Skip to main content

Skin Vaccination Methods: Gene Gun, Jet Injector, Tattoo Vaccine, and Microneedle

  • Chapter
  • First Online:
Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement

Abstract

The natural biological function of the skin is to protect the body against harmful infections by hindering the intrusion of foreign pathogens. In terms of protection, the skin serves a dual functionality: the physical barrier provided by the stratum corneum and the immunological barrier stimulated by the antigen-presenting cells (APCs) in the dermis and epidermis. In recent years, several findings have established that stimulating the APCs underneath the stratum corneum can provide several advantages in terms of vaccine administration over conventional methods. Hence, such “intradermal immunization” methods have been investigated worldwide. As a result, some of the intradermal vaccine delivery methods that were developed include the Mantoux technique, ballistic vaccination, epidermal powder immunization (EPI), jet injector, tattoo immunization, and microneedles. This chapter attempts to briefly delineate these methods and describe the state of research regarding these technologies in the present day.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aguiar JC, Hedstrom RC et al (2001) Enhancement of the immune response in rabbits to a malaria DNA vaccine by immunization with a needle-free jet device. Vaccine 20(1–2):275–280

    Article  CAS  PubMed  Google Scholar 

  • Alarcon JB, Hartley AW et al (2007) Preclinical evaluation of microneedle technology for intradermal delivery of influenza vaccines. Clin Vaccine Immunol 14(4):375–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnou R, Icardi G et al (2009) Intradermal influenza vaccine for older adults: a randomized controlled multicenter phase III study. Vaccine 27(52):7304–7312

    Article  CAS  PubMed  Google Scholar 

  • Arora A, Hakim I et al (2007) Needle-free delivery of macromolecules across the skin by nanoliter-volume pulsed microjets. Proc Natl Acad Sci U S A 104(11):4255–4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter J, Mitragotri S (2005) Jet-induced skin puncture and its impact on needle-free jet injections: experimental studies and a predictive model. J Control Release 106(3):361–373

    Article  CAS  PubMed  Google Scholar 

  • Belshe RB (2004) Current status of live attenuated influenza virus vaccine in the US. Virus Res 103(1–2):177–185

    Article  CAS  PubMed  Google Scholar 

  • Beran J, Ambrozaitis A et al (2009) Intradermal influenza vaccination of healthy adults using a new microinjection system: a 3-year randomised controlled safety and immunogenicity trial. BMC Med 7(1):13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernard KW, Mallonee J et al (1987) Preexposure immunization with intradermal human diploid cell rabies vaccine. Risks and benefits of primary and booster vaccination. JAMA 257(8):1059–1063

    Article  CAS  PubMed  Google Scholar 

  • Bins AD, Jorritsma A et al (2005) A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression. Nat Med 11(8):899–904

    Article  CAS  PubMed  Google Scholar 

  • Boudreau EF, Josleyn M et al (2012) A Phase 1 clinical trial of Hantaan virus and Puumala virus M-segment DNA vaccines for hemorrhagic fever with renal syndrome. Vaccine 30(11):1951–1958

    Article  CAS  PubMed  Google Scholar 

  • Chen DX, Payne LG (2002) Targeting epidermal Langerhans cells by epidermal powder immunization. Cell Res 12(2):97–104

    Article  PubMed  Google Scholar 

  • Chen DX, Endres RL et al (2000) Epidermal immunization by a needle-free powder delivery technology: immunogenicity of influenza vaccine and protection in mice. Nat Med 6(10):1187–1190

    Article  CAS  PubMed  Google Scholar 

  • Chen DX, Periwal SB et al (2001a) Serum and mucosal immune responses to an inactivated influenza virus vaccine induced by epidermal powder immunization. J Virol 75(17):7956–7965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen DX, Weis KF et al (2001b) Epidermal powder immunization induces both cytotoxic T-lymphocyte and antibody responses to protein antigens of influenza and hepatitis B viruses. J Virol 75(23):11630–11640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Zuleger C et al (2002a) Epidermal powder immunization with a recombinant HIV gp120 targets Langerhans cells and induces enhanced immune responses. AIDS Res Hum Retroviruses 18(10):715–722

    Article  CAS  PubMed  Google Scholar 

  • Chen DX, Endres RL et al (2002b) Epidermal powder immunization using non-toxic bacterial enterotoxin adjuvants with influenza vaccine augments protective immunity. Vaccine 20(21–22):2671–2679

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Endres R et al (2003) Epidermal powder immunization of mice and monkeys with an influenza vaccine. Vaccine 21(21–22):2830–2836

    Article  CAS  PubMed  Google Scholar 

  • Chen DX, Burger M et al (2004) Epidermal powder immunization: cellular and molecular mechanisms for enhancing vaccine immunogenicity. Virus Res 103(1–2):147–153

    Article  CAS  PubMed  Google Scholar 

  • Chen JS, Lin LP et al (2012) Enhancement of Helicobacter pylori outer inflammatory protein DNA vaccine efficacy by co-delivery of interleukin-2 and B subunit heat-labile toxin gene encoded plasmids. Microbiol Immunol 56(2):85–92

    Article  CAS  PubMed  Google Scholar 

  • Chen MC, Huang SF et al (2013) Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials 34(12):3077–3086

    Article  CAS  PubMed  Google Scholar 

  • Chiu Y-N, Sampson JM et al (2012) Skin tattooing as a novel approach for DNA vaccine delivery. J Vis Exp 68:e50032

    Google Scholar 

  • Dean HJ, Chen DX (2004) Epidermal powder immunization against influenza. Vaccine 23(5):681–686

    Article  CAS  PubMed  Google Scholar 

  • Dean CH, Alarcon JB et al (2005) Cutaneous delivery of a live, attenuated chimeric flavivirus vaccines against Japanese encephalitis (ChimeriVaxTM-JE) in non-human primates. Hum Vaccin 1(3):106–111

    Article  CAS  PubMed  Google Scholar 

  • Debenedictis C, Joubeh S et al (2001) Immune functions of the skin. Clin Dermatol 19(5):573–585

    Article  CAS  PubMed  Google Scholar 

  • Ding Z, Van Riet E et al (2009a) Immune modulation by adjuvants combined with diphtheria toxoid administered topically in BALB/c mice after microneedle array pretreatment. Pharm Res 26(7):1635–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Verbaan FJ et al (2009b) Microneedle arrays for the transcutaneous immunization of diphtheria and influenza in BALB/c mice. J Control Release 136(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Epstein JE, Gorak EJ et al (2002) Safety, tolerability, and lack of antibody responses after administration of a PfCSP DNA malaria vaccine via needle or needle-free jet injection, and comparison of intramuscular and combination intramuscular/intradermal routes. Hum Gene Ther 13(13):1551–1560

    Article  CAS  PubMed  Google Scholar 

  • Eriksson E, Yao F et al (1998) In vivo gene transfer to skin and wound by microseeding. J Surg Res 78(2):85–91

    Article  CAS  PubMed  Google Scholar 

  • Feltquate DM, Heaney S et al (1997) Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J Immunol 158(5):2278–2284

    CAS  PubMed  Google Scholar 

  • Foege WH, Millar JD et al (1971) Selective epidemiologic control in smallpox eradication. Am J Epidemiol 94(4):311–315

    Article  CAS  PubMed  Google Scholar 

  • Fynan EF, Webster RG et al (1993) DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci U S A 90(24):11478–11482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giudice EL, Campbell JD (2006) Needle-free vaccine delivery. Adv Drug Deliv Rev 58(1):68–89

    Article  CAS  PubMed  Google Scholar 

  • Gopee NV, Cui YY et al (2005) Response of mouse skin to tattooing: use of SKH-1 mice as a surrogate model for human tattooing. Toxicol Appl Pharmacol 209(2):145–158

    Article  CAS  PubMed  Google Scholar 

  • Gorres JP, Lager KM et al (2011) DNA vaccination elicits protective immune responses against pandemic and classic swine influenza viruses in pigs. Clin Vaccine Immunol 18(11):1987–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haensler J, Verdelet C et al (1999) Intradermal DNA immunization by using jet-injectors in mice and monkeys. Vaccine 17(7–8):628–638

    Article  CAS  PubMed  Google Scholar 

  • Hirobe S, Azukizawa H et al (2015) Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials 57:50–58

    Article  CAS  PubMed  Google Scholar 

  • Holland D, Booy R et al (2008) Intradermal influenza vaccine administered using a new microinjection system produces superior immunogenicity in elderly adults: a randomized controlled trial. J Infect Dis 198(5):650–658

    Article  PubMed  Google Scholar 

  • Huang HN, Li TL et al (2009a) Transdermal immunization with low-pressure-gene-gun mediated chitosan-based DNA vaccines against Japanese encephalitis virus. Biomaterials 30(30):6017–6025

    Article  CAS  PubMed  Google Scholar 

  • Huang J, D’Souza AJ et al (2009b) Protective immunity in mice achieved with dry powder formulation and alternative delivery of plague F1-V vaccine. Clin Vaccine Immunol 16(5):719–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson LA, Austin G et al (2001) Safety and immunogenicity of varying dosages of trivalent inactivated influenza vaccine administered by needle-free jet injectors. Vaccine 19(32):4703–4709

    Article  CAS  PubMed  Google Scholar 

  • Joseph SK, Sambanthamoorthy S et al (2012) Protective immune responses to biolistic DNA vaccination of Brugia malayi abundant larval transcript-2. Vaccine 30(45):6477–6482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanazawa T, Takashima Y et al (2010) Local gene expression and immune responses of vaginal DNA vaccination using a needle-free injector. Int J Pharm 396(1–2):11–16

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Quan FS et al (2009) Improved influenza vaccination in the skin using vaccine coated microneedles. Vaccine 27(49):6932–6938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YC, Quan FS et al (2010a) Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J Control Release 142(2):187–195

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Quan FS et al (2010b) Formulation of microneedles coated with influenza virus-like particle vaccine. AAPS PharmSciTech 11(3):1193–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YC, Quan FS et al (2010c) Influenza immunization with trehalose-stabilized virus-like particle vaccine using microneedles. Procedia Vaccinol 2(1):15–19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim YC, Quan FS et al (2010d) Enhanced memory responses to seasonal H1N1 influenza vaccination of the skin with the use of vaccine-coated microneedles. J Infect Dis 201(2):190–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YC, Quan FS et al (2011) Stability kinetics of influenza vaccine coated onto microneedles during drying and storage. Pharm Res 28(1):135–144

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Zuiani A et al (2012a) Single chain MHC I trimer-based DNA vaccines for protection against Listeria monocytogenes infection. Vaccine 30(12):2178–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YC, Jarrahian C et al (2012b) Delivery systems for intradermal vaccination. Curr Top Microbiol Immunol 351:77–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YC, Park JH et al (2012c) Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 64(14):1547–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YC, Yoo DG et al (2013) Cross-protection by co-immunization with influenza hemagglutinin DNA and inactivated virus vaccine using coated microneedles. J Control Release 172(2):579–588

    Article  CAS  PubMed  Google Scholar 

  • Kim NW, Lee MS et al (2014) Polyplex-releasing microneedles for enhanced cutaneous delivery of DNA vaccine. J Control Release 179:11–17

    Article  CAS  PubMed  Google Scholar 

  • Kis EE, Winter G et al (2012) Devices for intradermal vaccination. Vaccine 30(3):523–538

    Article  CAS  PubMed  Google Scholar 

  • Klein TM, Wolf ED et al (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327(6117):70–73

    Article  CAS  Google Scholar 

  • Kok PW, Kenya PR et al (1983) Measles immunization with further attenuated heat-stable measles vaccine using five different methods of administration. Trans R Soc Trop Med Hyg 77(2):171–176

    Article  CAS  PubMed  Google Scholar 

  • Kommareddy S, Baudner BC et al (2012) Dissolvable microneedle patches for the delivery of cell-culture-derived influenza vaccine antigens. J Pharm Sci 101(3):1021–1027

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, McGregor M et al (2004) A protective effect of epidermal powder immunization in a mouse model of equine herpesvirus-1 infection. Virology 318(1):414–419

    Article  CAS  PubMed  Google Scholar 

  • Koutsonanos DG, Vassilieva EV et al (2012) Delivery of subunit influenza vaccine to skin with microneedles improves immunogenicity and long-lived protection. Sci Rep 2:357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar A, Li X et al (2011) Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin. Int J Nanomedicine 6:1253–1264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kupper TS, Fuhlbrigge RC (2004) Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol 4(3):211–222

    Article  CAS  PubMed  Google Scholar 

  • La Montagne JR, Fauci AS (2004) Intradermal influenza vaccination – can less be more? N Engl J Med 351(22):2330–2332

    Article  PubMed  Google Scholar 

  • Lambert PH, Laurent PE (2008) Intradermal vaccine delivery: will new delivery systems transform vaccine administration? Vaccine 26(26):3197–3208

    Article  CAS  PubMed  Google Scholar 

  • Lambracht-Washington D, Qu BX et al (2009) DNA beta-amyloid(1–42) trimer immunization for Alzheimer disease in a wild-type mouse model. JAMA 302(16):1796–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambracht-Washington D, Qu BX et al (2011) DNA immunization against amyloid beta 42 has high potential as safe therapy for Alzheimer’s disease as it diminishes antigen-specific Th1 and Th17 cell proliferation. Cell Mol Neurobiol 31(6):867–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurent PE, Bourhy H et al (2010) Safety and efficacy of novel dermal and epidermal microneedle delivery systems for rabies vaccination in healthy adults. Vaccine 28(36):5850–5856

    Article  PubMed  Google Scholar 

  • Leroux-Roels I, Vets E et al (2008) Seasonal influenza vaccine delivered by intradermal microinjection: a randomised controlled safety and immunogenicity trial in adults. Vaccine 26(51):6614–6619

    Article  CAS  PubMed  Google Scholar 

  • Loehr BI, Willson P et al (2000) Gene gun-mediated DNA immunization primes development of mucosal immunity against bovine herpesvirus 1 in cattle. J Virol 74(13):6077–6086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maa YF, Ameri M et al (2004) Spray-coating for biopharmaceutical powder formulations: beyond the conventional scale and its application. Pharm Res 21(3):515–523

    Article  CAS  PubMed  Google Scholar 

  • Madison KC (2003) Barrier function of the skin: “La Raison d’Etre” of the epidermis. J Invest Dermatol 121(2):231–241

    Article  CAS  PubMed  Google Scholar 

  • Mantoux C (1909) Tuberculin intradermal reactions in the treatment of tuberculosis: intradermal-tuberculation. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences 148:996–998

    Google Scholar 

  • Matsuo K, Hirobe S et al (2012a) Transcutaneous immunization using a dissolving microneedle array protects against tetanus, diphtheria, malaria, and influenza J Control Release 160:495–501

    Google Scholar 

  • Matsuo K, Yokota Y et al (2012b) A low-invasive and effective transcutaneous immunization system using a novel dissolving microneedle array for soluble and particulate antigens. J Control Release 161:10–17

    Google Scholar 

  • Michinaka Y, Mitragotri S (2011) Delivery of polymeric particles into skin using needle-free liquid jet injectors. J Control Release 153(3):249–254

    Article  CAS  PubMed  Google Scholar 

  • Mikszta JA, Alarcon JB et al (2002) Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med 8(4):415–419

    Article  CAS  PubMed  Google Scholar 

  • Mikszta JA, Sullivan VJ et al (2005) Protective immunization against inhalational anthrax: a comparison of minimally invasive delivery platforms. J Infect Dis 191(2):278–288

    Article  CAS  PubMed  Google Scholar 

  • Mikszta JA, Dekker JP et al (2006) Microneedle-based intradermal delivery of the anthrax recombinant protective antigen vaccine. Infect Immun 74(12):6806–6810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitragotri S (2005) Immunization without needles. Nat Rev Immunol 5(12):905–916

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S (2006) Innovation – current status and future prospects of needle-free liquid jet injectors. Nat Rev Drug Discov 5(7):543–548

    PubMed  Google Scholar 

  • Morefield GL, Tammariello RF et al (2008) An alternative approach to combination vaccines: intradermal administration of isolated components for control of anthrax, botulism, plague and staphylococcal toxic shock. J Immune Based Ther Vaccines 6(1):5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nelson SJ, Adam KL et al (2004) Single use disposable jet injector. US Patent, Antares Pharma, Inc

    Google Scholar 

  • Nicolas JF, Guy B (2008) Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. Expert Rev Vaccines 7(8):1201–1214

    Article  PubMed  Google Scholar 

  • Niederstadt L, Hohn O et al (2012) Stimulation of IgY responses in gene gun immunized laying hens by combined administration of vector DNA coding for the target antigen Botulinum toxin A1 and for avian cytokine adjuvants. J Immunol Methods 382(1–2):58–67

    Article  CAS  PubMed  Google Scholar 

  • Omori-Urabe Y, Yoshii K et al (2011) Needle-free jet injection of DNA and protein vaccine of the Far-Eastern subtype of tick-borne encephalitis virus induces protective immunity in mice. Microbiol Immunol 55(12):893–897

    Article  CAS  PubMed  Google Scholar 

  • Osorio JE, Zuleger CL et al (2003) Immune responses to hepatitis B surface antigen following epidermal powder immunization. Immunol Cell Biol 81(1):52–58

    Article  CAS  PubMed  Google Scholar 

  • Parker V (1984) Jet gun or syringe? A trial of alternative methods of BCG vaccination. Public Health 98(6):315–320

    Article  CAS  PubMed  Google Scholar 

  • Pearson FE, McNeilly CL et al (2013) Dry-coated live viral vector vaccines delivered by nanopatch microprojections retain long-term thermostability and induce transgene-specific T cell responses in mice. PLoS One 8(7):e67888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng S, Monie A et al (2010) Efficient delivery of DNA vaccines using human papillomavirus pseudovirions. Gene Ther 17(12):1453–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pokorna D, Polakova I et al (2009) Vaccination with human papillomavirus type 16-derived peptides using a tattoo device. Vaccine 27(27):3519–3529

    Article  CAS  PubMed  Google Scholar 

  • Potthoff A, Schwannecke S et al (2009) Immunogenicity and efficacy of intradermal tattoo immunization with adenoviral vector vaccines. Vaccine 27(21):2768–2774

    Article  CAS  PubMed  Google Scholar 

  • Qu BX, Rosenberg RN et al (2004) Gene vaccination to bias the immune response to amyloid-beta peptide as therapy for Alzheimer disease. Arch Neurol 61(12): 1859–1864

    Article  PubMed  PubMed Central  Google Scholar 

  • Qu BX, Boyer PJ et al (2006) A beta(42) gene vaccination reduces brain amyloid plaque burden in transgenic mice. J Neurol Sci 244(1–2):151–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu BX, Xiang Q et al (2007) A beta(42) gene vaccine prevents A beta(42) deposition in brain of double transgenic mice. J Neurol Sci 260(1–2):204–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu BX, Lambracht-Washington D et al (2010) Analysis of three plasmid systems for use in DNA A beta 42 immunization as therapy for Alzheimer’s disease. Vaccine 28(32):5280–5287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quaak SGL, van den Berg JH et al (2008) GMP production of pDERMATT for vaccination against melanoma in a phase I clinical trial. Eur J Pharm Biopharm 70(2):429–438

    Article  CAS  PubMed  Google Scholar 

  • Quaak SGL, van den Berg JH et al (2009) DNA tattoo vaccination: effect on plasmid purity and transfection efficiency of different topoisoforms. J Control Release 139(2):153–159

    Article  CAS  PubMed  Google Scholar 

  • Quan FS, Kim YC et al (2010) Dose sparing enabled by skin immunization with influenza virus-like particle vaccine using microneedles. J Control Release 147(3):326–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan FS, Kim YC et al (2013) Long-term protective immunity from an influenza virus-like particle vaccine administered with a microneedle patch. Clin Vaccine Immunol 20(9):1433–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren S, Li M et al (2002) Low-volume jet injection for intradermal immunization in rabbits. BMC Biotechnol 2(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  • Rottinghaus ST, Poland GA et al (2003) Hepatitis B DNA vaccine induces protective antibody responses in human non-responders to conventional vaccination. Vaccine 21(31):4604–4608

    Article  CAS  PubMed  Google Scholar 

  • Roy MJ, Wu MS et al (2001) Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine 19(7–8):764–778

    Google Scholar 

  • Sadowski PL, DeBoer DM et al (2003) Needle assited jet injector. US Patent, Antares Pharma, Inc

    Google Scholar 

  • Scheiblhofer S, Stoecklinger A et al (2007) Gene gun immunization with clinically relevant allergens aggravates allergen induced pathology and is contraindicated for allergen immunotherapy. Mol Immunol 44(8):1879–1887

    Article  CAS  PubMed  Google Scholar 

  • Schramm J, Mitragotri S (2002) Transdermal drug delivery by jet injectors: energetics of jet formation and penetration. Pharm Res 19(11):1673–1679

    Article  CAS  PubMed  Google Scholar 

  • Schramm-Baxter J, Mitragotri S (2004) Needle-free jet injections: dependence of jet penetration and dispersion in the skin on jet power. J Control Release 97(3):527–535

    Article  CAS  PubMed  Google Scholar 

  • Schramm-Baxter J, Katrencik J et al (2004) Jet injection into polyacrylamide gels: investigation of jet injection mechanics. J Biomech 37(8):1181–1188

    Article  PubMed  Google Scholar 

  • Shergold OA, Fleck NA et al (2006) The penetration of a soft solid by a liquid jet, with application to the administration of a needle-free injection. J Biomech 39(14):2593–2602

    Article  PubMed  Google Scholar 

  • Simon JK, Carter M et al (2011) Safety, tolerability, and immunogenicity of inactivated trivalent seasonal influenza vaccine administered with a needle-free disposable-syringe jet injector. Vaccine 29(51):9544–9550

    Article  PubMed  Google Scholar 

  • Smorlesi A, Papalini F et al (2006) Evaluation of different plasmid DNA delivery systems for immunization against HER2/neu in a transgenic murine model of mammary carcinoma. Vaccine 24(11):1766–1775

    Article  CAS  PubMed  Google Scholar 

  • Stachowiak JC, Li TH et al (2009) Dynamic control of needle-free jet injection. J Control Release 135(2):104–112

    Article  CAS  PubMed  Google Scholar 

  • Sullivan SP, Koutsonanos DG et al (2010) Dissolving polymer microneedle patches for influenza vaccination. Nat Med 16(8):915–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tacket CO, Roy MJ et al (1999) Phase 1 safety and immune response studies of a DNA vaccine encoding hepatitis B surface antigen delivered by a gene delivery device. Vaccine 17(22):2826–2829

    Article  CAS  PubMed  Google Scholar 

  • Trimble C, Lin CT et al (2003) Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine 21(25–26):4036–4042

    Article  CAS  PubMed  Google Scholar 

  • van den Berg JH, Nuijen B et al (2009) Optimization of intradermal vaccination by DNA tattooing in human skin. Hum Gene Ther 20(3):181–189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verstrepen BE, Bins AD et al (2008) Improved HIV-1 specific T-cell responses by short-interval DNA tattooing as compared to intramuscular immunization in non-human primates. Vaccine 26(26):3346–3351

    Article  CAS  PubMed  Google Scholar 

  • Wang SX, Zhang CH et al (2008) The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. Vaccine 26(17):2100–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss R, Scheiblhofer S et al (2002) Gene gun bombardment with gold particles displays a particular Th2-promoting signal that over-rules the Th1-inducing effect of immunostimulatory CpG motifs in DNA vaccines. Vaccine 20(25–26):3148–3154

    Article  CAS  PubMed  Google Scholar 

  • Weiss R, Gabler M et al (2010) Differential effects of C3d on the immunogenicity of gene gun vaccines encoding Plasmodium falciparum and Plasmodium berghei MSP1(42). Vaccine 28(28):4515–4522

    Article  CAS  PubMed  Google Scholar 

  • Weldon WC, Zarnitsyn VG et al (2012) Effect of adjuvants on responses to skin immunization by microneedles coated with influenza subunit vaccine. PLoS One 7(7):e41501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weniger BG, Papania MJ (2008) Alternative vaccine delivery methods. In: Plotkin SA, Orenstein WA, Offit P (eds) Vaccines. Saunders Elsevier, Philadelphia, pp 1357–1392

    Google Scholar 

  • Williams J, Fox-Leyva L et al (2000) Hepatitis A vaccine administration: comparison between jet-injector and needle injection. Vaccine 18(18):1939–1943

    Article  CAS  PubMed  Google Scholar 

  • Yang NS, Sun WH (1995) Gene gun and other non-viral approaches for cancer gene therapy. Nat Med 1(5):481–483

    Article  CAS  PubMed  Google Scholar 

  • Yuen C, Liu Q (2015) Hollow agarose microneedle with silver coating for intradermal surface-enhanced Raman measurements: a skin-mimicking phantom study. J Biomed Opt 20(6):61102

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeu-Chun Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, YC. (2017). Skin Vaccination Methods: Gene Gun, Jet Injector, Tattoo Vaccine, and Microneedle. In: Dragicevic, N., I. Maibach, H. (eds) Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53273-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53273-7_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53271-3

  • Online ISBN: 978-3-662-53273-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics