Skip to main content

A Genetic Proportional Integral Derivative Controlled Hydrothermal Automatic Generation Control with Superconducting Magnetic Energy Storage

  • Chapter
  • First Online:
  • 1277 Accesses

Part of the book series: Energy Systems ((ENERGY))

Abstract

In this work, the Automatic Generation Control of an interconnected hydrothermal power system with Superconducting Magnetic Energy Storage (SMES) has been investigated. The gain settings of integral controller as well as Proportional Integral Derivative (PID) controller are tuned by Integral Time Squared Error (ITSE) criterion using Genetic Algorithm. Simulation, comparison and analysis of dynamic performances in the presence of Generation Rate Constraints brings out the superior performance of SMES units and PID controller in suppressing frequency and inter area tie line power deviations from their nominal values followed by a step load disturbance in thermal area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Kundur, Power System Stability and Control. New York: McGraw-Hill, 1994.

    Google Scholar 

  2. O.I. Elgerd, Electric energy system theory: An Introduction, 2007,Tata Mc-Graw hill.

    Google Scholar 

  3. Allen J Wood, Bruce F Wollenberg, “Power Generation Operation and Control”, Wiley India Publications.

    Google Scholar 

  4. C. E. Fosha, O. I. Elgerd, “The megawatt-frequency control problem: A new approach via optimal control theory,” IEEE Transactions on Power Apparatus and Systems, vol.PAS-89, no.4, pp.563-577, April 1970.

    Google Scholar 

  5. O. I. Elgerd, C. E. Fosha, “Optimum megawatt-frequency control of multiarea electric energy systems,” IEEE Transactions on Power Apparatus and Systems, vol.PAS-89, no.4 pp.556-563, April 1970.

    Google Scholar 

  6. R. J. Abraham, D. Das, A. Patra, “Automatic generation control of an interconnected power system with capacitive energy storage,” International Journal of Electrical Power and Energy Systems Engineering, vol.3, pp.41-46, 2010.

    Google Scholar 

  7. R. J. Abraham, D. Das, A. Patra, “Automatic generation control of an interconnected hydrothermal power system considering superconducting magnetic storage,” Journal of Electrical Power and Energy Systems, vol.29, pp.571-579, 2007.

    Google Scholar 

  8. Y. L. Karnavas, D. P. Papadopoulos, “AGC for autonomous power system using combined intelligent techniques,” Electric Power System Research, vol.62, pp.225-239, 2002.

    Google Scholar 

  9. C. Srinivasa Rao, S. Siva Naga Raju, P. Sangameswara Raju, “Ant colony system algorithm for automatic generation control of hydrothermal system under open market scenario,” IET-UK International Conference on Information and Communication Technology in Electrical Sciences(ICTES 2007), pp.112-119, Dec 2007.

    Google Scholar 

  10. Ibraheem and Omveer Singh, “Hybrid GA-SA based optimal AGC of a multiarea interconnected power system,” International Journal of Electrical and Power Engineering, vol.4, no.2, pp.78-84, 2010.

    Google Scholar 

  11. S. K. Sinha, R. N. Patel, R. Prasad, “Application of GA and PSO tuned fuzzy controller for AGC of three area thermal-thermal-hydro power system,” International Journal of Computer Theory and Engineering, vol.2, no.2, pp.1793-8201, April 2010.

    Google Scholar 

  12. L. PinKang, Z. Hengjun, L. Yuyun, “Genetic algorithm optimization for AGC of multiarea power systems,” Proceedings of IEEE TENCON, pp.1818-1821, 2002.

    Google Scholar 

  13. The Genetic Algorithm and Direct Search Toolbox Documentation. www.mathworks.com/access/helpdesk/help/toolbox/gads/

  14. F, Verdegay J L, Genetic algorithms and soft computing, Physica-Verlag Heidelberg 1996.

    Google Scholar 

  15. Demiroren A, Zeynelgil H L, GA Application to optimisation of AGC in three-area power system after Deregulation, Electrical Power and Energy Systems 2007, 230-240.

    Google Scholar 

  16. I.J. Nagrath and D.P. Kothari, Power system engineering, Tata Mc-Graw Hill Publishing Company Limited, 1994, New Delhi (India).

    Google Scholar 

  17. P.F Riberiro, B K Johnson, M.L Crow, A Arsoy & Y. Liu, “Energy Storage Systems for Advanced Power Applications,” IEEE Proc. C. vol 89, no 12, pp. 1744-1756, December 2001.

    Google Scholar 

  18. Mohd. H. Ali, B. Wu, R. A. Dougal, “An overview of SMES applications in power and energy systems,” IEEE Transactions on Sustainable Energy, vol.1, no.1, April 2010, pp.38-47.

    Google Scholar 

  19. S. Banerjee, J. K. Chatterjee, S. C. Tripathy, “Application of magnetic energy storage unit as load-frequency stabilizer,” IEEE Transactions on Energy Conversion, vol.5, no.1, March 1990, pp.46-51.

    Google Scholar 

  20. R. J. Abraham, D. Das, A. Patra, “Automatic generation control of an interconnected hydrothermal power system considering superconducting magnetic storage,” Journal of Electrical Power and Energy Systems, vol.29, 2007, pp.571-579.

    Google Scholar 

  21. IEEE Committee Report: ‘Dynamic models for steam and hydro turbines in power system studies’, IEEE Trans. Power Appar. Syst., 1973, 92, (6), pp. 1904–1915

    Google Scholar 

  22. M.L. Kothari P.S. Satsangi and J. Nanda, “Automatic Generation Control of an interconnected hydrothermal system in continuous and Discrete mode considering generation rate constraints,” Proc. IEE, vol. 130, 1983, pp. 17–21.

    Google Scholar 

  23. David E Goldberg, “Genetic Algorithms in search, optimization & machine learning”, Pearson Education India, 2005.

    Google Scholar 

  24. Andrew Chipperfield, Peter Fleming, Hartmut Pohlheim, Carlos Fonseca; “Genetic Algorithm Toolbox for use with Matlab” Version 1.2 Users guide, Department of Automatic Control and Systems Engineering, University of Sheffield.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Joseph Abraham .

Editor information

Editors and Affiliations

Appendix

Appendix

  1. (A)

    Nomenclature

    H = inertia constant (MW/sec); DPD = Incremental load change (p.u)

    D = ΔPd/Δf (p.u/Hz); ΔPg = Incremental generation change (p.u)

    R = Governor Speed regulation parameter. (Hz/puMW)

    Tg = Steam governor time constant(s); Tt = Steam turbine time constant (s)

    B = Frequency bias factor pu MW/Hz; f = Nominal system frequency (Hz)

    KIi = Integral gain of PID controller in area i

    Kdi = Derivative gain of PID controller in area i

    Kpi = Proportional gain of PID controller in area i

    Β = (D + 1/R) (i.e. Frequency response characteristics)

    ACE = Area Control Error

    Δf = Incremental change in frequency (Hz)

    ΔPtie12 = Incremental change in tie-line power (p.u MW)

    T12 = Synchronizing coefficients; TW = hydraulic turbine time constant (s).

    T1 = T2 = T3 = T4 = TR1 = TR2 = Hydraulic governor time constant.

    ΔPg1ss, ΔPg2ss, ΔPg3ss and ΔPg4ss-steady state values for change in power generation of different units.

    Pd1-step load disturbance in area1.

    Pd2-step load disturbance in area2.

  2. (B)

    System Data

    PR1 = PR2 = 1200 MW; TP1 = TP2 = 20 s; KP1 = KP2 = 120 Hz/p.u MW

    TR1 = TR2 = 10 s; KR1 = KR2 = 0.5; TTI = TT2 = TT3 = TT4 = 0.3 s; T12 = 0.0866 s

    TG1 = TG2 = TG3 = TG4 = 0.08 s; R1 = R2 = R3 = R4 = 2.4 Hz/p.u MW

    D1 = D2 = 8.33 × 10-3 p.u MW/Hz; B1 = B2 = 0.425 p.u MW/Hz

    Pd1 = 0.01 p.u MW; PD2 = 0 p.u MW; T1 = T3 = 41.6 s; T2 = T4 = 0.513 s; Tw1 = Tw2 = 1 s

  3. (C)

    Superconducting Magnetic Energy Storage Data

    L = 2.65 H; TDC = 0.03 s; KACE = 100 kA/unit MW; Kid = 0.2 kV/kA; Ido = 4.5 kA.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abraham, R.J., Thomas, A. (2016). A Genetic Proportional Integral Derivative Controlled Hydrothermal Automatic Generation Control with Superconducting Magnetic Energy Storage. In: Karampelas, P., Ekonomou, L. (eds) Electricity Distribution. Energy Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49434-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49434-9_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49432-5

  • Online ISBN: 978-3-662-49434-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics