Skip to main content

Recent Progress on the Utilization of Nanomaterials in Microtubular Solid Oxide Fuel Cell

  • Chapter
  • First Online:
Nanostructured Materials for Next-Generation Energy Storage and Conversion

Abstract

This chapter describes the method of producing hollow fiber for a microtubular solid oxide fuel cell (MT-SOFC) using nanomaterial-based structures. This chapter focuses on the utilization of yttrium-stabilized zirconia (YSZ) and cerium-gadolinium oxide (CGO) nanomaterials for high and intermediate working temperatures of MT-SOFC, respectively. The chapter then discusses the nanomaterial available and a number of attempts to produce the nanomaterial for the electrolyte. Then, the advantages of using nanomaterial are also discussed. Finally, this chapter concludes the future of nanomaterial for MT-SOFC and its future challenges.

Author Contributions

Mohd Hilmi Mohamed wrote the manuscript with input from all authors and contributed to the final version of the manuscript. Siti Munira Jamil carried out the experiment, wrote the manuscript, and contributed to the final version of the manuscript. Siti Halimah Ahmad carried out the experiment and wrote the manuscript. Mohd Hafiz Dzarfan Othman devised the project, the main conceptual ideas, and proof outline. He also supervised the project, discussed the results, and contributed to the final manuscript. Mukhlis A Rahman, Juhana Jaafar, and Ahmad Fauzi Ismail helped supervise the project, discussed the results, and contributed to the final manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.X. Cai, Y.W. Zeng, W. Zhang, C.J. Guo, X.W. Yang, Synthesis of nanocomposite nickel oxide/yttrium-stabilized zirconia (NiO/YSZ) powders for anodes of solid oxide fuel cells (SOFCs) via microwave-assisted complex-gel auto-combustion. J. Power Sources 195(5), 1308–1315 (2010)

    Article  CAS  Google Scholar 

  2. S. Zhuiykov (ed.), 7 – Nanostructured semiconductor composites for solid oxide fuel cells (SOFCs), in Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices, Woodhead Publishing, 321–373 (2014). https://doi.org/10.1533/9781782422242.321

  3. S.M. Jamil, M.H.D. Othman, M.A. Rahman, J. Jaafar, A.F. Ismail, K. Li, Recent fabrication techniques for micro-tubular solid oxide fuel cell support: a review. J. Eur. Ceram. Soc. 35(1), 1–22 (2015)

    Article  CAS  Google Scholar 

  4. T. Suzuki, T. Yamaguchi, Y. Fujishiro, M. Awano, Fabrication, and characterization of micro tubular SOFCs for operation in the intermediate temperature. J. Power Sources 160(1), 73–77 (2006)

    Article  CAS  Google Scholar 

  5. J.H. Lee, J.W. Heo, D.S. Lee, J. Kim, G.H. Kim, H.W. Lee, H.S. Song, J.H. Moon, The impact of anode microstructure on the power generating characteristics of SOFC. Solid State Ionics 158(3–4), 225–232 (2003)

    Article  CAS  Google Scholar 

  6. H.T. Suzuki, T. Uchikoshi, K. Kayashi, T.S. Suzuki, T. Sugiyama, K. Furuya, M. Matsuda, Y. Sakka, F. Munakata, Fabrication of GDC/LSGM/GDC tri-layers on polypyrrole-coated NiO-YSZ by electrophoretic deposition for anode-supported SOFC. J. Ceram. Soc. Jpn. 117(1371), 1246–1248 (2009)

    Article  CAS  Google Scholar 

  7. M.H.D. Othman, N. Droushiotis, Z. Wu, G. Kelsall, K. Li, Novel fabrication technique of hollow fiber support for micro-tubular solid oxide fuel cells. J. Power Sources 196(11), 5035–5044 (2011)

    Article  CAS  Google Scholar 

  8. T. Suzuki, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Effect of anode microstructure on the performance of micro tubular SOFCs. Solid State Ionics 180(6–8), 546–549 (2009)

    Article  CAS  Google Scholar 

  9. X.X. Meng, X. Gong, N.T. Yang, X.Y. Tan, Z.F. Ma, Preparation and properties of direct-methane solid oxide fuel cell based on a graded Cu-CeO2-Ni-YSZ composite anode. Acta Phys. Chim. Sin. 29(8), 1719–1726 (2013)

    CAS  Google Scholar 

  10. C.C. Wei, O.Y. Chen, Y. Liu, K. Li, Ceramic asymmetric hollow fiber membranes-one step fabrication process. J. Membr. Sci. 320(1–2), 191–197 (2008)

    Article  CAS  Google Scholar 

  11. A. Sarikaya, V. Petrovsky, F. Dogan, Effect of the anode microstructure on the enhanced performance of solid oxide fuel cells. Int. J. Hydrog. Energy 37(15), 11370–11377 (2012)

    Article  CAS  Google Scholar 

  12. M.H.D. Othman, Z. Wu, N. Droushiotis, U. Doraswami, G. Kelsall, K. Li, Single-step fabrication and characterizations of electrolyte/anode dual-layer hollow fibers for micro-tubular solid oxide fuel cells. J. Membr. Sci. 351(1–2), 196–204 (2010)

    Article  CAS  Google Scholar 

  13. O. Mohd Hafiz Dzarfan, A.R. Mukhlis, L. Kang, J. Juhana, H. Hasrinah, I. Ahmad Fauzi, Ceramic hollow-fiber support through a phase inversion-based extrusion/sintering technique for high-temperature energy conversion systems, in Membrane Fabrication (CRC Press, Florida, 2015), pp. 347–382

    Google Scholar 

  14. C.Y. Liu, J.Q. Wang, Z.H. Rong, Mesoporous MCM-48 silica membrane synthesized on a large-pore alpha-Al2O3 ceramic tube. J. Membr. Sci. 287(1), 6–8 (2007)

    Article  CAS  Google Scholar 

  15. K. Li, Preparation of ceramic membranes, in Ceramic Membranes for Separation and Reaction (Wiley, 2007), pp. 21–57

    Google Scholar 

  16. S.L. Li, S.R. Wang, H.W. Nie, T.L. Wen, A direct-methane solid oxide fuel cell with a double-layer anode. J. Solid State Electrochem. 11(1), 59–64 (2007)

    Article  Google Scholar 

  17. X. Tan, K. Li, Inorganic hollow fiber membranes in catalytic processing. Curr. Opin. Chem. Eng. 1(1), 69–76 (2011)

    Article  CAS  Google Scholar 

  18. X. Tan, S. Liu, K. Li, Preparation and characterization of inorganic hollow fiber membranes. J. Membr. Sci. 188(1), 87–95 (2001)

    Article  CAS  Google Scholar 

  19. N. Droushiotis, U. Doraswami, D. Ivey, M.H.D. Othman, K. Li, G. Kelsall, Fabrication by co-extrusion and electrochemical characterization of micro-tubular hollow fiber solid oxide fuel cells. Electrochem. Commun. 12(6), 792–795 (2010)

    Article  CAS  Google Scholar 

  20. N. Droushiotis, M.H.D. Othman, U. Doraswami, Z. Wu, G. Kelsall, K. Li, Novel co-extruded electrolyte–anode hollow fibers for solid oxide fuel cells. Electrochem. Commun. 11(9), 1799–1802 (2009)

    Article  CAS  Google Scholar 

  21. N.H. Othman, Z. Wu, K. Li, Functional dual-layer ceramic hollow fibre membranes for methane conversion. Procedia Eng. 44(0), 1484–1485 (2012)

    Article  Google Scholar 

  22. B.F.K. Kingsbury, K. Li, A morphological study of ceramic hollow fiber membranes. J. Membr. Sci. 328(1–2), 134–140 (2009)

    Article  CAS  Google Scholar 

  23. B.H. Rainwater, M. Liu, M. Liu, A more efficient anode microstructure for SOFCs based on proton conductors. Int. J. Hydrog. Energy 37(23), 18342–18348 (2012)

    Article  CAS  Google Scholar 

  24. J. Liu, S.A. Barnett, Operation of anode-supported solid oxide fuel cells on methane and natural gas. Solid State Ionics 158(1–2), 11–16 (2003)

    Article  CAS  Google Scholar 

  25. J.A. Glasscock, V. Esposito, S.P.V. Foghmoes, T. Stegk, D. Matuschek, M.W.H. Ley, S. Ramousse, The effect of forming stresses on the sintering of ultra-fine Ce0.9Gd0.1O2−δ powders. J. Eur. Ceram. Soc. 33(7), 1289–1296 (2013)

    Article  CAS  Google Scholar 

  26. Y. Okawa, Y. Hirata, Sinterability, microstructures and electrical properties of Ni/Sm-doped ceria cermet processed with nanometer-sized particles. J. Eur. Ceram. Soc. 25(4), 473–480 (2005)

    Article  CAS  Google Scholar 

  27. V. Gil, C. Moure Jiménez, J. Tartaj, Low-Temperature Synthesis and Sintering Behavior of Gd-Doped Ceria Nano Sized Powders: Comparison Between Two Synthesis Procedures. Síntesis y sinterización de polvo nanométrico de ceria doped con gadolinia: comparación entre dos procedimientos de síntesis, (2009)

    Google Scholar 

  28. M. Han, Z. Liu, S. Zhou, L. Yu, Influence of lithium oxide addition on the sintering behavior and electrical conductivity of Gadolinia doped ceria. J. Mater. Sci. Technol. 27(5), 460–464 (2011)

    Article  CAS  Google Scholar 

  29. A.I.Y. Tok, L.H. Luo, F.Y.C. Boey, Carbonate co-precipitation of Gd2O3-doped CeO2 solid solution nano-particles. Mater. Sci. Eng. A 383(2), 229–234 (2004)

    Article  Google Scholar 

  30. D.H. Prasad, H.Y. Jung, H.G. Jung, B.K. Kim, H.W. Lee, J.H. Lee, Single step synthesis of nano-sized NiO–Ce0.75Zr0.25O2 composite powders by glycine nitrate process. Mater. Lett. 62(4–5), 587–590 (2008)

    Article  Google Scholar 

  31. D.H. Prasad, J.W. Son, B.K. Kim, H.W. Lee, J.H. Lee, Synthesis of the nano-crystalline Ce0.9Gd0.1O1.95 electrolyte by novel sol–gel thermolysis process for IT-SOFCs. J. Eur. Ceram. Soc. 28(16), 3107–3112 (2008)

    Article  CAS  Google Scholar 

  32. D. Hari Prasad, H.R. Kim, J.S. Park, J.W. Son, B.K. Kim, H.W. Lee, J.H. Lee, Superior sinterability of nano-crystalline gadolinium doped ceria powders synthesized by co-precipitation method. J. Alloys Compd. 495(1), 238–241 (2010)

    Article  CAS  Google Scholar 

  33. V. Gil, J. Gurauskis, R. Campana, R.I. Merino, A. Larrea, V.M. Orera, Anode-supported microtubular cells fabricated with gadolinia-doped ceria nanopowders. J. Power Sources 196(3), 1184–1190 (2011)

    Article  CAS  Google Scholar 

  34. H.H. Kausch, D.G. Fesko, N.W. Tschoegl, The random packing of circles in a plane. J. Colloid Interface Sci. 37(3), 603–611 (1971)

    Article  CAS  Google Scholar 

  35. P. Muralidharan, S.H. Jo, D.K. Kim, Electrical conductivity of submicrometer gadolinia-doped ceria sintered at 1000°C using precipitation-synthesized nanocrystalline powders. J. Am. Ceram. Soc. 91(10), 3267–3274 (2008)

    Article  CAS  Google Scholar 

  36. E. Ruiz-Trejo, J. Santoyo-Salazar, R. Vilchis-Morales, A. Benítez-Rico, F. Gómez-García, C. Flores-Morales, J. Chávez-Carvayar, G. Tavizón, Microstructure and electrical transport in nano-grain sized Ce0.9Gd0.1O2−δ ceramics. J. Solid State Chem. 180(11), 3093–3100 (2007)

    Article  CAS  Google Scholar 

  37. K. Kendall, N.Q. Minh, S.C. Singhal, Chapter 8 – Cell and stack designs, in High Temperature and Solid Oxide Fuel Cells, (John Wiley and Sons, Inc., Hoboken, NJ, Elsevier Science, Amsterdam, 2003), pp. 197–228

    Chapter  Google Scholar 

  38. G. Ye, F. Ju, C. Lin, S. Gopalan, U. Pal, D. Seccombe, Single-Step Co-Firing Technique for SOFC Fabrication, in Advances in Solid Oxide Fuel Cells: Ceramic Engineering and Science Proceedings, ed. by N. P. Bansal (John Wiley and Sons, Inc., Hoboken, NJ, 2008), 26(4), pp. 25–32. https://doi.org/10.1002/9780470291245.ch3

    Google Scholar 

  39. S.-D. Kim, H. Moon, S.-H. Hyun, J. Moon, J. Kim, H.-W. Lee, Nano-composite materials for high-performance and durability of solid oxide fuel cells. J. Power Sources 163(1), 392–397 (2006)

    Article  CAS  Google Scholar 

  40. C. Chen, M. Liu, L. Yang, M. Liu, Anode-supported micro-tubular SOFCs fabricated by a phase-inversion and dip-coating process. Int. J. Hydrog. Energy 36(9), 5604–5610 (2011)

    Article  CAS  Google Scholar 

  41. C.-C. Chao, C.-M. Hsu, Y. Cui, F.B. Prinz, Improved solid oxide fuel cell performance with nanostructured electrolytes. ACS Nano 5(7), 5692–5696 (2011)

    Article  CAS  Google Scholar 

  42. M.H.D. Othman, N. Droushiotis, Z. Wu, K. Kanawka, G. Kelsall, K. Li, Electrolyte thickness control and its effect on electrolyte/anode dual-layer hollow fibers for micro-tubular solid oxide fuel cells. J. Membr. Sci. 365(1–2), 382–388 (2010)

    Article  CAS  Google Scholar 

  43. D. Das, B. Bagchi, R.N. Basu, Nanostructured zirconia thin film fabricated by an electrophoretic deposition technique. J. Alloys Compd. 693, 1220–1230 (2017)

    Article  CAS  Google Scholar 

  44. C.C. Wei, K. Li, Yttria-stabilized zirconia (YSZ)-based hollow fiber solid oxide fuel cells. Ind. Eng. Chem. Res. 47(5), 1506–1512 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Universiti Teknologi Malaysia, Research University Grant Tier 1 (12H25), and UTMShine Flagship Grant (03G29) for the support and funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Hafiz Dzarfan Othman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohamed, M.H., Jamil, S.M., Othman, M.H.D., Rahman, M.A., Jaafar, J., Ismail, A.F. (2018). Recent Progress on the Utilization of Nanomaterials in Microtubular Solid Oxide Fuel Cell. In: Li, F., Bashir, S., Liu, J. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56364-9_17

Download citation

Publish with us

Policies and ethics