2004–2005 through 2013–2014). J Athl Train. 2018;53(11):1037–48.

    PubMed  PubMed Central  Google Scholar 

  41. Clifton DR, Onate JA, Hertel J, Pierpoint LA, Currie DW, Wasserman EB, et al. The first decade of web-based sports injury surveillance: descriptive epidemiology of injuries in US High School Boys’ Basketball (2005–2006 through 2013–2014) and National Collegiate Athletic Association Men’s Basketball (2004–2005 through 2013–2014). J Athl Train. 2018;53(11):1025–36.

    PubMed  PubMed Central  Google Scholar 

  42. Tummala SV, Hartigan DE, Makovicka JL, Patel KA, Chhabra A. 10-Year epidemiology of ankle injuries in men’s and women’s collegiate basketball. Orthop J Sports Med. 2018;6(11):2325967118805400.

    PubMed  PubMed Central  Google Scholar 

  43. Roos KG, Kerr ZY, Mauntel TC, Djoko A, Dompier TP, Wikstrom EA. The epidemiology of lateral ligament complex ankle sprains in National Collegiate Athletic Association Sports. Am J Sports Med. 2017;45(1):201–9.

    PubMed  Google Scholar 

  44. McKay GD, Goldie PA, Payne WR, Oakes BW. Ankle injuries in basketball: injury rate and risk factors. Br J Sports Med. 2001;35(2):103–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Kofotolis N, Kellis E. Ankle sprain injuries: a 2-year prospective cohort study in female Greek professional basketball players. J Athl Train. 2007;42(3):388–94.

    PubMed  PubMed Central  Google Scholar 

  46. Panagiotakis E, Mok KM, Fong DT, Bull AMJ. Biomechanical analysis of ankle ligamentous sprain injury cases from televised basketball games: understanding when, how and why ligament failure occurs. J Sci Med Sport. 2017;20(12):1057–61.

    PubMed  Google Scholar 

  47. McCollum GA, van den Bekerom MP, Kerkhoffs GM, Calder JD, van Dijk CN. Syndesmosis and deltoid ligament injuries in the athlete. Knee Surg Sports Traumatol Arthrosc. 2013;21(6):1328–37.

    PubMed  Google Scholar 

  48. Kerkhoffs GM, van den Bekerom M, Elders LA, van Beek PA, Hullegie WA, Bloemers GM, et al. Diagnosis, treatment and prevention of ankle sprains: an evidence-based clinical guideline. Br J Sports Med. 2012;46(12):854–60.

    PubMed  Google Scholar 

  49. Kobayashi T, Tanaka M, Shida M. Intrinsic risk factors of lateral ankle sprain: a systematic review and meta-analysis. Sports Health. 2016;8:190–3.

    PubMed  Google Scholar 

  50. Hadzic V, Sattler T, Topole E, Jarnovic Z, Burger H, Dervisevic E. Risk factors for ankle sprain in volleyball players: a preliminary analysis. Isokinet Exerc Sci. 2009;17:155–60.

    Google Scholar 

  51. Witchalls J, Blanch P, Waddington G, Adams R. Intrinsic functional deficits associated with increased risk of ankle injuries: a systematic review with meta-analysis. Br J Sports Med. 2012;46(7):515–23.

    PubMed  Google Scholar 

  52. De Ridder R, Witvrouw E, Dolphens M, Roosen P, Van Ginckel A. Hip strength as an intrinsic risk factor for lateral ankle sprains in youth soccer players: a 3-season prospective study. Am J Sports Med. 2017;45(2):410–6.

    PubMed  Google Scholar 

  53. Taylor JB, Ford KR, Nguyen AD, Terry LN, Hegedus EJ. Prevention of lower extremity injuries in basketball: a systematic review and meta-analysis. Sports Health. 2015;7(5):392–8.

    PubMed  PubMed Central  Google Scholar 

  54. Eils E, Schroter R, Schroder M, Gerss J, Rosenbaum D. Multistation proprioceptive exercise program prevents ankle injuries in basketball. Med Sci Sports Exerc. 2010;42(11):2098–105.

    PubMed  Google Scholar 

  55. Emery CA, Rose MS, McAllister JR, Meeuwisse WH. A prevention strategy to reduce the incidence of injury in high school basketball: a cluster randomized controlled trial. Clin J Sport Med. 2007;17(1):17–24.

    PubMed  Google Scholar 

  56. Verhagen EA, van Mechelen W, de Vente W. The effect of preventive measures on the incidence of ankle sprains. Clin J Sport Med. 2000;10(4):291–6.

    PubMed  CAS  Google Scholar 

  57. Eils E, Demming C, Kollmeier G, Thorwesten L, Volker K, Rosenbaum D. Comprehensive testing of 10 different ankle braces. Evaluation of passive and rapidly induced stability in subjects with chronic ankle instability. Clin Biomech. 2002;17(7):526–35.

    Google Scholar 

  58. Lohrer H, Alt W, Gollhofer A. Neuromuscular properties and functional aspects of taped ankles. Am J Sports Med. 1999;27(1):69–75.

    PubMed  CAS  Google Scholar 

  59. Vaes PH, Duquet W, Casteleyn PP, Handelberg F, Opdecam P. Static and dynamic roentgenographic analysis of ankle stability in braced and nonbraced stable and functionally unstable ankles. Am J Sports Med. 1998;26(5):692–702.

    PubMed  CAS  Google Scholar 

  60. Nishikawa T, Grabiner MD. Peroneal motoneuron excitability increases immediately following application of a semirigid ankle brace. J Orthop Sports Phys Ther. 1999;29(3):168–73. discussion 74–6.

    Google Scholar 

  61. McCaw ST, Cerullo JF. Prophylactic ankle stabilizers affect ankle joint kinematics during drop landings. Med Sci Sports Exerc. 1999;31(5):702–7.

    PubMed  CAS  Google Scholar 

  62. Khan M, Madden K, Burrus MT, Rogowski JP, Stotts J, Samani MJ, et al. Epidemiology and impact on performance of lower extremity stress injuries in professional basketball players. Sports Health. 2018;10:169–74.

    PubMed  Google Scholar 

  63. Orendurff MS, Rohr ES, Segal AD, Medley JW, Green JR 3rd, Kadel NJ. Biomechanical analysis of stresses to the fifth metatarsal bone during sports maneuvers: implications for fifth metatarsal fractures. Phys Sportsmed. 2009;37(2):87–92.

    PubMed  Google Scholar 

  64. Lopezosa-Reca E, Gijon-Nogueron G, Morales-Asencio JM, Cervera-Marin JA, Luque-Suarez A. Is there any association between foot posture and lower limb-related injuries in professional male basketball players? A cross-sectional study. Clin J Sport Med. 2020;30:46–52.

    PubMed  Google Scholar 

  65. Taylor JB, Nguyen AD, Parry HA, Zuk EF, Pritchard NS, Ford KR. Modifying midsole stiffness of basketball footwear affects foot and ankle biomechanics. Int J Sports Phys Ther. 2019;14(3):359–67.

    PubMed  PubMed Central  Google Scholar 

  66. Agel J, Rockwood T, Klossner D. Collegiate ACL injury rates across 15 sports: National Collegiate Athletic Association Injury Surveillance System Data Update (2004–2005 through 2012–2013). Clin J Sport Med. 2016;26(6):518–23.

    PubMed  Google Scholar 

  67. Gornitzky AL, Lott A, Yellin JL, Fabricant PD, Lawrence JT, Ganley TJ. Sport-specific yearly risk and incidence of anterior cruciate ligament tears in high school athletes: a systematic review and meta-analysis. Am J Sports Med. 2016;44(10):2716–23.

    PubMed  Google Scholar 

  68. Piasecki DP, Spindler KP, Warren TA, Andrish JT, Parker RD. Intraarticular injuries associated with anterior cruciate ligament tear: findings at ligament reconstruction in high school and recreational athletes. An analysis of sex-based differences. Am J Sports Med. 2003;31(4):601–5.

    PubMed  Google Scholar 

  69. Granan LP, Inacio MC, Maletis GB, Funahashi TT, Engebretsen L. Sport-specific injury pattern recorded during anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41:2814–8.

    PubMed  Google Scholar 

  70. Mather RC 3rd, Koenig L, Kocher MS, Dall TM, Gallo P, Scott DJ, et al. Societal and economic impact of anterior cruciate ligament tears. J Bone Joint Surg Am. 2013;95(19):1751–9.

    PubMed  PubMed Central  Google Scholar 

  71. Oiestad BE, Engebretsen L, Storheim K, Risberg MA. Knee osteoarthritis after anterior cruciate ligament injury: a systematic review. Am J Sports Med. 2009;37(7):1434–43.

    PubMed  Google Scholar 

  72. Benis R, La Torre A, Bonato M. Anterior cruciate ligament injury profile in female elite Italian basketball league. J Sports Med Phys Fitness. 2018;58:280–6.

    PubMed  Google Scholar 

  73. Boden BP, Torg JS, Knowles SB, Hewett TE. Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med. 2009;37(2):252–9.

    PubMed  Google Scholar 

  74. Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, et al. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35(3):359–67.

    PubMed  Google Scholar 

  75. Powell JW, Barber-Foss KD. Sex-related injury patterns among selected high school sports. Am J Sports Med. 2000;28(3):385–91.

    PubMed  CAS  Google Scholar 

  76. Carlson VR, Sheehan FT, Boden BP. Video analysis of anterior cruciate ligament (ACL) injuries: a systematic review. JBJS Rev. 2016;4(11). https://doi.org/10.2106/JBJS.RVW.15.00116.

  77. Leppanen M, Pasanen K, Kujala UM, Vasankari T, Kannus P, Ayramo S, et al. Stiff landings are associated with increased ACL injury risk in young female basketball and floorball players. Am J Sports Med. 2017;45(2):386–93.

    PubMed  Google Scholar 

  78. Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE. Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med. 2014;42(7):1567–73.

    PubMed  PubMed Central  Google Scholar 

  79. Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):1968–78.

    PubMed  PubMed Central  Google Scholar 

  80. Markolf KL, Gorek JF, Kabo JM, Shapiro MS. Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. J Bone Joint Surg Am. 1990;72(4):557–67.

    PubMed  CAS  Google Scholar 

  81. Myer GD, Ford KR, Barber Foss KD, Liu C, Nick TG, Hewett TE. The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med. 2009;19(1):3–8.

    PubMed  Google Scholar 

  82. Taylor JB, Waxman JP, Richter SJ, Shultz SJ. Evaluation of the effectiveness of anterior cruciate ligament injury prevention programme training components: a systematic review and meta-analysis. Br J Sports Med. 2015;49(2):79–87.

    PubMed  Google Scholar 

  83. Michaelidis M, Koumantakis GA. Effects of knee injury primary prevention programs on anterior cruciate ligament injury rates in female athletes in different sports: a systematic review. Phys Ther Sport. 2014;15(3):200–10.

    PubMed  Google Scholar 

  84. Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K. A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy. 2007;23(12):1320–1325.e6.

    PubMed  Google Scholar 

  85. Omi Y, Sugimoto D, Kuriyama S, Kurihara T, Miyamoto K, Yun S, et al. Effect of hip-focused injury prevention training for anterior cruciate ligament injury reduction in female basketball players: a 12-year prospective intervention study. Am J Sports Med. 2018;46(4):852–61.

    PubMed  Google Scholar 

  86. Bonato M, Benis R, La Torre A. Neuromuscular training reduces lower limb injuries in elite female basketball players. A cluster randomized controlled trial. Scand J Med Sci Sports. 2018;28:1451–60.

    PubMed  CAS  Google Scholar 

  87. Leppanen M, Pasanen K, Kujala UM, Parkkari J. Overuse injuries in youth basketball and floorball. Open Access J Sports Med. 2015;6:173–9.

    PubMed  PubMed Central  Google Scholar 

  88. Cumps E, Verhagen E, Meeusen R. Prospective epidemiological study of basketball injuries during one competitive season: ankle sprains and overuse knee injuries. J Sports Sci Med. 2007;6(2):204–11.

    PubMed  PubMed Central  Google Scholar 

  89. Morton S, Williams S, Valle X, Diaz-Cueli D, Malliaras P, Morrissey D. Patellar tendinopathy and potential risk factors: an international database of cases and controls. Clin J Sport Med. 2017;27(5):468–74.

    PubMed  Google Scholar 

  90. Van der Worp H, de Poel HJ, Diercks RL, van den Akker-Scheek I, Zwerver J. Jumper’s knee or lander’s knee? A systematic review of the relation between jump biomechanics and patellar tendinopathy. Int J Sports Med. 2014;35(8):714–22.

    PubMed  Google Scholar 

  91. Dix J, Marsh S, Dingenen B, Malliaras P. The relationship between hip muscle strength and dynamic knee valgus in asymptomatic females: a systematic review. Phys Ther Sport. 2019;37:197–209.

    PubMed  Google Scholar 

  92. Bourne MN, Williams MD, Opar DA, Al Najjar A, Kerr GK, Shield AJ. Impact of exercise selection on hamstring muscle activation. Br J Sports Med. 2017;51(13):1021–8.

    PubMed  Google Scholar 

  93. Zebis MK, Skotte J, Andersen CH, Mortensen P, Petersen HH, Viskaer TC, et al. Kettlebell swing targets semitendinosus and supine leg curl targets biceps femoris: an EMG study with rehabilitation implications. Br J Sports Med. 2013;47(18):1192–8.

    PubMed  Google Scholar 

  94. Hardesty K, Hegedus EJ, Ford KR, Nguyen AD, Taylor JB. Determination of clinically relevant differences in frontal plane hop tests in Women’s collegiate basketball and soccer players. Int J Sports Phys Ther. 2017;12(2):182–9.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey B. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ESSKA

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taylor, J.B., Hegedus, E.J., Ford, K.R. (2020). Biomechanics of Lower Extremity Movements and Injury in Basketball. In: Laver, L., Kocaoglu, B., Cole, B., Arundale, A.J.H., Bytomski, J., Amendola, A. (eds) Basketball Sports Medicine and Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61070-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61070-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61069-5

  • Online ISBN: 978-3-662-61070-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics