Skip to main content

Abstract

Owing to the specific molecular structure of surfactants, these compounds can penetrate into the stratum corneum (SC) and thereby increase the transdermal absorption of drugs. As a result, surfactants are some of the most widely used enhancers in transdermal drug delivery formulations/systems. Starting with an introduction into the chemical structure and physicochemical characteristics of surfactants, this chapter is focused on the application of various surfactants for increasing the skin absorption of drugs and the mechanisms involved in this process. In particular, application of various ionic and nonionic surfactants and synergism with physical and chemical permeation enhancement methods such as electrophoresis have been discussed, and key publications in this subject area have been introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Rahman A, Khidr S, Ahmed S, Aboutaleb A (1991) Evaluation of chloramphenicol-β-cyclodextrin inclusion complex. Eur J Pharm Biopharm 37:34–37

    CAS  Google Scholar 

  • Aguiar AJ, Weiner MA (1969) Percutaneous absorption studies of chloramphenicol solutions. J Pharm Sci 58:210–215

    Article  CAS  PubMed  Google Scholar 

  • Akhtar N, Rehman MU, Khan HMS, Rasool F, Saeed T, Murteza G (2011) Penetration enhancing of polysorbate 20 and 80 on the in vitro percutaneous absorption of L-Ascorbic acid. Trop J Pharm Res 10:281–288

    Article  CAS  Google Scholar 

  • Almeida JA, Marques EF, Jurado AS, Pais AA (2010) The effect of cationic gemini surfactants upon lipid membranes. An experimental and molecular dynamics simulation study. Phys Chem Chem Phys 12:14462–14476

    Article  CAS  PubMed  Google Scholar 

  • Anderson D, Wennerstrom H, Olsson U (1989) Isotropic bicontinuous solutions in surfactant-solvent systems: the L3 phase. J Phys Chem 93:4243–4253

    Article  CAS  Google Scholar 

  • Arellano A, Santoyo S, Martn C, Ygartua P (1998) Surfactant effects on the in vitro percutaneous absorption of diclofenac sodium. Eur J Drug Metab Pharmacokinet 23:307–312

    Article  CAS  PubMed  Google Scholar 

  • Arima H, Adachi H, Irie T, Uekama K (1990) Improved drug delivery through the skin by hydrophilic β-cyclodextrins. Drug Invest 2:155–161

    Article  Google Scholar 

  • Arima H, Miyaji T, Irie T, Hirayama F, Uekama K (1998) Enhancing effect of hydroxypropyl-β-cyclodextrin on cutaneous penetration and activation of ethyl 4-biphenylyl acetate in hairless mouse skin. Eur J Pharm Sci 6:53–59

    Article  CAS  PubMed  Google Scholar 

  • Ashton P, Walters KA, Brain KR, Hadgraft J (1992) Surfactant effects in percutaneous absorption I. Effects on the transdermal flux of methyl nicotinate. Int J Pharm 87:261–264

    Article  CAS  Google Scholar 

  • Aungst, B. J., Rogers, N. J., & Shefter, E. (1986). Enhancement of naloxone penetration through human skin in vitro using fatty acids, fatty alcohols, surfactants, sulfoxides and amides. International journal of pharmaceutics, 33(1), 225–234

    Google Scholar 

  • Ayala-Bravo HA, Quintanar-Guerrero D, Naik A, Kalia YN, Cornejo-Bravo JM, Ganem-Quintanar A (2003) Effects of sucrose oleate and sucrose laureate on in vivo human stratum corneum permeability. Pharm Res 20:1267–1273

    Article  CAS  PubMed  Google Scholar 

  • Azmin M, Florence A, Handjani-Vila R, Stuart J, Vanlerberghe G, Whittaker J (1985) The effect of non‐ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J Pharm Pharmacol 37:237–242

    Article  CAS  PubMed  Google Scholar 

  • Baby AR, Lacerda AC, Velasco MV, Lopes PS, Kawano Y, Kaneko TM (2006) Evaluation of the interaction of surfactants with stratum corneum model membrane from Bothrops Jararaca by DSC. Int J Pharm 317:7–9

    Article  CAS  PubMed  Google Scholar 

  • Baker H (1972) The skin as a barrier. In: Rock A (ed) Textbook of dermatology. Blackwell Scientific, Oxford, pp 249–255

    Google Scholar 

  • Bardi L, Mattei A, Steffan S, Marzona M (2000) Hydrocarbon degradation by a soil microbial population with beta-cyclodextrin as surfactant to enhance bioavailability. Enzyme Microb Technol 27:709–713

    Article  CAS  PubMed  Google Scholar 

  • Barel AO, Paye M, Maibach HI (2009) Handbook of cosmetic science and technology, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  • Barry B (1983) Properties that influence percutaneous absorption. In: Dermatological formulations: percutaneous absorption 18:127–233

    Google Scholar 

  • Barry BW (2007) Transdermal drug delivery. In: Aulton ME (ed) Aulton’s Pharmaceutics, The Design and Manufacture of Medicines. Elsevier, Churchill Livingstone, pp 580–585, Chapter 38

    Google Scholar 

  • Bataller R, Bragulat E, Nogué S, Görbig MN, Bruguera M, Rodés J (2000) Prolonged cholestasis after acute paraquat poisoning through skin absorption. Am J Gastroenterol 95:1340–1343

    Article  CAS  PubMed  Google Scholar 

  • Belsey NA, Cordery SF, Bunge AL, Guy RH (2011) Assessment of dermal exposure to pesticide residues during re-entry. Environ Sci Technol 45:4609–4615

    Article  CAS  PubMed  Google Scholar 

  • Bergh M (1999) Allergenic oxidation products. Acta Derm Venereol 79(Supplement 205):5–26

    Article  Google Scholar 

  • Bhaskaran S, Harsha S (2000) Effect of permeation enhancer and lontophoresis on permeation of atenolol from transdermal gels. Ind J Pharm Educ 62:424

    Google Scholar 

  • Bhatia KS, Gao S, Singh J (1997) Effect of penetration enhancers and iontophoresis on the FT-IR spectroscopy and LHRH permeability through porcine skin. J Controlle Release 47:81–89

    Article  CAS  Google Scholar 

  • Bolzinger M, Carduner T, Poelman M (1998) Bicontinuous sucrose ester microemulsion: a new vehicle for topical delivery of niflumic acid. Int J Pharm 176:39–45

    Article  CAS  Google Scholar 

  • Breuer MM (1979) The interaction between surfactants and keratinous tissues. J Soc Cosmet Chem 30:41–64

    CAS  Google Scholar 

  • Calderilla-Fajardo S, Cazares-Delgadillo J, Villalobos-Garcia R, Quintanar-Guerrero D, Ganem-Quintanar A, Robles R (2006) Influence of sucrose esters on the in vivo percutaneous penetration of octyl methoxycinnamate formulated in nanocapsules, nanoemulsion, and emulsion. Drug Dev Ind Pharm 32:107–113

    Article  CAS  PubMed  Google Scholar 

  • Cappel MJ, Kreuter J (1991) Effect of nonionic surfactants on transdermal drug delivery: I. Polysorbates. Int J Pharm 69:143–153

    Article  CAS  Google Scholar 

  • Cázares-Delgadillo J, Naik A, Kalia Y, Quintanar-Guerrero D, Ganem-Quintanar A (2005) Skin permeation enhancement by sucrose esters: a pH-dependent phenomenon. Int J Pharm 297:204–212

    Article  PubMed  CAS  Google Scholar 

  • Cevc G, Blume G (2001) New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes. Biochim Biophys Acta (BBA)-Biomembranes 1514:191–205

    Article  CAS  Google Scholar 

  • Cevc G, Blume G (2003) Biological activity and characteristics of triamcinolone-acetonide formulated with the self-regulating drug carriers, Transfersomes®. Biochim Biophys Acta (BBA)-Biomembranes 1614:156–164

    Article  CAS  Google Scholar 

  • Cevc G, Blume G (2004) Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage. Biochim Biophys Acta (BBA)-Biomembranes 1663:61–73

    Article  CAS  Google Scholar 

  • Challa R, Ahuja A, Ali J, Khar R (2005) Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 6:329–357

    Article  Google Scholar 

  • Cho C, Choi J, Shin S (2011) Enhanced local anesthetic action of mepivacaine from the bioadhesive gels. Pak J Pharm Sci 24:87–93

    CAS  PubMed  Google Scholar 

  • Chowhan Z, Pritchard R (1978) Effect of surfactants on percutaneous absorption of naproxen I: comparisons of rabbit, rat, and human excised skin. J Pharm Sci 67:1272–1274

    Article  CAS  PubMed  Google Scholar 

  • Commission of the European Communities (2003) Proposal for a Regulation of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency and amending Directive 1999/45/EC and Regulation (EC) {on Persistent Organic Pollutants}

    Google Scholar 

  • Cooper ER (1984) Increased skin permeability for lipophilic molecules. J Pharm Sci 73:1153–1156

    Article  CAS  PubMed  Google Scholar 

  • Csizmazia E, Eros G, Berkesi O, Berkó S, Szabó-Révész P, Csányi E (2011) Penetration enhancer effect of sucrose laurate and Transcutol on ibuprofen. J Drug Deliv Sci Tec 21:411–415

    Article  CAS  Google Scholar 

  • Csizmazia E, Eros G, Berkesi O, Berkó S, Szabó-Révész P, Csányi E (2012) Ibuprofen penetration enhance by sucrose ester examined by ATR-FTIR in vivo. Pharm Dev Technol 17:125–128

    Article  CAS  PubMed  Google Scholar 

  • Csóka G, Marton S, Zelko R, Otomo N, Antal I (2007) Application of sucrose fatty acid esters in transdermal therapeutic systems. Eur J Pharm Biopharm 65:233–237

    Article  PubMed  CAS  Google Scholar 

  • Dalvi UG, Zatz J (1981) Effects of nonionic surfactants on penetration of dissolved benzocaine through hairless mouse skin. J Soc Cosmet Chem 32:87–94

    CAS  Google Scholar 

  • Davies, J. T. (1957). A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent. In Gas/Liquid and Liquid/Liquid Interface. Proceedings of the International Congress of Surface Activity (pp. 426–438).

    Google Scholar 

  • Davis AF, Gyurik RJ, Hadgraft J, Pellett MA, Walters KA (2002) Formulation strategies for modulating skin permeation. Drugs Pharm Sci 119:271–318

    CAS  Google Scholar 

  • Effendy I, Maibach HI (2006) Surfactants and experimental irritant contact dermatitis. Contact Dermatitis 33:217–225

    Article  Google Scholar 

  • El-Laithy HM (2009) Novel transdermal delivery of Timolol maleate using sugar esters: preclinical and clinical studies. Eur J Pharm Biopharm 72:239–245

    Article  CAS  PubMed  Google Scholar 

  • El-Laithy HM, Shoukry O, Mahran LG (2011) Novel sugar esters proniosomes for transdermal delivery of vinpocetine: preclinical and clinical studies. Eur J Pharm Biopharm 77:43–55

    Article  CAS  PubMed  Google Scholar 

  • El-Menshawe SF, Hussein AK (2013) Formulation and evaluation of meloxicam niosomes as vesicular carriers for enhanced skin delivery. Pharm Dev Technol 18(4):779–786

    Google Scholar 

  • Endo M, Yamamoto T, Ljuin T (1996) Effect of nonionic surfactants on the percutaneous absorption Tenoxicam. Chem Pharm Bull 44:865–867

    Article  CAS  PubMed  Google Scholar 

  • Engelbrecht T, Demé B, Dobner B, Neubert R (2012) Study of the influence of the penetration enhancer isopropyl myristate on the nanostructure of stratum corneum lipid model membranes using neutron diffraction and deuterium labelling. Skin Pharmacol Physiol 25:200–207

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Fang C, Huang Y, Tsai Y (1997) Transdermal iontophoresis of sodium nonivamide acetate. III. Combined effect of pretreatment by penetration enhancers. Int J Pharm 149:183–193

    Article  CAS  Google Scholar 

  • Fang J, Yu S, Wu P, Huang Y, Tsai Y (2001) In vitro skin permeation of estradiol from various proniosome formulations. Int J Pharm 215:91–99

    Article  CAS  PubMed  Google Scholar 

  • Farber, E. M., Abel, E. A., & Charuworn, A. (1983). Recent advances in the treatment of psoriasis. Journal of the American Academy of Dermatology, 8(3), 311–321

    Google Scholar 

  • Faucher JA, Goddard ED (1978) Interaction of keratinous substrates with sodium lauryl sulfate. II. Permeation through stratum corneum. J Soc Cosmet Chem 2:339–352

    Google Scholar 

  • Felton LA, Wiley CJ, Godwin DA (2002) Influence of hydroxypropyl-beta-cyclodextrin on the transdermal permeation and skin accumulation of oxybenzone. Drug Dev Ind Pharm 28:1117–1124

    Article  CAS  PubMed  Google Scholar 

  • Femenia-Font A, Balaguer-Fernandez C, Merino V, Rodilla V, Lopez-Castellanoa A (2005) Effect of chemical enhancers on the in vitro percutaneous absorption of sumatriptan succinate. Eur J Pharm Biopharm 61:50–55

    Article  CAS  PubMed  Google Scholar 

  • Fevola M, LiBrizzi J, Walters R (2008) Reducing irritation potential of surfactant-based cleansers with hydrophobically-modified polymers. Polym Prepr 49:671–672

    CAS  Google Scholar 

  • Fevola MJ, Walters RM, LiBrizzi JJ (2010) A new approach to formulating mild cleansers: hydrophobically-modified polymers for irritation mitigation. In: Morgan SE, Lochhead RY (eds) Polymeric delivery of therapeutics, vol 1053, ACS symposium series., pp 221–242

    Chapter  Google Scholar 

  • Florence T, Tuker IG, Walters KA (1994) Interaction of non-ionic alkyl and aryl ethers with membranes and other biological systems. In: Rosen MJ (ed) Structure Performance Relationships in Surfactants. ACS Symp Ser 253:189–207

    Google Scholar 

  • Gershbein LL (1979) Percutaneous toxicity of thioglycolate mixtures in rabbits. J Pharm Sci 68:1230–1235

    Article  CAS  PubMed  Google Scholar 

  • Ghafourian T, Zandasrar P, Hamishekar H, Nokhodchi A (2004) The effect of penetration enhancers on drug delivery through skin: a QSAR study. J Control Release 99:113–125

    Article  CAS  PubMed  Google Scholar 

  • Ghafourian T, Samaras EG, Brooks JD, Riviere JE (2010a) Modelling the effect of mixture components on permeation through skin. Int J Pharm 398:28–32

    Article  CAS  PubMed  Google Scholar 

  • Ghafourian T, Samaras EG, Brooks JD, Riviere JE (2010b) Validated models for predicting skin penetration from different vehicles. Eur J Pharm Sci 41:612–616

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Blankschtein D (2008) The role of sodium dodecyl sulfate (SDS) micelles in inducing skin barrier perturbation in the presence of glycerol. Int J Cosmet Sci 30:73–73

    Article  Google Scholar 

  • Goodman M, Barry BW (1989) Lipid-protein-partitioning (LPP) theory of skin enhancer activity: finite dose technique. Int J Pharm 57:29–40

    Article  CAS  Google Scholar 

  • Griffin WC (1949) Classification of surface-active agents by ‘HLB’. J Soc Cosmet Chem 1:311

    Google Scholar 

  • Griffin WC (1954) Calculation of HLB values of Non-ionic surfactants. J Soc Cosmet Chem 5:249

    Google Scholar 

  • Gupta PN, Mishra V, Singh P, Rawat A, Dubey P, Mahor S et al (2005) Tetanus toxoid‐loaded transfersomes for topical immunization. J Pharm Pharmacol 57:295–301

    Article  CAS  PubMed  Google Scholar 

  • Hadgraft J (2001) Skin, the final frontier. Int J Pharm 14(224):1–18

    Article  Google Scholar 

  • Hall-Manning TJ, Holland GH, Rennie G, Revell P, Hines J, Barratt MD, Basketter DA (1998) Skin irritation potential of mixed surfactant systems. Food Chem Toxicol 36:233–238

    Article  CAS  PubMed  Google Scholar 

  • Hanaee J, Javadzadeh Y, Taftachi S, Farid D, Nokhodchi A (2004) The role of various surfactants on the release of salbutamol from suppositories. Il Farmaco 59:903–906

    Article  CAS  PubMed  Google Scholar 

  • Hofland HE, van der Geest R, Bodde HE, Junginger HE, Bouwstra JA (1994) Estradiol permeation from nonionic surfactant vesicles through human stratum corneum in vitro. Pharm Res 11:659–664

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Rhodes DG (1999) Proniosomes: a novel drug carrier preparation. Int J Pharm 185:23–35

    Article  CAS  PubMed  Google Scholar 

  • Hwang CC, Danti AG (1983) Percutaneous absorption of flufenamic acid in rabbits: Effect of dimethyl sulfoxide and various nonionic surface-active agents. J Pharm Sci 72(8):857–860

    Google Scholar 

  • James-Smith M, Shekhawat D, Shah D (2007) APPLICATION-Importance of micellar lifetime and Sub-micellar aggregates in detergency processes. Tenside Surf Deterg 44:142–153

    Article  CAS  Google Scholar 

  • James-Smith MA, Hellner B, Annunziato N, Mitragotri S (2011) Effect of surfactant mixtures on skin structure and barrier properties. Ann Biomed Eng 39:1215–1223

    Article  PubMed Central  PubMed  Google Scholar 

  • Jiang G, Zhu D, Zan J, Ding F (2007) Transdermal drug delivery by electroporation: the effects of surfactants on pathway lifetime and drug transport. Chin J Chem Eng 15:397–402

    Article  CAS  Google Scholar 

  • Johnson ME, Mitragotri S, Patel A, Blankschtein D, Langer R (1996) Synergistic effect of ultrasound and chemical enhancers on transdermal drug delivery. J Pharm Sci 85:670–679

    Article  CAS  PubMed  Google Scholar 

  • Kalhapure RS, Salunke CL, Akamanchi KG (2012) QSAR model for chemical penetration enhancers containing long hydrocarbon chain. Chemom Intell Lab 118:267–270

    Article  CAS  Google Scholar 

  • Kang C, Shin S (2012) Development of prilocaine gels for enhanced local anesthetic action. Arch Pharm Res 35:1197–1204

    Article  CAS  PubMed  Google Scholar 

  • Kang L, Yap CW, Lim PF, Chen YZ, Ho PC, Chan YW, Wong GP, Chan SY (2007) Formulation development of transdermal dosage forms: quantitative structure-activity relationship model for predicting activities of terpenes that enhance drug penetration through human skin. J Control Release 120:211–219

    Article  CAS  PubMed  Google Scholar 

  • Kanikkannan N, Singh M (2002) Skin permeation enhancement effect and skin irritation of saturated fatty alcohols. Int J Pharm 248:219–228

    Article  CAS  PubMed  Google Scholar 

  • Karande P, Jain A, Arora A, Ho MJ, Mitragotri S (2007) Synergistic effects of chemical enhancers on skin permeability: a case study of sodium lauroylsarcosinate and sorbitan monolaurate. Eur J Pharm Sci 31:1–7

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Ishibashi Y, Miyake Y (1987) Effect of egg yolk lecithin on transdermal delivery of bunazosin hydrochloride. J Pharm Pharmacol 39:399–400

    Article  CAS  PubMed  Google Scholar 

  • Kirjavainen M, Mönkkönen J, Saukkosaari M, Valjakka-Koskela R, Kiesvaara J, Urtti A (1999) Phospholipids affect stratum corneum lipid bilayer fluidity and drug partitioning into the bilayers. J Control Release 58:207–214

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa S, Ikarashi A (2003) Enhanced skin permeation of cationic drug ketotifen through excised guinea pig dorsal skin by surfactants with different electric charges. Chem Pharm Bull 51:1183–1185

    Article  CAS  PubMed  Google Scholar 

  • Klang V, Matsko N, Zimmermann A, Vojnikovic E, Valenta C (2010) Enhancement of stability and skin permeation by sucrose stearate and cyclodextrins in progesterone nanoemulsions. Int J Pharm 393:153–161

    Article  CAS  Google Scholar 

  • Kogan A, Garti N (2006) Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci 123:369–385

    Article  PubMed  CAS  Google Scholar 

  • Kumar GP, Rajeshwarrao P (2011) Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharmaceutica Sinica B 1:208–219

    Article  CAS  Google Scholar 

  • Kushner J, Blankschtein D, Langer R (2004) Experimental demonstration of highly permeable localized transport regions in low-frequency sonophoresis. J Pharm Sci 93:2733–2745

    Article  CAS  PubMed  Google Scholar 

  • Kushner J, Kim D, So PT, Blankschtein D, Langer RS (2007) Dual-channel two-photon microscopy study of transdermal transport in skin treated with low-frequency ultrasound and a chemical enhancer. J Invest Dermatol 127:2832–2846

    Article  CAS  PubMed  Google Scholar 

  • Kushner J, Blankschtein D, Langer R (2008) Evaluation of hydrophilic permeant transport parameters in the localized and non-localized transport regions of skin treated simultaneously with low-frequency ultrasound and sodium lauryl sulfate. J Pharm Sci 97:906–918

    Article  CAS  PubMed  Google Scholar 

  • Kute A, Goudanavar P, Hiremath D, Reddy SR (2012) Development and characterization of perindopril erbumine loaded proniosomal gel. Asian J Pharm Tech 2:54–58

    Google Scholar 

  • Lakshmi P, Devi GS, Bhaskaran S, Sacchidanand S (2007) Niosomal methotrexate gel in the treatment of localized psoriasis: phase I and phase II studies. Indian J Dermatol Venereol Leprol 73:157

    Article  CAS  PubMed  Google Scholar 

  • Le VH, Lippold BC (1995) Influence of physicochemical properties of homologous esters of nicotinic acid on skin permeability and maximum flux. Int J Pharm 124:285–292

    Article  CAS  Google Scholar 

  • Legen I, Kračun M, Salobir M, Kerč J (2006) The evaluation of some pharmaceutically acceptable excipients as permeation enhancers for amoxicillin. Int J Pharm 308:84–89

    Article  CAS  PubMed  Google Scholar 

  • Lehmann L, Keipert S, Gloor M (2001) Effects of microemulsions on the stratum corneum and hydrocortisone penetration. Eur J Pharm Biopharm 52:129–136

    Article  CAS  PubMed  Google Scholar 

  • Lerk PC, Sucker H (1993) Application of sucrose laurate in topical preparations of cyclosporine A. Int J Pharm 92:197–202

    Article  CAS  Google Scholar 

  • Li GL, de Vries JJ, van Steeg TJ, van den Busche H, Maas HJ, Reeuwijk HJ, Danhof M, Bouwstra JA, van Laar T (2005a) Transdermal iontophoretic delivery of apomorphine in patients improved by surfactant formulation pretreatment. J Control Release 101:199–208

    Article  CAS  PubMed  Google Scholar 

  • Li GL, Van Steeg TJ, Putter H, Van Der Spek J, Pavel S, Danhof M, Bouwstra JA (2005b) Cutaneous side-effects of transdermal iontophoresis with and without surfactant pretreatment: a single-blinded, randomized controlled trial. Br J Dermatol 153:404–412

    Article  CAS  PubMed  Google Scholar 

  • Limpongsa E, Umprayn K (2008) Preparation and evaluation of diltiazem hydrochloride diffusion-controlled transdermal delivery system. AAPS PharmSciTech 9:464–470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin S, Wouessidjewe D, Poelman M, Duchene D (1994) In vivo evaluation of indomethacin/cyclodextrin complexes gastrointestinal tolerance and dermal anti-inflammatory activity. Int J Pharm 106:63–67

    Article  CAS  Google Scholar 

  • Lingan MA, Sathali AAH, Kumar MV, Gokila A (2011) Formulation and evaluation of topical drug delivery system containing clobetasol propionate niosomes. Sci Rev Chem Commun 1:7–17

    Google Scholar 

  • Loden M (1990) The simultaneous penetration of water and sodium lauryl sulphate through isolated human skin. J Soc Cosmet Chem 41:227–233

    CAS  Google Scholar 

  • Loftsson T, Masson M (2001) Cyclodextrins in topical drug formulations: theory and practice. Int J Pharm 225:15–30

    Article  CAS  PubMed  Google Scholar 

  • Loftsson T, Sigurdardottir A (1994) The effect of polyvinylpyrrolidone and hydroxypropyl methylcellulose of HPβCD complexation of hydrocortisone and its permeability through hairless mouse skin. Eur J Pharm Sci 2:297–301

    Article  CAS  Google Scholar 

  • Loftsson T, Frioriksdottir H, Ingvarsdottir G, Jonsdottir B, Siguroardottir A (1994) The influence of 2-hydroxypropyl-β-cyclodextrin on diffusion rates and transdermal delivery of hydrocortisone. Drug Dev Ind Pharm 20:1699–1708

    Article  CAS  Google Scholar 

  • Loftsson T, Vogensen SB, Brewster ME, Konráðsdóttir F (2007) Effects of cyclodextrins on drug delivery through biological membranes. J Pharm Sci 96:2532–2546

    Article  CAS  PubMed  Google Scholar 

  • Lopez A, Llinares F, Cortell C, Herraez M (2000a) Comparative enhancer effects of Span® 20 with Tween® 20 and Azone® on the in vitro percutaneous penetration of compounds with different lipophilicities. Int J Pharm 202:133–140

    Article  CAS  PubMed  Google Scholar 

  • Lopez RF, Collett JH, Bentley M (2000b) Influence of cyclodextrin complexation on the in vitro permeation and skin metabolism of dexamethasone. Int J Pharm 200:127–132

    Article  CAS  PubMed  Google Scholar 

  • Mahale N, Thakkar P, Mali R, Walunj D, Chaudhari S (2012) Niosomes: novel sustained release nonionic stable vesicular systems-an overview. Adv Colloid Interface Sci 183–184:46–54

    Article  PubMed  CAS  Google Scholar 

  • Malmsten M (2002) Surfactants and polymers in drug delivery. Marcel Dekker, New York

    Book  Google Scholar 

  • Mannheimer HS (1961) Baby shampoo. American Perfumer 76:36–37

    Google Scholar 

  • Mao G, Flach CR, Mendelsohn R, Walters RM (2012) Imaging the distribution of sodium dodecyl sulfate in skin by confocal Raman and infrared microspectroscopy. Pharm Res 29:2189–2201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez V, Sanchez L, Busquets MA, Infante MR, Vinardell MP, Mitjans M (2007) Disturbance of erythrocyte lipid bilayer by amino acid-based surfactants. Amino Acids 33:459–462

    Article  CAS  PubMed  Google Scholar 

  • Másson M, Loftsson T, Másson G, Stefánsson E (1999) Cyclodextrins as permeation enhancers: some theoretical evaluations and in vitro testing. J Control Release 59:107–118

    Article  PubMed  Google Scholar 

  • Mendelsohn R, Flach CR, Moore DJ (2006) Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. Biochim Biophys Acta (BBA)-Biomembranes 1758:923–933

    Article  CAS  Google Scholar 

  • Mitragotri S (2000) Synergistic effect of enhancers for transdermal drug delivery. Pharm Res 17(11):1354–1359

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Ray D, Farrell J, Tang H, Yu B, Kost J et al (2000) Synergistic effect of low‐frequency ultrasound and sodium lauryl sulfate on transdermal transport. J Pharm Sci 89:892–900

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa K, Ogawa M, Mitsui T (1984) The physico-chemical properties and protein denaturation potential of surfactant mixtures. Int J Cosmet Sci 6:33–46

    Article  CAS  PubMed  Google Scholar 

  • Mohamad M, Jan R (2012) Challenges in transdermal formulation: in vitro evaluation. Int J Pharm 2:362–365

    CAS  Google Scholar 

  • Moore PN, Puvvada S, Blankschtein D (2003a) Challenging the surfactant monomer skin penetration model: penetration of sodium dodecyl sulfate micelles into the epidermis. J Cosmet Sci 54:29–46

    CAS  PubMed  Google Scholar 

  • Moore PN, Shiloach A, Puvvada S, Blankschtein D (2003b) Penetration of mixed micelles into the epidermis: effect of mixing sodium dodecyl sulfate with dodecyl hexa (ethylene oxide). J Cosmet Sci 54:143–160

    CAS  PubMed  Google Scholar 

  • Mukherjee B, Kanupriya MS, Das S, Patra B (2005) Sorbitan monolaurate 20 as a potential skin permeation enhancer in transdermal patches. J Appl Res 1:96–108

    Google Scholar 

  • Mura S, Pirot F, Manconi M, Falson F, Fadda AM (2007) Liposomes and niosomes as potential carriers for dermal delivery of minoxidil. J Drug Target 15:101–108

    Article  CAS  PubMed  Google Scholar 

  • Murthy SN, Sen A, Hui SW (2004) Surfactant-enhanced transdermal delivery by electroporation. J Control Release 98:307–315

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan R, Ruckenstein E (1991) Theory of surfactant self-assembly: a predictive molecular thermodynamic approach. Langmuir 7:2934–2969

    Article  CAS  Google Scholar 

  • Narasimha Reddy D, Udupa N (1993) Formulation and evaluation of oral and transdermal preparations of flurbiprofen and piroxicam incorporated with different carriers. Drug Dev Ind Pharm 19:843–852

    Article  Google Scholar 

  • Newton J, Rowley G, Törnblom J (1971) Further studies on the effect of additives on the release of drug from hard gelatin capsules. J Pharm Pharmacol 23(S1):156S–160S

    Article  CAS  PubMed  Google Scholar 

  • Nokhodchi A, Shokri J, Dashbolaghi A, Hassan-Zadeh D, Ghafourian T, Barzegar-Jalali M (2003) The enhancement effect of surfactants on the penetration of lorazepam through rat skin. Int J Pharm 250:359–369

    Article  CAS  PubMed  Google Scholar 

  • Nokhodchi A, Sharabiani K, Rashidi M, Ghafourian T (2007) The effect of terpene concentrations on the skin penetration of diclofenac sodium. Int J Pharm 335:97–105

    Article  CAS  PubMed  Google Scholar 

  • O’Lenick AJ (2005) Surfactants: Strategic Personal Care Ingredients. Allured Pub Corp, Carol Stream

    Google Scholar 

  • Oh S, Jeong S, Park T, Lee J (1998) Enhanced transdermal delivery of AZT (Zidovudine) using iontophoresis and penetration enhancer. J Control Release 51:161–168

    Article  CAS  PubMed  Google Scholar 

  • Okamoto H, Komatsu H, Hashida M, Sezaki H (1986) Effects of β-cyclodextrin and di-O-methyl-β-cyclodextrin on the percutaneous absorption of butylparaben, indomethacin and sulfanilic acid. Int J Pharm 30:35–45

    Article  CAS  Google Scholar 

  • Okamoto H, Sakai T, Danjo K (2005) Effect of sucrose fatty acid esters on transdermal permeation of lidocaine and ketoprofen. Bio Pharm Bull 28:1689–1694

    Article  CAS  Google Scholar 

  • Pardakhty A, Varshosaz J, Rouholamini A (2007) In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int J Pharm 328:130–141

    Article  CAS  PubMed  Google Scholar 

  • Park ES, Chang SY, Hahn M, Chi SC (2000) Enhancing effect of polyoxyethylene alkyl ethers on the skin permeation of ibuprofen. Int J Pharm 209:109–119

    Article  CAS  PubMed  Google Scholar 

  • Patel KK, Kumar P, Thakkar HP (2012) Formulation of niosomal gel for enhanced transdermal Lopinavir delivery and its comparative evaluation with ethosomal gel. AAPS PharmSciTech 13:1502–1510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piret J, Désormeaux A, Cormier H, Lamontagne J, Gourde P, Juhász J et al (2000) Sodium lauryl sulfate increases the efficacy of a topical formulation of foscarnet against herpes simplex virus type 1 cutaneous lesions in mice. Antimicrob Agents Chemother 44:2263–2270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prasanthi D, Lakshmi P (2012) Effect of chemical enhancers in transdermal permeation of alfuzosin hydrochloride. ISRN Pharm 2012: article ID 965280, 1–8

    Google Scholar 

  • Raut S, Suruse PB, Shivhare UD, Bhusari KP (2010) Development and evaluation of non-ionic surfactant based organogels for transdermal delivery of zidovudine. Pharmacie Globale Int J Comprehensive Pharm 3:1–7

    Google Scholar 

  • Rhein L, Robbins C, Fernee K (1986) Surfactant structure effects on swelling of isolated human. J Soc Cosmet Chem 37:125–139

    CAS  Google Scholar 

  • Rhein LD, Simion F, Hill R, Cagan R, Mattai J, Maibach H (1990) Human cutaneous response to a mixed surfactant system: role of solution phenomena in controlling surfactant irritation. Dermatology 180:18–23

    Article  CAS  Google Scholar 

  • Riegelman S, Crowell W (1958a) The kinetics of rectal absorption II. The absorption of anions. J Am Pharm Assoc 47:123–127

    Article  CAS  Google Scholar 

  • Riegelman S, Crowell WJ (1958b) The kinetics of rectal absorption I. Preliminary investigations into the absorption rate process. J Am Pharm Assoc 47:115–122

    Article  CAS  Google Scholar 

  • Riegelman S, Crowell WJ (1958c) The kinetics of rectal absorption III. The absorption of undissociated molecules. J Am Pharm Assoc 47:127–133

    Article  CAS  Google Scholar 

  • Rigg PC, Barry BW (1990) Shed snake skin and hairless mouse skin as model membranes for human skin during permeation studies. J Invest Dermatol 94:235–240

    Article  CAS  PubMed  Google Scholar 

  • Riviere JE, Brooks JD (2011) Predicting skin permeability from complex chemical mixtures: dependency of quantitative structure permeability relationships (QSPR) on biology of skin model used. Toxicol Sci 119:224–232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roberts MS, Cross SE, Pellett MA (2002) Skin transport. Drugs Pharm Sci 119:89–196

    CAS  Google Scholar 

  • Rogerson A, Cummings J, Willmott N, Florence A (1988) The distribution of doxorubicin in mice following administration in niosomes. J Pharm Pharmacol 40:337–342

    Article  CAS  PubMed  Google Scholar 

  • Rosen MJ, Kunjappu JT (2004) Surfactants and interfacial phenomena. Wiley, Hoboken

    Book  Google Scholar 

  • Rosen MJ, Kunjappu JT (2012) Tenside surfactants detergents. In: Surfactants and interfacial phenomena 49: 361

    Google Scholar 

  • Saad P, Flach CR, Walters RM, Mendelsohn R (2012) Infrared spectroscopic studies of sodium dodecyl sulphate permeation and interaction with stratum corneum lipids in skin. Int J Cosmet Sci 34:36–43

    Article  CAS  PubMed  Google Scholar 

  • Saija A, Tomaino A, Trombetta D, Giacchi M, De Pasquale A, Bonina F (1998) Influence of different penetration enhancers on in vitro skin permeation and in vivo photoprotective effect of flavonoids. Int J Pharm 175:85–94

    Article  CAS  Google Scholar 

  • Samaras EG, Riviere JE, Ghafourian T (2012) The effect of formulations and experimental conditions on in vitro human skin permeation-Data from updated EDETOX database. Int J Pharm 15:434280–434291

    Google Scholar 

  • Sarpotdar P, Zatz JL (1986a) Percutaneous absorption enhancement by nonionic surfactants. Drug Dev Ind Pharm 12(11–13):1625–1647

    Article  CAS  Google Scholar 

  • Sarpotdar PP, Zatz JL (1986b) Evaluation of penetration enhancement of lidocaine by nonionic surfactants through hairless mouse skin in vitro. J Pharm Sci 75:176–181

    Article  CAS  PubMed  Google Scholar 

  • Sathali AAH, Rajalakshmi G (2010) Evaluation of transdermal targeted niosomal drug delivery of terbinafine hydrochloride. Int J PharmTech Res 2:2081–2089

    Google Scholar 

  • Scheuplein R, Ross L (1970) Effects of surfactants and solvents on the permeability of epidermis. J Soc Cosmet Chem 21:853–873

    CAS  Google Scholar 

  • Schreier H, Bouwstra J (1994) Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J Control Release 30:1–15

    Article  CAS  Google Scholar 

  • Seto JE, Polat BE, Lopez RFV, Blankschtein D, Langer R (2010) Effects of ultrasound and sodium lauryl sulfate on the transdermal delivery of hydrophilic permeants: comparative in vitro studies with full-thickness and split-thickness pig and human skin. J Control Release 145:26–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shahi V, Zatz JL (1978) Effect of formulation factors on penetration of hydrocortisone through mouse skin. J Pharm Sci 67:789–792

    Article  CAS  PubMed  Google Scholar 

  • Shahiwala A, Misra A (2002) Studies in topical application of niosomally entrapped nimesulide. J Pharm Pharm Sci 5:220

    CAS  PubMed  Google Scholar 

  • Shamsheer A, Sabareesh M, Patan R, Sai K, Sudheer B (2011) Formulation and evaluation of lisinopril dehydrate transdermal proniosomal gels. J App Pharm Sci 1:181–185

    Google Scholar 

  • Shen WW, Danti AG, Bruscato FN (1976) Effect of nonionic surfactants on percutaneous absorption of salicylic acid and sodium salicylate in the presence of dimethyl sulfoxide. J Pharm Sci 65:1780–1783

    Article  CAS  PubMed  Google Scholar 

  • Shin S, Cho C, Oh I (2001) Effects of non-ionic surfactants as permeation enhancers towards piroxicam from the poloxamer gel through rat skins. Int J Pharm 222:199–203

    Article  CAS  PubMed  Google Scholar 

  • Shokri J, Nokhodchi A, Dashbolaghi A, Hassan-Zadeh D, Ghafourian T, Barzegar JM (2001) The effect of surfactants on the skin penetration of diazepam. Int J Pharm 228:99–107

    Article  CAS  PubMed  Google Scholar 

  • Sigurdoardóttir AM, Loftsson T (1995) The effect of polyvinylpyrrolidone on cyclodextrin complexation of hydrocortisone and its diffusion through hairless mouse skin. Int J Pharm 126(1):73–78

    Article  Google Scholar 

  • Silva S, Hu L, Sousa JJ, Pais AA, Michniak-Kohn BB (2012) A combination of nonionic surfactants and iontophoresis to enhance the transdermal drug delivery of ondansetron HCl and diltiazem HCl. Eur J Pharm Biopharm 80(3):663–673

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Singh S (1995) Transdermal iontophoresis: effect of penetration enhancer and iontophoresis on drug transport and surface characteristics of human epidermis. Curr Probl Dermatol 22:179

    Article  CAS  PubMed  Google Scholar 

  • Som I, Bhatia K, Yasir M (2012) Status of surfactants as penetration enhancers in transdermal drug delivery. J Pharm Bioallied Sci 4(1):2

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tupker R, Pinnagoda J, Nater J (1990) The transient and cumulative effect of sodium lauryl sulphate on the epidermal barrier assessed by transepidermal water loss: inter-individual variation. Acta Derm Venereol 70:1–5

    CAS  PubMed  Google Scholar 

  • Udupa N, Bhat L (1992) Evaluation of FEW ciprofloxacin (CIP) and norfloxacin (NOR) formulations. Drug Dev Ind Pharm 18:2197–2205

    Article  CAS  Google Scholar 

  • Uekama K, Arimori K, Sakai A, Masaki K, Irie T, Otagiri M (1987) Improvement in percutaneous absorption of prednisolone by β-and γ-cyclodextrin complexations. Chem Pharm Bull 35:2910–2913

    Article  CAS  PubMed  Google Scholar 

  • Uekama K, Adachi H, Irie T, Yano T, Saita M, Noda K (1992) Improved transdermal delivery of prostaglandin E1 through hairless mouse skin: combined use of carboxymethyl‐ethyl‐β‐cyclodextrin and penetration enhancers. J Pharm Pharmacol 44:119–121

    Article  CAS  PubMed  Google Scholar 

  • Umemura M, Ueda H, Tomono K, Nagai T (1990) Effect of diethyl-beta-cyclodextrin on the release of nitroglycerin from formulations. Drug Des Deliv 6:297–310

    CAS  PubMed  Google Scholar 

  • Vaddi H, Wang L, Ho P, Chan S (2001) Effect of some enhancers on the permeation of haloperidol through rat skin in vitro. Int J Pharm 212:247–255

    Article  CAS  PubMed  Google Scholar 

  • Varshosaz J, Pardakhty A, Mohsen S, Baharanchi H (2005) Sorbitan monopalmitate-based proniosomes for transdermal delivery of chlorpheniramine maleate. Drug Deliv 12:75–82

    Article  CAS  PubMed  Google Scholar 

  • Ventura C, Tommasini S, Falcone A, Giannone I, Paolino D, Sdrafkakis V et al (2006) Influence of modified cyclodextrins on solubility and percutaneous absorption of celecoxib through human skin. Int J Pharm 314:37–45

    Article  CAS  PubMed  Google Scholar 

  • Vermeire A, Muynck C, Vandenbossche G, Eechaute W, Geerts M, Remon JP (1996) Sucrose laurate gels as a percutaneous delivery system for oestradiol in rabbits. J Pharm Pharmacol 48:463–467

    Article  CAS  PubMed  Google Scholar 

  • Vyas S, Singh R, Jain S, Mishra V, Mahor S, Singh P et al (2005) Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B. Int J Pharm 296:80–86

    Article  CAS  PubMed  Google Scholar 

  • Walters KA (1990) Surfactants and percutaneous absorption. In: Predictions of percutaneous penetration. IBC Technical Services, London

    Google Scholar 

  • Walters KA, Hadgraft J (1993) Pharmaceutical skin penetration enhancement, vol 59. Marcel Dekker, New York

    Google Scholar 

  • Walters KA, Walker M, Olejnik O (1988) Non‐ionic surfactant effects on hairless mouse skin permeability characteristics. J Pharm Pharmacol 40:525–529

    Article  CAS  PubMed  Google Scholar 

  • Walters RM, Fevola MJ, Librizzi JJ, Martin K (2008) Designing cleansers for the unique needs of baby skin. Cosmet Toiletries 123:53–60

    CAS  Google Scholar 

  • Walters RM, Mao GM, Gunn ET, Hornby S (2012) Cleansing formulations that respect skin barrier integrity. Dermatol Res Pract 2012:article 495917, 1–9

    Google Scholar 

  • Wang S, Kara M, Krishnan T (1998) Transdermal delivery of cyclosporin-A using electroporation. J Control Release 50:61–70

    Article  CAS  PubMed  Google Scholar 

  • Watkinson A, Green D, Brain K, James V, Walters K, Azri-Meehan S et al (1998) Skin penetration of a series of nonoxynol homologues. In: Brain KR, James VJ, Waters KS (eds) Perspectives in percutaneous penetration, vol. 5b. STS Publishing, Cardiff, pp 54–59

    Google Scholar 

  • Wearley L, Chien YW (1990) Enhancement of the in vitro skin permeability of azidothymidine (AZT) via iontophoresis and chemical enhancer. Pharm Res 7:34–40

    Article  CAS  PubMed  Google Scholar 

  • Weaver JC, Vanbever R, Vaughan TE, Prausnitz MR (1997) Heparin alters transdermal transport associated with electroporation. Biochem Biophys Res Commun 234:637–640

    Article  CAS  PubMed  Google Scholar 

  • Wiechers J (2005) Optimizing skin delivery of active ingredients from emulsions: from theory to practice. In: Delivery system handbook for personal care and cosmetic products-technology, applications, and formulations. William Andrew Pub, Norwich

    Google Scholar 

  • Wilhelm KP, Cua AB, Wolff HH, Maibach HI (1993) Surfactant-induced stratum corneum hydration in vivo: prediction of the irritation potential of anionic surfactants. J Invest Dermatol 101:310–315

    Article  CAS  PubMed  Google Scholar 

  • Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Deliv Rev 56:603–618

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Huang Y, Lin H, Tsai Y (1996) In vitro percutaneous absorption of captopril through excised rabbit skin. Int J Pharm 143:119–123

    Article  CAS  Google Scholar 

  • Yamato K, Takahashi Y, Akiyama H, Tsuji K, Onishi H, Machida Y (2009) Effect of penetration enhancers on transdermal delivery of propofol. Bio Pharm Bull 32:677–683

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nokhodchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ghafourian, T., Nokhodchi, A., Kaialy, W. (2015). Surfactants as Penetration Enhancers for Dermal and Transdermal Drug Delivery. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47039-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47039-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47038-1

  • Online ISBN: 978-3-662-47039-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics