Skip to main content

Hemodialysis Vascular Access

  • Chapter
  • First Online:
Pediatric Kidney Disease

Abstract

The incidence and prevalence of end stage renal disease (ESRD) continue to rise in the pediatric population. From a modality perspective, hemodialysis (HD) has been used in the majority of incident ESRD patients. The most impactful breakthrough in HD was the creation of the native arteriovenous fistula (AVF) by Brescia and Cimino in 1966. This radiocephalic AVF has become the signature surgical treatment to prepare a patient to receive optimal HD care. Years later, arteriovenous grafts (AVGs) were developed by surgically interposing a synthetic material between the arterial and venous systems. These gained favor for a few reasons: technically easier to place, ability to place in patients whose native vessels were undersized, and ability to cannulate for dialysis initiation sooner than with an AVF. Central venous catheters (CVC) are a mainstay in HD, but for the past 10–15 years, there has been a strong movement away from CVCs for long term HD in favor of AVF. While CVCs are now considered a poor choice for long term vascular access, they are often necessary in children with hemodialysis dependent ESRD who are awaiting maturation of a permanent vascular access. Uncuffed, temporary catheters, which are typically used for a week or less, are often needed in the setting of intoxications and severe acute kidney injury. The major problems with CVC (both tunneled, cuffed and temporary, uncuffed) include infection and thrombosis. The most common means by which a catheter may become infected are migration of cutaneous organisms along the portal of entry (on the external surface of the catheter) to the catheter tip (most common with short-term, uncuffed catheters, and direct contamination of the catheter or its hub by contact with hands or contaminated fluids or devices. The thrombotic and central venous stenosis risks of a HD catheter are lower when placed into the right IJ vein as opposed to the subclavian, and as such it is the site of first choice for a tunneled HD catheter. Novel insights into vascular access failure pathogenesis and treatment strategies are ongoing. Neointimal hyperplasia and its role in access failure are actively being studied; the goal being improved long term vascular access survival with reduced need for interventions to maintain patency. Similarly, improving safety of dialysis CVC’s for short term use and rarely long term use has focused on infection prevention strategies to reduce the likelihood of catheter exit site and catheter related bacteremia. In summary, pediatric vascular access is a cornerstone of hemodialysis provision in children with ESRD. While AVFs and AVGs are preferred, CVCs are still utilized in this setting. Ongoing studies continue to evolve to focus on optimizing outcomes in pediatric and adult vascular access in dialysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AVF:

Arteriovenous fistula

AVG:

Arteriovenous graft

CKD:

Chronic kidney disease

CRB:

Catheter-related bacteremia

CVC:

Central venous catheter

ESRD:

End stage renal disease

HD:

Hemodialysis

PD:

Peritoneal dialysis

PTFE:

Polytetrafluorethylene

References

  1. U.S. Renal Data System. USRDS 2013 annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, 2013.

    Google Scholar 

  2. Nguyen C, Shapiro R. Renal failure and transplantation following nonrenal solid-organ transplantation. Curr Opin Organ Transplant. 2012;17(5):525–30.

    Article  PubMed  Google Scholar 

  3. Fadrowski JJ, Hwang W, Neu AM, Fivush BA, Furth SL. Patterns of use of vascular catheters for hemodialysis in children in the United States. Am J Kidney Dis. 2009;53(1):91–8.

    Article  PubMed  Google Scholar 

  4. NAPRTCS (North American Pediatric Renal Trials and Collaborative Studies). 2011 annual dialysis report. 2011.

    Google Scholar 

  5. Blagg CR. The early history of dialysis for chronic renal failure in the United States: a view from Seattle. Am J Kidney Dis. 2007;49(3):482–96.

    Article  PubMed  Google Scholar 

  6. Lockridge JB, Chandran S. The Scribner shunt: 50 years later. Kidney Int. 2012;81(1):120.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cimino JE. Historical perspective on more than 60 years of hemodialysis access. Semin Vasc Surg. 2007;20(3):136–40.

    Article  PubMed  Google Scholar 

  8. Cimino JE, Brescia MJ. Simple venipuncture for hemodialysis. N Engl J Med. 1962;267:608–9.

    Article  CAS  PubMed  Google Scholar 

  9. Brescia MJ, Cimino JE, Appel K, Hurwich BJ. Chronic hemodialysis using venipuncture and a surgically created arteriovenous fistula. N Engl J Med. 1966;275(20):1089–92.

    Article  CAS  PubMed  Google Scholar 

  10. So SK, Mahan Jr JD, Mauer SM, Sutherland DE, Nevins TE. Hickman catheter for pediatric hemodialysis: a 3-year experience. Trans Am Soc Artif Intern Organs. 1984;30:619–23.

    CAS  PubMed  Google Scholar 

  11. Hickman RO, Buckner CD, Clift RA, Sanders JE, Stewart P, Thomas ED. A modified right atrial catheter for access to the venous system in marrow transplant recipients. Surg Gynecol Obstet. 1979;148(6):871–5.

    CAS  PubMed  Google Scholar 

  12. Clinical practice recommendation 8: vascular access in pediatric patients. Am J Kidney Dis. 2006;48 Suppl 1:S274–276.

    Google Scholar 

  13. Pisoni RL, Young EW, Dykstra DM, et al. Vascular access use in Europe and the United States: results from the DOPPS. Kidney Int. 2002;61(1):305–16.

    Article  PubMed  Google Scholar 

  14. Hayes WN, Watson AR, Callaghan N, Wright E, Stefanidis CJ. Vascular access: choice and complications in European paediatric haemodialysis units. Pediatr Nephrol. 2012;27(6):999–1004.

    Article  PubMed  Google Scholar 

  15. Wander JV, Moore ES, Jonasson O. Internal arteriovenous fistulae for dialysis in children. J Pediatr Surg. 1970;5(5):533–8.

    Article  CAS  PubMed  Google Scholar 

  16. Gradman WS, Lerner G, Mentser M, Rodriguez H, Kamil ES. Experience with autogenous arteriovenous access for hemodialysis in children and adolescents. Ann Vasc Surg. 2005;19(5):609–12.

    Article  PubMed  Google Scholar 

  17. Dagher FJ, Gelber RL, Ramos EJ, Sadler JH. Basilic vein to brachial artery fistula: a new access for chronic hemodialysis. South Med J. 1976;69(11):1438–40.

    Article  CAS  PubMed  Google Scholar 

  18. Segal JH, Kayler LK, Henke P, Merion RM, Leavey S, Campbell Jr DA. Vascular access outcomes using the transposed basilic vein arteriovenous fistula. Am J Kidney Dis. 2003;42(1):151–7.

    Article  PubMed  Google Scholar 

  19. Taghizadeh A, Dasgupta P, Khan MS, Taylor J, Koffman G. Long-term outcomes of brachiobasilic transposition fistula for haemodialysis. Eur J Vasc Endovasc Surg. 2003;26(6):670–2.

    Article  CAS  PubMed  Google Scholar 

  20. Schanzer H, Eisenberg D. Management of steal syndrome resulting from dialysis access. Semin Vasc Surg. 2004;17(1):45–9.

    Article  PubMed  Google Scholar 

  21. Jennings WC. Creating arteriovenous fistulas in 132 consecutive patients: exploiting the proximal radial artery arteriovenous fistula: reliable, safe, and simple forearm and upper arm hemodialysis access. Arch Surg. 2006;141(1):27–32; discussion 32.

    Article  PubMed  Google Scholar 

  22. Roberts JK, Sideman MJ, Jennings WC. The difficult hemodialysis access extremity: proximal radial arteriovenous fistulas and the role of angioscopy and valvulotomes. Am J Surg. 2005;190(6):869–73.

    Article  PubMed  Google Scholar 

  23. Manook M, Calder F. Practical aspects of arteriovenous fistula formation in the pediatric population. Pediatr Nephrol. 2013;28(6):885–93.

    Article  PubMed  Google Scholar 

  24. Basile C, Lomonte C, Vernaglione L, Casucci F, Antonelli M, Losurdo N. The relationship between the flow of arteriovenous fistula and cardiac output in haemodialysis patients. Nephrol Dial Transplant. 2008;23(1):282–7.

    Article  PubMed  Google Scholar 

  25. Increased risk of nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis and gadolinium-containing MRI contrast agents 2007; Public Assessment Report.

    Google Scholar 

  26. Chand DH, Bednarz D, Eagleton M, Krajewski L. A vascular access team can increase AV fistula creation in pediatric ESRD patients: a single center experience. Semin Dial. 2009;22(6):679–83.

    Article  PubMed  Google Scholar 

  27. Sreedhara R, Himmelfarb J, Lazarus JM, Hakim RM. Anti-platelet therapy in graft thrombosis: results of a prospective, randomized, double-blind study. Kidney Int. 1994;45(5):1477–83.

    Article  CAS  PubMed  Google Scholar 

  28. Pieptu D, Luchian S. Loupes-only microsurgery. Microsurgery. 2003;23(3):181–8.

    Article  PubMed  Google Scholar 

  29. Bourquelot P, Raynaud F, Pirozzi N. Microsurgery in children for creation of arteriovenous fistulas in renal and non-renal diseases. Ther Apher Dial. 2003;7(6):498–503.

    Article  PubMed  Google Scholar 

  30. Bagolan P, Spagnoli A, Ciprandi G, et al. A ten-year experience of Brescia-Cimino arteriovenous fistula in children: technical evolution and refinements. J Vasc Surg. 1998;27(4):640–4.

    Article  CAS  PubMed  Google Scholar 

  31. Tordoir J, Canaud B, Haage P, et al. EBPG on vascular access. Nephrol Dial Transplant. 2007;22 Suppl 2:ii88–117.

    PubMed  Google Scholar 

  32. Oliver MJ. Chronic hemodialysis vascular access: types and placement. UpToDate. 2006 ed. http://www.uptodate.com.

  33. Brittinger WD, Walker G, Twittenhoff WD, Konrad N. Vascular access for hemodialysis in children. Pediatr Nephrol. 1997;11(1):87–95.

    Article  CAS  PubMed  Google Scholar 

  34. Grimaldi C, Crocoli A, De Galasso L, Picca S, Natali GL, De Ville De Goyet J. Immediate use of an arteriovenous prosthetic graft for life-saving dialysis in a child. Pediatr Nephrol. 2012;27(12):2311–3.

    Article  PubMed  Google Scholar 

  35. Robbin ML, Oser RF, Allon M, et al. Hemodialysis access graft stenosis: US detection. Radiology. 1998;208(3):655–61.

    Article  CAS  PubMed  Google Scholar 

  36. Swedberg SH, Brown BG, Sigley R, Wight TN, Gordon D, Nicholls SC. Intimal fibromuscular hyperplasia at the venous anastomosis of PTFE grafts in hemodialysis patients. Clinical, immunocytochemical, light and electron microscopic assessment. Circulation. 1989;80(6):1726–36.

    Article  CAS  PubMed  Google Scholar 

  37. Feldman HI, Kobrin S, Wasserstein A. Hemodialysis vascular access morbidity. J Am Soc Nephrol. 1996;7(4):523–35.

    CAS  PubMed  Google Scholar 

  38. Besarab A. Access monitoring is worthwhile and valuable. Blood Purif. 2006;24(1):77–89.

    Article  PubMed  Google Scholar 

  39. Henry ML. Routine surveillance in vascular access for hemodialysis. Eur J Vasc Endovasc Surg. 2006;32(5):545–8.

    Article  PubMed  Google Scholar 

  40. Leivaditis K, Panagoutsos S, Roumeliotis A, Liakopoulos V, Vargemezis V. Vascular access for hemodialysis: postoperative evaluation and function monitoring. Int Urol Nephrol. 2014;46(2):403–9.

    Article  PubMed  Google Scholar 

  41. Clinical practice guidelines for vascular access. Am J Kidney Dis. 2006;48 Suppl 1:S248–273.

    Google Scholar 

  42. Chand DH, Poe SA, Strife CF. Venous pressure monitoring does not accurately predict access failure in children. Pediatr Nephrol. 2002;17(9):765–9.

    Article  PubMed  Google Scholar 

  43. Goldstein SL, Allsteadt A, Smith CM, Currier H. Proactive monitoring of pediatric hemodialysis vascular access: effects of ultrasound dilution on thrombosis rates. Kidney Int. 2002;62(1):272–5.

    Article  PubMed  Google Scholar 

  44. Weijmer MC, Vervloet MG, ter Wee PM. Compared to tunnelled cuffed haemodialysis catheters, temporary untunnelled catheters are associated with more complications already within 2 weeks of use. Nephrol Dial Transplant. 2004;19(3):670–7.

    Article  PubMed  Google Scholar 

  45. Sheth RD, Kale AS, Brewer ED, Brandt ML, Nuchtern JG, Goldstein SL. Successful use of Tesio catheters in pediatric patients receiving chronic hemodialysis. Am J Kidney Dis. 2001;38(3):553–9.

    Article  CAS  PubMed  Google Scholar 

  46. Trerotola SO, Johnson MS, Harris VJ, et al. Outcome of tunneled hemodialysis catheters placed via the right internal jugular vein by interventional radiologists. Radiology. 1997;203(2):489–95.

    Article  CAS  PubMed  Google Scholar 

  47. Rabindranath KS, Kumar E, Shail R, Vaux E. Use of real-time ultrasound guidance for the placement of hemodialysis catheters: a systematic review and meta-analysis of randomized controlled trials. Am J Kidney Dis. 2011;58(6):964–70.

    Article  PubMed  Google Scholar 

  48. Lin BS, Kong CW, Tarng DC, Huang TP, Tang GJ. Anatomical variation of the internal jugular vein and its impact on temporary haemodialysis vascular access: an ultrasonographic survey in uraemic patients. Nephrol Dial Transplant. 1998;13(1):134–8.

    Article  CAS  PubMed  Google Scholar 

  49. Vats HS. Complications of catheters: tunneled and nontunneled. Adv Chronic Kidney Dis. 2012;19(3):188–94.

    Article  PubMed  Google Scholar 

  50. Motta Elias R, da Silva Makida SC, Abensur H, et al. Insertion of tunneled hemodialysis catheters without fluoroscopy. J Vasc Access. 2010;11(2):138–42.

    PubMed  Google Scholar 

  51. Work J. Hemodialysis catheters and ports. Semin Nephrol. 2002;22(3):211–20.

    Article  PubMed  Google Scholar 

  52. Quarello F, Forneris G, Borca M, Pozzato M. Do central venous catheters have advantages over arteriovenous fistulas or grafts? J Nephrol. 2006;19(3):265–79.

    PubMed  Google Scholar 

  53. Power A, Singh S, Ashby D, et al. Translumbar central venous catheters for long-term haemodialysis. Nephrol Dial Transplant. 2010;25(5):1588–95.

    Article  PubMed  Google Scholar 

  54. Valentini RP, Geary DF, Chand DH. Central venous lines for chronic hemodialysis: survey of the Midwest Pediatric Nephrology Consortium. Pediatr Nephrol. 2008;23(2):291–5.

    Article  PubMed  Google Scholar 

  55. Allon M, Daugirdas J, Depner TA, Greene T, Ornt D, Schwab SJ. Effect of change in vascular access on patient mortality in hemodialysis patients. Am J Kidney Dis. 2006;47(3):469–77.

    Article  PubMed  Google Scholar 

  56. Astor BC, Eustace JA, Powe NR, Klag MJ, Fink NE, Coresh J. Type of vascular access and survival among incident hemodialysis patients: the Choices for Healthy Outcomes in Caring for ESRD (CHOICE) Study. J Am Soc Nephrol. 2005;16(5):1449–55.

    Article  PubMed  Google Scholar 

  57. 2008 USRDS annual data report: chapter eight-pediatric ESRD; Figure 8.27.

    Google Scholar 

  58. Allon M, Depner TA, Radeva M, et al. Impact of dialysis dose and membrane on infection-related hospitalization and death: results of the HEMO study. J Am Soc Nephrol. 2003;14(7):1863–70.

    Article  PubMed  Google Scholar 

  59. Lee T, Barker J, Allon M. Tunneled catheters in hemodialysis patients: reasons and subsequent outcomes. Am J Kidney Dis. 2005;46(3):501–8.

    Article  PubMed  Google Scholar 

  60. Miller DL, O’Grady NP. Guidelines for the prevention of intravascular catheter-related infections: recommendations relevant to interventional radiology for venous catheter placement and maintenance. J Vasc Interv Radiol. 2012;23(8):997–1007.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Allon M. Dialysis catheter-related bacteremia: treatment and prophylaxis. Am J Kidney Dis. 2004;44(5):779–91.

    Article  PubMed  Google Scholar 

  62. Mehall JR, Saltzman DA, Jackson RJ, Smith SD. Fibrin sheath enhances central venous catheter infection. Crit Care Med. 2002;30(4):908–12.

    Article  PubMed  Google Scholar 

  63. Gilbert RE, Harden M. Effectiveness of impregnated central venous catheters for catheter related blood stream infection: a systematic review. Curr Opin Infect Dis. 2008;21(3):235–45.

    Article  PubMed  Google Scholar 

  64. Chatzinikolaou I, Finkel K, Hanna H, et al. Antibiotic-coated hemodialysis catheters for the prevention of vascular catheter-related infections: a prospective, randomized study. Am J Med. 2003;115(5):352–7.

    Article  CAS  PubMed  Google Scholar 

  65. Darouiche RO, Raad II, Heard SO, et al. A comparison of two antimicrobial-impregnated central venous catheters. Catheter Study Group. N Engl J Med. 1999;340(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  66. Onder AM, Billings AA, Chandar J, et al. Antibiotic lock solutions allow less systemic antibiotic exposure and less catheter malfunction without adversely affecting antimicrobial resistance patterns. Hemodial Int Int Symp Home Hemodial. 2013;17(1):75–85.

    Article  Google Scholar 

  67. Bastani B, Minton J, Islam S. Insufficient penetration of systemic vancomycin into the PermCath lumen. Nephrol Dial Transplant. 2000;15(7):1035–7.

    Article  CAS  PubMed  Google Scholar 

  68. Poole CV, Carlton D, Bimbo L, Allon M. Treatment of catheter-related bacteraemia with an antibiotic lock protocol: effect of bacterial pathogen. Nephrol Dial Transplant. 2004;19(5):1237–44.

    Article  CAS  PubMed  Google Scholar 

  69. Trerotola SO, Kuhn-Fulton J, Johnson MS, Shah H, Ambrosius WT, Kneebone PH. Tunneled infusion catheters: increased incidence of symptomatic venous thrombosis after subclavian versus internal jugular venous access. Radiology. 2000;217(1):89–93.

    Article  CAS  PubMed  Google Scholar 

  70. Schillinger F, Schillinger D, Montagnac R, Milcent T. Post catheterisation vein stenosis in haemodialysis: comparative angiographic study of 50 subclavian and 50 internal jugular accesses. Nephrol Dial Transplant. 1991;6(10):722–4.

    Article  CAS  PubMed  Google Scholar 

  71. Wilkin TD, Kraus MA, Lane KA, Trerotola SO. Internal jugular vein thrombosis associated with hemodialysis catheters. Radiology. 2003;228(3):697–700.

    Article  PubMed  Google Scholar 

  72. Oguzkurt L, Tercan F, Torun D, Yildirim T, Zumrutdal A, Kizilkilic O. Impact of short-term hemodialysis catheters on the central veins: a catheter venographic study. Eur J Radiol. 2004;52(3):293–9.

    Article  PubMed  Google Scholar 

  73. Oliver MJ, Edwards LJ, Treleaven DJ, Lambert K, Margetts PJ. Randomized study of temporary hemodialysis catheters. Int J Artif Organs. 2002;25(1):40–4.

    CAS  PubMed  Google Scholar 

  74. Vats HS, Bellingham J, Pinchot JW, Young HN, Chan MR, Yevzlin AS. A comparison between blood flow outcomes of tunneled external jugular and internal jugular hemodialysis catheters. J Vasc Access. 2012;13(1):51–4.

    Article  PubMed  Google Scholar 

  75. Onder AM, Chandar J, Billings A, et al. Prophylaxis of catheter-related bacteremia using tissue plasminogen activator-tobramycin locks. Pediatr Nephrol. 2009;24(11):2233–43.

    Article  PubMed  Google Scholar 

  76. Hemmelgarn BR, Moist LM, Lok CE, et al. Prevention of dialysis catheter malfunction with recombinant tissue plasminogen activator. N Engl J Med. 2011;364(4):303–12.

    Article  CAS  PubMed  Google Scholar 

  77. Moran J, Sun S, Khababa I, Pedan A, Doss S, Schiller B. A randomized trial comparing gentamicin/citrate and heparin locks for central venous catheters in maintenance hemodialysis patients. Am J Kidney Dis. 2012;59(1):102–7.

    Article  CAS  PubMed  Google Scholar 

  78. McCann M, Moore ZE. Interventions for preventing infectious complications in haemodialysis patients with central venous catheters. Cochrane Database Syst Rev. 2010(1):Cd006894.

    Google Scholar 

  79. Sesso R, Barbosa D, Leme IL, et al. Staphylococcus aureus prophylaxis in hemodialysis patients using central venous catheter: effect of mupirocin ointment. J Am Soc Nephrol. 1998;9(6):1085–92.

    CAS  PubMed  Google Scholar 

  80. Guide to the elimination of infections in hemodialysis. Washington, DC: APIC; 2010. http://www.apic.org/Resource_/EliminationGuideForm/7966d850-0c5a-48ae-9090-a1da00bcf988/File/APIC-Hemodialysis.pdf.

  81. Onder AM, Chandar J, Coakley S, Francoeur D, Abitbol C, Zilleruelo G. Controlling exit site infections: does it decrease the incidence of catheter-related bacteremia in children on chronic hemodialysis? Hemodial Int Int Symp Home Hemodial. 2009;13(1):11–8.

    Article  Google Scholar 

  82. Timsit JF, Schwebel C, Bouadma L, et al. Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults: a randomized controlled trial. JAMA J Am Med Assoc. 2009;301(12):1231–41.

    Article  CAS  Google Scholar 

  83. Schwab SJ, Weiss MA, Rushton F, et al. Multicenter clinical trial results with the LifeSite hemodialysis access system. Kidney Int. 2002;62(3):1026–33.

    Article  PubMed  Google Scholar 

  84. Goldstein SL, Ikizler TA, Zappitelli M, Silverstein DM, Ayus JC. Non-infected hemodialysis catheters are associated with increased inflammation compared to arteriovenous fistulas. Kidney Int. 2009;76(10):1063–9.

    Article  PubMed  Google Scholar 

  85. Chand DH, Brier M, Strife CF. Comparison of vascular access type in pediatric hemodialysis patients with respect to urea clearance, anemia management, and serum albumin concentration. Am J Kidney Dis. 2005;45(2):303–8.

    Article  PubMed  Google Scholar 

  86. Roy-Chaudhury P, Kelly BS, Melhem M, et al. Novel therapies for hemodialysis vascular access dysfunction: fact or fiction! Blood Purif. 2005;23(1):29–35.

    Article  PubMed  Google Scholar 

  87. Lee T. Novel paradigms for dialysis vascular access: downstream vascular biology-is there a final common pathway? Clin J Am Soc Nephrol. 2013;8(12):2194–201.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kelly BS, Narayana A, Heffelfinger SC, et al. External beam radiation attenuates venous neointimal hyperplasia in a pig model of arteriovenous polytetrafluoroethylene (PTFE) graft stenosis. Int J Radiat Oncol Biol Phys. 2002;54(1):263–9.

    Article  PubMed  Google Scholar 

  89. Leon MB, Teirstein PS, Moses JW, et al. Localized intracoronary gamma-radiation therapy to inhibit the recurrence of restenosis after stenting. N Engl J Med. 2001;344(4):250–6.

    Article  CAS  PubMed  Google Scholar 

  90. Raizner AE, Oesterle SN, Waksman R, et al. Inhibition of restenosis with beta-emitting radiotherapy: report of the Proliferation Reduction with Vascular Energy Trial (PREVENT). Circulation. 2000;102(9):951–8.

    Article  CAS  PubMed  Google Scholar 

  91. El Sharouni SY, Smits HF, Wust AF, Battermann JJ, Blankestijn PJ. Endovascular brachytherapy in arteriovenous grafts for haemodialysis does not prevent development of stenosis. Radiother Oncol. 1998;49(2):199–200.

    Article  PubMed  Google Scholar 

  92. Lin CC, Chang CF, Lai MY, Chen TW, Lee PC, Yang WC. Far-infrared therapy: a novel treatment to improve access blood flow and unassisted patency of arteriovenous fistula in hemodialysis patients. J Am Soc Nephrol. 2007;18(3):985–92.

    Article  PubMed  Google Scholar 

  93. Lin CC, Liu XM, Peyton K, et al. Far infrared therapy inhibits vascular endothelial inflammation via the induction of heme oxygenase-1. Arterioscler Thromb Vasc Biol. 2008;28(4):739–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Degertekin M, Serruys PW, Foley DP, et al. Persistent inhibition of neointimal hyperplasia after sirolimus-eluting stent implantation: long-term (up to 2 years) clinical, angiographic, and intravascular ultrasound follow-up. Circulation. 2002;106(13):1610–3.

    Article  PubMed  Google Scholar 

  95. Katsanos K, Karnabatidis D, Kitrou P, Spiliopoulos S, Christeas N, Siablis D. Paclitaxel-coated balloon angioplasty vs. plain balloon dilation for the treatment of failing dialysis access: 6-month interim results from a prospective randomized controlled trial. J Endovasc Ther. 2012;19(2):263–72.

    Article  PubMed  Google Scholar 

  96. Verschuren JJ, Ocak G, Dekker FW, Rabelink TJ, Jukema JW, Rotmans JI. Candidate gene analysis of arteriovenous fistula failure in hemodialysis patients. Clin J Am Soc Nephrol. 2013;8(8):1358–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gepstein L. Derivation and potential applications of human embryonic stem cells. Circ Res. 2002;91(10):866–76.

    Article  CAS  PubMed  Google Scholar 

  98. McAllister TN, Maruszewski M, Garrido SA, et al. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet. 2009;373(9673):1440–6.

    Article  PubMed  Google Scholar 

  99. Yevzlin AS, Valliant AM. Interventional nephrology: novel devices that will one day change our practice. Clin J Am Soc Nephrol. 2013;8(7):1244–51.

    Article  PubMed  Google Scholar 

  100. Manson RJ, Ebner A, Gallo S, et al. Arteriovenous fistula creation using the Optiflow vascular anastomosis device: a first in man pilot study. Semin Dial. 2013;26(1):97–9.

    Article  PubMed  Google Scholar 

  101. Fealy N, Kim I, Baldwin I, Schneider A, Bellomo R. A comparison of the Niagara and Medcomp catheters for continuous renal replacement therapy. Ren Fail. 2013;35(3):308–13.

    Article  PubMed  Google Scholar 

  102. Sheth RD, Brandt ML, Brewer ED, Nuchtern JG, Kale AS, Goldstein SL. Permanent hemodialysis vascular access survival in children and adolescents with end-stage renal disease. Kidney Int. 2002;62(5):1864–9.

    Article  PubMed  Google Scholar 

  103. Lin BS, Huang TP, Tang GJ, Tarng DC, Kong CW. Ultrasound-guided cannulation of the internal jugular vein for dialysis vascular access in uremic patients. Nephron. 1998;78(4):423–8.

    Article  CAS  PubMed  Google Scholar 

  104. Lam KK, Ng HY, Wu CH, Wu MT, Chen JB, Lee CT. Ultrasound localization of the femoral vein facilitates successful cannulation for hemodialysis. Biomed J. 2013;36(5):237–42.

    Article  PubMed  Google Scholar 

  105. Davis D, Petersen J, Feldman R, Cho C, Stevick CA. Subclavian venous stenosis. A complication of subclavian dialysis. JAMA J Am Med Assoc. 1984;252(24):3404–6.

    Article  CAS  Google Scholar 

  106. Clark DD, Albina JE, Chazan JA. Subclavian vein stenosis and thrombosis: a potential serious complication in chronic hemodialysis patients. Am J Kidney Dis. 1990;15(3):265–8.

    Article  CAS  PubMed  Google Scholar 

  107. Vanherweghem JL, Yassine T, Goldman M, et al. Subclavian vein thrombosis: a frequent complication of subclavian vein cannulation for hemodialysis. Clin Nephrol. 1986;26(5):235–8.

    CAS  PubMed  Google Scholar 

  108. Coulthard MG, Sharp J. Haemodialysing infants: theoretical limitations, and single versus double lumen lines. Pediatr Nephrol. 2001;16(4):332–4.

    Article  CAS  PubMed  Google Scholar 

  109. El Masri K, Jackson K, Borasino S, Law M, Askenazi D, Alten J. Successful continuous renal replacement therapy using two single-lumen catheters in neonates and infants with cardiac disease. Pediatr Nephrol. 2013;28(12):2383–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge Dr. Ian Ramage for his contribution to a chapter in the first edition of this project, which helped to create the framework for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolph P. Valentini MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chand, D.H., Valentini, R.P. (2016). Hemodialysis Vascular Access. In: Geary, D., Schaefer, F. (eds) Pediatric Kidney Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52972-0_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52972-0_65

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52970-6

  • Online ISBN: 978-3-662-52972-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics