Skip to main content

Sensomotorik und antinozizeptive Systeme und deren Kapazität

  • Chapter
  • First Online:
Sensomotorik und Schmerz
  • 3064 Accesses

Zusammenfassung

Die Schmerzwahrnehmung, -modulation und -toleranz ist eine Gehirnleistung. Hemmsysteme modifizieren die Prozesse im unbewussten und bewussten Bereich. Die Antinozizeption erfolgt bereits als Teil des motorischen Programms. Sport steigert die Kapazität der Schmerzmodulation und -hemmung, wobei die Belastungsintensität sehr bedeutsam ist. Die physische Kondition ist eine Determinante der Schmerzhemmung. Sie geht vom PFC, MI, dem Dienzephalon, dem Hirnstamm, dem Locus coeruleus und dem PAG aus. Auch Testosteron ist mit ihr verknüpft.

Die Kapazität der Schmerzhemmung ergibt sich aus der „conditioned pain modulation“ (CPM), einem „Schmerz-hemmt-Schmerz-Mechanismus“ und der „exercise induced hypoalgesia“ (EIH). Beide Mechanismen interagieren. Die EIH ist bei Gesunden sicher durch ermüdendes Training auslösbar. Die Alterung mindert die Kapazität. Liegt eine CPM vor, reagieren Patienten wie Gesunde. Eine abnorme CPM diagnostiziert eine Dysfunktion auch der EIH. Grundsätzlich besteht aber Konsensus für die Belastungstherapie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Aburn G, Gott M, Hoare K (2016) What is resilience? An Integrative Review of the empirical literature. J Adv Nurs 72(5):980–1000. https://doi.org/10.1111/jan.12888 (Epub 2016 Jan 7)

  • Alsouhibani A, Vaegter HB, Hoeger Bement M (2018) Systemic exercise-induced hypoalgesia following isometric exercise reduces conditioned pain modulation. Pain Med. https://doi.org/10.1093/pm/pny057 (Epub ahead of print)

  • Ambrose KR, Golightly YM (2015) Physical exercise as non-pharmacological treatment of chronic pain: why and when. Best Pract Res Clin Rheumatol 29(1):120–130. https://doi.org/10.1016/j.berh.2015.04.022 (Epub 23 May 2015)

    Article  PubMed  PubMed Central  Google Scholar 

  • Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9(4):463–484 (Epub 21 Jan 2005)

    Article  Google Scholar 

  • Arendt-Nielsen L, Sluka KA, Nie HL (2008) Experimental muscle pain impairs descending inhibition. Pain 140:465–471

    Google Scholar 

  • Bellgowan PS, Helmstetter FJ (1998) The role of mu and kappa opioid receptors within the periaqueductal gray in the expression of conditional hypoalgesia. Brain Res 791:83–89

    Article  CAS  Google Scholar 

  • Bement MKH, Sluka KA (2016) Exercise-induced analgesia: an evidence-based review. In: Sluka KA (Hrsg) Mechanisms and Management of Pain for the Physical Therapist, 2. Aufl., Ch. 10, S. 177–201. Wolters Kuwer & IASP Press, Seattle

    Google Scholar 

  • Bingel U, Lorenz J, Glauche V, Knab R, Glascher J, Weiller C, Buchel C (2004) Somatotopic organization of human somatosensory cortices for pain : a single trail fMRI study. Neuroimage 23:224–232

    Google Scholar 

  • Bingel U, Schoell E, Büchel C (2007) Imaging pain modulation in health and disease. Curr Opin Neurol 20(4):424–31

    Google Scholar 

  • Bourne S, Machado AG, Nagel SJ (2014) Basic anatomy and physiology of pain pathways. Neurosurg Clin N Am 25(4):629–638. https://doi.org/10.1016/j.nec.2014.06.001 (Epub 3 Aug. 2014)

    Article  PubMed  Google Scholar 

  • Brown JA (2001) Motor cortex stimulation. Neurosurg Focus. 11(3):E5

    Google Scholar 

  • Butler RK, Finn DP (2009) Stress-induced analgesia. Prog Neurobiol 88:184–202

    Article  CAS  Google Scholar 

  • Cheng YY, Kao CL, Ma HI, Hung CH, Wang CT, Liu DH, Chen PY, Tsai KL (2015) SIRT1-related inhibition of pro-inflammatory responses and oxidative stress are involved in the mechanism of nonspecific low back pain relief after exercise through modulation of Toll-like receptor 4. J Biochem 158(4):299–308. https://doi.org/10.1093/jb/mvv041 (Epub 27 Apr. 2015)

    Article  CAS  PubMed  Google Scholar 

  • Cho SS, Strafella AP (2009) rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS ONE 4:e6725

    Article  Google Scholar 

  • Colloca L (2018) The placebo effect in pain therapies. Annu Rev Pharmacol Toxicol. https://doi.org/10.1146/annurev-pharmtox-010818-021542 (Epub ahead of print)

  • Cruccu G, Aziz TZ, Garcia-Larrea L, Hansson P, Jensen TS, Lefaucheur JP, Simpson BA, Taylor RS (2007) EFNS guidelines on neurostimulation therapy for neuropathic pain. Eur J Neurol 14(9):952–970

    Google Scholar 

  • Cui RQ, Deecke L (1999) High resolution DC-EEG analysis of the Bereitschaftspotential and post movement onset potentials accompanying uni- or bilateral voluntary finger movements. Brain Topogr 11(3):233–249

    Google Scholar 

  • Daenen L, Varkey E, Kellmann M, Nijs J (2015) Exercise, not to exercise, or how to exercise in patients with chronic pain? Applying science to practice. Clin J Pain 31(2):108–114. https://doi.org/10.1097/AJP.0000000000000099

    Article  PubMed  Google Scholar 

  • Dafny N, Dong WQ, Prieto-Gomez C, Reyes-Vazquez C, Stanford J, Qiao JT (1996) Lateral hypothalamus: site involved in pain modulation. Neuroscience 70(2):449–460

    Article  CAS  Google Scholar 

  • De Martino E, Zandalasini M, Schabrun S, Petrini L, Graven-Nielsen T (2018a) Experimental muscle hyperalgesia modulates sensorimotor cortical excitability, which is partially altered by unaccustomed exercise. Pain 159(12):2493–2502. https://doi.org/10.1097/j.pain.0000000000001351

    Article  PubMed  Google Scholar 

  • De Martino E, Seminowicz DA, Schabrun SM, Petrini L, Graven-Nielsen T (2018b) High frequency repetitive transcranial magnetic stimulation to the left dorsolateral prefrontal cortex modulates sensorimotor cortex function in the transition to sustained muscle pain. Neuroimage 186:93–102. https://doi.org/10.1016/j.neuroimage.2018.10.076 (Epub ahead of print)

  • De Martino E, Petrini L, Schabrun S, Graven-Nielsen T (2018c) Cortical Somatosensory Excitability Is Modulated in Response to Several Days of Muscle Soreness. J Pain 19(11):1296–1307. https://doi.org/10.1016/j.jpain.2018.05.004 (Epub 25 Mai 2018)

  • Dowell D, Haegerich TM, Chou R (2016) CDC guideline for prescribing opioids for chronic pain – United States, 2016. J Am Med Assoc 315:1624–1645

    Google Scholar 

  • Drew BT, Smith TO, Littlewood C, Sturrock B (2014) Do structural changes (eg, collagen/matrix) explain the response to therapeutic exercises in tendinopathy: a systematic review. Br J Sports Med 48(12):966–972. https://doi.org/10.1136/bjsports-2012-091285 (Epub 31 Oct 2012)

  • Fierro B, De TM, Giglia F, Giglia G, Palermo A, Brighina F (2010) Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex (DLPFC) during capsaicin-induced pain: modulatory effects on motor cortex excitability. Exp Brain Res 203:31–38

    Article  Google Scholar 

  • Fingleton C, Smart K, Doody C, Dip T (2017) Exercise-induced hypoalgesia in people with knee osteoarthritis with normal and abnormal conditioned pain modulation. Clin J Pain 33:395–404

    Article  Google Scholar 

  • Flor H, Braun C, Elbert T, Birbaumer N (1997) Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neurosci Lett 224:5–8

    Google Scholar 

  • Gajsar H, Titze C, Hasenbring MI, Vaegter HB (2017) Isometric back exercise has different effect on pressure pain thresholds in healthy men and women. Pain Med 18(5):917–923. https://doi.org/10.1093/pm/pnw176

    Article  PubMed  Google Scholar 

  • Gajsar H, Nahrwold K, Titze C, Hasenbring MI, Vaegter HB (2018) Exercise does not produce hypoalgesia when performed immediately after a painful stimulus. Scand J Pain 18(2):311–320. https://doi.org/10.1515/sjpain-2018-0024

    Article  PubMed  Google Scholar 

  • García-Larrea L, Peyron R, Mertens P, Gregoire MC, Lavenne F, Le Bars D, Convers P, Mauguière F, Sindou M, Laurent B (1999) Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study. Pain 83(2):259–273

    Google Scholar 

  • Gold MS, Gebhart GF (2010) Nociceptor sensitization in pain pathogenesis. Nat Med 16:1248–1257

    Google Scholar 

  • Hemington KS, Rogachov A, Cheng JC, Bosma RL Kim JA, Osborne NR, Inman RD, Davis KD (2018) Patients with chronic pain exhibit a complex relationship triad between pain, resilience, and within- and cross-network functional connectivity of the default mode network. Pain 159(8):1621–1630. https://doi.org/10.1097/j.pain.0000000000001252

  • Hoeger Bement MK, Dicapo J, Rasiarmos R, Hunter SK (2008) Dose response of isometric contractions on pain perception in healthy adults. Med Sci Sports Exerc 40(11):1880–1889. [PubMed:18845975]

    Google Scholar 

  • Horn A, Ostwald D, Reisert M, Blankenburg F (2014) The structural-functional connectome and the default mode network of the human brain. Neuroimage 15(102 Pt 1):142–151. https://doi.org/10.1016/j.neuroimage.2013.09.069 (Epub 4 Oct. 2013)

    Article  Google Scholar 

  • Hosomi K, Saitoh Y, Kishima H, Oshino S, Hirata M, Tani N, Shimokawa T, Yoshimine T (2008) Electrical stimulation of primary motor cortex within the central sulcus for intractable neuropathic pain. Clin Neurophysiol 119(5):993–1001. (Epub 2008 Mar. 10)

    Google Scholar 

  • Jennings EM, Okine BN, Roche M, Finn DP (2014) Stress-induced hyperalgesia. Prog Neurobiol 121:1–18. https://doi.org/10.1016/j.pneurobio.2014.06.003 (Epub 8 July 2014)

    Article  PubMed  Google Scholar 

  • Kami K, Tajima F, Senba E (2017) Exercise-induced hypoalgesia: potential mechanisms in animal models of neuropathic pain. Anat Sci Int 92(1):79–90 (Epub 2 Aug. 2016)

    Article  CAS  Google Scholar 

  • Kennedy DL, Kemp HI, Ridout D, Yarnitsky D, Rice AS (2016) Reliability of conditioned pain modulation: a systematic review. Pain 157(11):2410–2419

    Google Scholar 

  • Kosek E, Ordeberg G (2000) Lack of pressure pain modulation by heterotopic noxious conditioning stimulation in patients with painful osteoarthritis before, but not following, surgical pain relief. Pain 88:69–78

    Google Scholar 

  • Lannersten L, Kosek E (2010) Dysfunction of endogenous pain inhibition during exercise with painful muscles in patients with shoulder myalgia and fibromyalgia. Pain 151:77–86

    Article  Google Scholar 

  • Le Bars D (2002) The whole body receptive field of dorsal horn multireceptive neurones. Brain Res Brain Res Rev 40(1–3):29–44

    Article  Google Scholar 

  • Le Bars D, Dickenson AH, Besson JM (1979a) Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat. Pain 6(3):283–304

    Google Scholar 

  • Le Bars D, Dickenson AH, Besson JM (1979b) Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on non-convergent neurones, supraspinal involvement and theoretical implications. Pain 6(3):305–327

    Google Scholar 

  • Lefaucheur JP, Drouot X, Cunin P, Bruckert R, Lepetit H, Créange A, Wolkenstein P, Maison P, Keravel Y, Nguyen JP (2009) Motor cortex stimulation for the treatment of refractory peripheral neuropathic pain. Brain 132(6):1463–1471. https://doi.org/10.1093/brain/awp035 (Epub 31 Mar. 2009)

  • Lemley KJ, Hunter SK, Bement MK (2015) Conditioned pain modulation predicts exercise-induced hypoalgesia in healthy adults. Med Sci Sports Exerc 47(1):176–184 (PubMed: 24870571)

    Article  Google Scholar 

  • Levine JD, Gordon NC, Fields HL (1978) The mechanism of placebo analgesia. Lancet 2(8091):654–657

    Article  CAS  Google Scholar 

  • Levy R, Deer TR, Henderson J (2010) Intracranial neurostimulation for pain control: a review. Pain Physician 13(2):157–165

    Google Scholar 

  • Li Y, Wang Y, Xuan C, Li Y, Piao L, Li J, Zhao H (2017) Role of the lateral habenula in pain-associated depression. Front Behav Neurosci 11:31. https://doi.org/10.3389/fnbeh.2017.00031 (eCollection 2017)

  • Lima LV, Abner TSS, Sluka KA (2017) Does exercise increase or decrease pain? Central mechanisms underlying these two phenomena. J Physiol 595(13):4141–4150. https://doi.org/10.1113/JP273355 (Epub 2017 May 26)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas JM, Ji Y, Masri R (2011) Motor cortex stimulation reduces hyperalgesia in an animal model of central pain. Pain 152(6):1398–1407. (Epub 2011 Mar 10)

    Google Scholar 

  • Mackenzie J (1909) Counter-Irritation. Proc R Soc Med 2(Ther Pharmacol Sect):75–80

    Google Scholar 

  • Maihöfner C, Nickel FT, Seifert F (2010) Neuropathic pain and neuroplasticity in functional imaging studies. Schmerz 24(2):137–145

    Google Scholar 

  • Marinelli S, Vaughan CW, Schnell SA, Wessendorf MW, Christie MJ (2002) Rostral ventromedial medulla neurons that project to the spinal cord express multiple opioid receptor phenotypes. J Neurosci 22(24):10847–10855

    Article  CAS  Google Scholar 

  • Martel MO, Petersen K, Cornelius M, Arendt-Nielsen L, Edwards R (2018) Endogenous pain modulation profiles among individuals with chronic pain: Relation to opioid use. J Pain. pii: S1526-5900(18)30759-4. https://doi.org/10.1016/j.jpain.2018.10.004 (Epub ahead of print)

  • Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150:971–979

    Article  CAS  Google Scholar 

  • Millan MJ (2002) Descending control of pain. Prog Neurobiol 66(6):355–474

    Article  CAS  Google Scholar 

  • Moisset X, de Andrade DC, Bouhassira D (2016) From pulses to pain relief: an update on the mechanisms of rTMS-induced analgesic effects. Eur J Pain 20(5):689–700. https://doi.org/10.1002/ejp.811 (Epub 16 Oct 2015)

    Article  CAS  PubMed  Google Scholar 

  • Monconduit L, Desbois C, Villanueva L (2002) The integrative role of the rat medullary subnucleus reticularis dorsalis in nociception. Eur J Neurosci 16(5):937–944

    Article  CAS  Google Scholar 

  • Naugle KM, Fillingim RB, Riley JL (2012) A meta-analytic review of the hypoalgesic effects of exercise. J Pain 13(12):1139–1150. https://doi.org/10.1016/j.jpain.2012.09.006 (Epub 8 Nov. 2012)

    Article  PubMed  PubMed Central  Google Scholar 

  • Naugle KM, Naugle KE, Riley JL 3rd (2016) Reduced Modulation of Pain in Older Adults After Isometric and Aerobic Exercise. J Pain 17(6):719–728. https://doi.org/10.1016/j.jpain.2016.02.013 (Epub 2016 Mar 15)

  • Naugle KM, Ohlman T, Naugle KE, Riley ZA, Keith NR (2017) Physical activity behavior predicts endogenous pain modulation in older adults. Pain 158(3):383–390. https://doi.org/10.1097/j.pain.0000000000000769

  • Neugebauer V (2015) Amygdala pain mechanisms. Handb Exp Pharmacol 227:261–284. https://doi.org/10.1007/978-3-662-46450-2_13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen JP, Lefaucheur JP, Decq P, Uchiyama T, Carpentier A, Fontaine D, Brugières P, Pollin B, Fève A, Rostaing S, Cesaro P, Keravel Y (1999) Chronic motor cortex stimulation in the treatment of central and neuropathic pain. Correlations between clinical, electrophysiological and anatomical data. Pain 82(3):245–251

    Google Scholar 

  • Nir RR, Yarnitsky D (2015) Conditioned pain modulation. Curr Opin Support Palliat Care 9(2):131–137. https://doi.org/10.1097/SPC.0000000000000126

    Article  PubMed  Google Scholar 

  • O’Connell NE, Marston L, Spencer S, DeSouza LH, Wand BM (2018) Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev 16(3):CD008208. https://doi.org/10.1002/14651858.cd008208.pub4

  • Ohlman T, Miller L, Naugle KE, Naugle KM (2018) Physical activity levels predict exercise-induced hypoalgesia in older adults. Med Sci Sports Exerc 50(10):2101–2109. https://doi.org/10.1249/MSS.0000000000001661

    Article  PubMed  Google Scholar 

  • Ossipov MH, Dussor GO, Porreca F (2010) Central modulation of pain. J Clin Invest 120(11):3779–3787. https://doi.org/10.1172/JCI43766 (Epub 1 Nov. 2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagano RL, Assis DV, Clara JA, Alves AS, Dale CS, Teixeira MJ, Fonoff ET, Britto LR (2011) Transdural motor cortex stimulation reverses neuropathic pain in rats: a profile of neuronal activation. Eur J Pain 15(3):268.e1–14

    Google Scholar 

  • Piché M, Arsenault M, Rainville P (2009) Cerebral and cerebrospinal processes underlying counterirritation analgesia. J Neurosci 29(45):14236–14246

    Google Scholar 

  • Quante M, Hille s, Schofer MD, Lorenz J, Hauck M (2008) Noxious counterirritation in patients with advanced osteoarthritis of the knee reduces MCC but not SII pain generators: A combined use of MEG and EEG. J Pain Res 1:1–8

    Google Scholar 

  • Rainov NG, Fels C, Heidecke V, Burkert W (1997) Epidural electrical stimulation of the motor cortex in patients with facial neuralgia. Clin Neurol Neurosurg 99(3):205–209

    Google Scholar 

  • Rohde J (2009) Untersuchung und Therapie am Periost. Zur segmentalen Innervation des Periostes. Manuelle Medizin 47:334–342. https://doi.org/10.1007/s00337-009-0702-1

  • Rohde J (2010) Schmerztherapie über das Periost. Manuelle Medizin 48:447–453. https://doi.org/10.1007/s00337-010-0808-5

  • Schaible HG, Richter F (2004) Pathophysiologiy of pain. Langenbecks Arch Surg 389:237–243

    Google Scholar 

  • Schabrun SM, Christensen SW, Mrachacz-Kersting N, Graven-Nielsen T (2016) Motor cortex reorganization and impaired function in the transition to sustained muscle pain. Cereb Cortex 26:1878–1890

    Google Scholar 

  • Schaible HG, Del Rosso A, Matucci-Cerinic M (2005) Neurogenic aspects of inflammation. Rheum Dis Clin North Am 31:77–101

    Google Scholar 

  • Schaible HD, Ebersberger A, Natura G (2011) Update on peripheral mechanisms of pain: beyond prostaglandins and cytokines. Arthritis Res Therapy 13:210. http://arthritis-research.com/content/13/210

  • Seminowicz DA, de Martino E, Schabrun SM, Graven-Nielsen T (2018) Left dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation reduces the development of long-term muscle pain. Pain 159(12):2486–2492. https://doi.org/10.1097/j.pain.0000000000001350

    Article  PubMed  Google Scholar 

  • Shen J, Fox LE, Cheng J (2013) Swim therapy reduces mechanical allodynia and thermal hyperalgesia induced by chronic constriction nerve injury in rats. Pain Med 14(4):516–525. https://doi.org/10.1111/pme.12057 (Epub 25 Febr. 2013)

    Article  PubMed  PubMed Central  Google Scholar 

  • Sibon I, Strafella AP, Gravel P, Ko JH, Booij L, Soucy JP, Leyton M, Diksic M, Benkelfat C (2007) Acute prefrontal cortex TMS in healthy volunteers: effects on brain 11C-alphaMtrp trapping. Neuroimage 34:1658–1664

    Article  CAS  Google Scholar 

  • Smith A, Ritchie C, Pedler A, McCamley K, Roberts K, Sterling M (2017) Exercise induced hypoalgesia is elicited by isometric, but not aerobic exercise in individuals with chronic whiplash associated disorders. Scand J Pain 15:14–21. https://doi.org/10.1016/j.sjpain.2016.11.007 (Epub 6 Dec. 2016)

    Article  PubMed  Google Scholar 

  • Sounvoravong S, Nakashima MN, Wada M, Nakashima K (2004) Decrease in serotonin concentration in raphe magnus nucleus and attenuation of morphine analgesia in two mice models of neuropathic pain. Eur J Pharmacol 484(2–3):217–223

    Article  CAS  Google Scholar 

  • Stolzman S, Lemley K, Hoffmeister K, Coate M, Drendel A, Hoeger Bement M (2014) Conditioned pain modulation and exercise-induced hypoalgesia in adolescents. Pediatric Physical Therapy: The Official Publication of the Section on Pediatrics of the American Physical Therapy Association 26(1):154–155

    Google Scholar 

  • Stolzman S, Danduran M, Hunter SK, Bement MH (2015) Pain response after maximal aerobic exercise in adolescents across weight status. Med Sci Sports Exerc 47(11):2431–2440. [PubMed:25856681]

    Google Scholar 

  • Stolzman S, Hoeger Bement M (2016) Lean mass predicts conditioned pain modulation in adolescents across weight status. Eur J Pain 20(6):967–976. https://doi.org/10.1002/ejp.821 (Epub 13 Jan. 2016)

    Article  CAS  PubMed  Google Scholar 

  • Stolzman S, Bement MH (2016) Does exercise decrease pain via conditioned pain modulation in adolescents? Pediatr Phys Ther 28(4):470–473. https://doi.org/10.1097/pep.0000000000000312

  • Tamano R, Ishida M, Asaki T, Hasegawa M, Shinohara S (2016) Effect of spinal monoaminergic neuronal system dysfunction on pain threshold in rats, and the analgesic effect of serotonin and norepinephrine reuptake inhibitors. Neurosci Lett 26(615):78–82. https://doi.org/10.1016/j.neulet.2016.01.025 (Epub 19 Jan 2016)

    Article  CAS  Google Scholar 

  • Taylor JJ, Borckardt JJ, George MS (2012) Endogenous opioids mediate left dorsolateral prefrontal cortex rTMS-induced analgesia. Pain 153:1219–1225

    Article  CAS  Google Scholar 

  • Taylor JJ, Borckardt JJ, Canterberry M, Li X, Hanlon CA, Brown TR, George MS (2013) Naloxone-reversible modulation of pain circuitry by left prefrontal rTMS. Neuropsychopharmacology 38:1189–1197

    Article  CAS  Google Scholar 

  • Toubia T, Khalife T ( 2018 ) The endogenous opioid system: role and dysfunction caused by opioid therapy. Clin Obstet Gynecol. https://doi.org/10.1097/grf.0000000000000409 (Epub ahead of print)

  • Travers M, Moss P, Gibson W, Hince D, Yorke S, Chung C, Langford R, Tan EEW, Ng J, Palsson TS (2018) Exercise-induced hypoalgesia in women with varying levels of menstrual pain. Scand J Pain 18(2):303–310. https://doi.org/10.1515/sjpain-2018-0020

    Article  PubMed  Google Scholar 

  • Treede RD, Kenshalo DR, Gracely RH, Jones A (1999) The cortical representation of pain. Pain 79:105–111

    Google Scholar 

  • Tsao JC, Seidman LC, Evans S, Lung KC, Zeltzer LK, Naliboff BD (2013) Conditioned pain modulation in children and adolescents: effects of sex and age. J Pain 14(6):558–567 (PubMed:23541066)

    Google Scholar 

  • Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S (1991a) Treatment of thalamic pain by chronic motor cortex stimulation. Pacing Clin Electrophysiol 14(1):131–134

    Article  CAS  Google Scholar 

  • Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S (1991b) Chronic motor cortex stimulation for the treatment of central pain. Acta Neurochir Suppl (Wien) 52:137–139

    Article  CAS  Google Scholar 

  • Vaegter HB, Handberg G, Graven-Nielsen T (2014) Similarities between exercise-induced hypoalgesia and conditioned pain modulation in humans. Pain 155(1):158–167 https://doi.org/10.1016/j.pain.2013.09.023(Epub 2013 Sep 26)

    Article  Google Scholar 

  • Vaegter HB, Handberg G, Jorgensen MN, Kinly A, Graven-Nielsen T (2015) Aerobic exercise and cold pressor test induce hypoalgesia in active and inactive men and women. Pain Med 16(5):923–933 (PubMed: 25530341)

    Article  Google Scholar 

  • Vaegter HB, Handberg G, Graven-Nielsen T (2016) Hypoalgesia after exercise and the cold pressor test is reduced in chronic musculoskeletal pain patients with high pain sensitivity. Clin J Pain 32(1):58–69. https://doi.org/10.1097/AJP.0000000000000223

    Article  PubMed  Google Scholar 

  • Vaegter HB, Handberg G, Emmeluth C, Graven-Nielsen T (2017) Preoperative hypoalgesia after cold pressor test and aerobic exercise is associated with pain relief 6 months after total knee replacement. Clin J Pain 33(6):475–484. https://doi.org/10.1097/AJP.0000000000000428

    Article  PubMed  Google Scholar 

  • Vaegter HB, Dørge DB, Schmidt KS, Jensen AH, Graven-Nielsen T (2018) Test-retest reliabilty of exercise-induced hypoalgesia after aerobic exercise. Pain Med 19(11):2212–2222. https://doi.org/10.1093/pm/pny009

    Article  PubMed  Google Scholar 

  • Velasco F, Carrillo-Ruiz JD, Castro G, Argüelles C, Velasco AL, Kassian A, Guevara U (2009) Motor cortex electrical stimulation applied to patients with complex regional pain syndrome. Pain 147(1-3):91–8. https://doi.org/10.1016/j.pain.2009.08.024 (Epub 29 Sept. 2009)

  • Vogt BA (2005) Pain and emotion. Interactions in subregions of the cingulated cortex. Nat Rev Neurosci 6:533–544

    Google Scholar 

  • van Wijk G, Veldhuijzen DS (2010) Perspective on diffuse noxious inhibitory controls as a model of endogenous pain modulation in clinical pain syndromes. J Pain 11(5):408–419 (PubMed:20075013)

    Article  Google Scholar 

  • Vogler P (1953) Periostbehandlung. Thieme, Stuttgart

    Google Scholar 

  • Vogler P, Krauß H (1980) Periostbehandlung – Kolonbehandung. Zwei reflextherapeutische Methoden. Thieme, Stuttgart

    Google Scholar 

  • Wager TD, Atlas LY (2015) The neuroscience of placebo effects: connecting context, learning and health. Nat Rev Neurosci 16(7):403–418. https://doi.org/10.1038/nrn3976

  • Whitson HE, Duan-Porter W, Schmader KE, Morey MC, Cohen HJ, Colón-Emeric CS (2016) Physical resilience in older adults: systematic review and development of an emerging construct. J Gerontol A Biol Sci Med Sci 71(4):489–495. https://doi.org/10.1093/gerona/glv202 (Epub 29 Dec. 2015)

    Article  PubMed  Google Scholar 

  • Wiedenmayer CP, Barr GA (2000) Mu opioid receptors in the ventrolateral periaqueductal gray mediate stress-induced analgesia but not immobility in rat pups. Behav Neurosci 114:125–136

    Article  CAS  Google Scholar 

  • Yarnitsky D, Arendt-Nielsen L, Bouhassira D, Edwards RR, Fillingim RB, Granot M, Hansson P, Lautenbacher S, Marchand S, Wilder-Smith O (2010) Recommendations on terminology and practice of psychophysical DNIC testing. Eur J Pain 14:339

    Article  Google Scholar 

  • Yunhai Q, Yasuki N, Honda M, Nakata H, Tamura Y, Tanaka S, Sadato N, Wang X, Inui K, Kakigi R (2006) Brain processing of the signals ascending through unmyelinated C fibers in humans: An event-related functional magnetic resonance imaging study. Cerebral Cortex 16:1289–1295 https://doi.org/10.1093/cercor/bhj071

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Laube .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laube, W. (2020). Sensomotorik und antinozizeptive Systeme und deren Kapazität. In: Sensomotorik und Schmerz. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60512-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60512-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60511-0

  • Online ISBN: 978-3-662-60512-7

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics