Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 849 Accesses

Abstract

More and more studies have demonstrated the substantial impact of flexible side chains on the device performance of organic semiconductors. In this chapter, we present our research on isoindigo-based polymer FETs through careful analysis of the influences of side chains. Besides, donor symmetry and backbone curvature effects are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang C, Dong H, Hu W, Liu Y, Zhu D (2012) Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev 112:2208–2267

    Article  Google Scholar 

  2. Wang X-Y, Lin H-R, Lei T, Yang D-C, Zhuang F-D, Wang J-Y, Yuan S-C, Pei J (2013) Azaborine compounds for organic field-effect transistors: efficient synthesis, remarkable stability, and bn dipole interactions. Angew Chem Int Ed 52:3117–3120

    Article  Google Scholar 

  3. Ding L, Ying H-Z, Zhou Y, Lei T, Pei J (2010) Polycyclic imide derivatives: synthesis and effective tuning of lowest unoccupied molecular orbital levels through molecular engineering. Org Lett 12:5522–5525

    Article  Google Scholar 

  4. Biniek L, Fall S, Chochos CL, Anokhin DV, Ivanov DA, Leclerc N, Lévêque P, Heiser T (2010) Impact of the alkyl side chains on the optoelectronic properties of a series of photovoltaic low-band-gap copolymers. Macromolecules 43:9779–9786

    Article  Google Scholar 

  5. Boese R, Weiss H-C, Bläser D (1999) The melting point alternation in the short-chain n-alkanes: single-crystal X-ray analyses of propane at 30 K and of n-butane to n-nonane at 90 K. Angew Chem Int Ed 38:988–992

    Article  Google Scholar 

  6. Ding L, Li H-B, Lei T, Ying H-Z, Wang R-B, Zhou Y, Su Z-M, Pei J (2012) Alkylene-chain effect on microwire growth and crystal packing of π-moieties. Chem Mater 24:1944–1949

    Article  Google Scholar 

  7. Mei J, Graham KR, Stalder R, Reynolds JR (2010) Synthesis of isoindigo-based oligothiophenes for molecular bulk heterojunction solar cells. Org Lett 12:660–663

    Article  Google Scholar 

  8. McCulloch I, Heeney M, Bailey C, Genevicius K, MacDonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W, Chabinyc ML, Kline RJ, McGehee MD, Toney MF (2006) Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater 5:328–333

    Article  Google Scholar 

  9. Osaka I, Takimiya K, McCullough RD (2010) Benzobisthiazole-based semiconducting copolymers showing excellent environmental stability in high-humidity air. Adv Mater 22:4993–4997

    Article  Google Scholar 

  10. Ito Y, Virkar AA, Mannsfeld S, Oh JH, Toney M, Locklin J, Bao Z (2009) Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. J Am Chem Soc 131:9396–9404

    Article  Google Scholar 

  11. Lei T, Cao Y, Zhou X, Peng Y, Bian J, Pei J (2012) Systematic investigation of isoindigo-based polymeric field-effect transistors: design strategy and impact of polymer symmetry and backbone curvature. Chem Mater 24:1762–1770

    Article  Google Scholar 

  12. Höltje HD, Folkers G (2008) Molecular modeling: basic principles and applications. Wiley-VCH, New York

    Google Scholar 

  13. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    Article  Google Scholar 

  14. Stalder R, Mei J, Subbiah J, Grand C, Estrada LA, So F, Reynolds JR (2011) N-type conjugated polyisoindigos. Macromolecules 44:6303–6310

    Article  Google Scholar 

  15. Rieger R, Beckmann D, Mavrinskiy A, Kastler M, Müllen K (2010) Backbone curvature in polythiophenes. Chem Mater 22:5314–5318

    Article  Google Scholar 

  16. Osaka I, Abe T, Shinamura S, Miyazaki E, Takimiya K (2010) High-mobility semiconducting naphthodithiophene copolymers. J Am Chem Soc 132:5000–5001

    Article  Google Scholar 

  17. Sato M, Asami A, Maruyama G, Kosuge M, Nakayama J, Kumakura S, Fujihara T, Unoura K (2002) Synthesis and redox property of the binuclear Pt (II) complexes bridged by thieno[3,2-b]thiophenes. J Organomet Chem 654:56–65

    Article  Google Scholar 

  18. Li J, Bao Q, Li CM, Zhang W, Gong C, Chan-Park MB, Qin J, Ong BS (2010) Organic thin-film transistors processed from relatively nontoxic, environmentally friendlier solvents. Chem Mater 22:5747–5753

    Article  Google Scholar 

  19. Rieger R, Beckmann D, Pisula W, Steffen W, Kastler M, Müllen K (2010) Rational optimization of benzo[2,1-b;3,4-b′]dithiophene-containing polymers for organic field-effect transistors. Adv Mater 22:83–86

    Article  Google Scholar 

  20. Majewski LA, Kingsley JW, Balocco C, Song AM (2006) Influence of processing conditions on the stability of poly (3-hexylthiophene)-based field-effect transistors. Appl Phys Lett 88:222108

    Article  Google Scholar 

  21. Chang J-F, Clark J, Zhao N, Sirringhaus H, Breiby DW, Andreasen JW, Nielsen MM, Giles M, Heeney M, McCulloch I (2006) Molecular-weight dependence of interchain polaron delocalization and exciton bandwidth in high-mobility conjugated polymers. Phys Rev B 74:115318

    Article  Google Scholar 

  22. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  Google Scholar 

  23. Anthony JE (2008) The larger acenes: versatile organic semiconductors. Angew Chem Int Ed 47:452–483

    Article  Google Scholar 

  24. Takimiya K, Shinamura S, Osaka I, Miyazaki E (2011) Thienoacene-based organic semiconductors. Adv Mater 23:4347–4370

    Article  Google Scholar 

  25. He M, Li J, Tandia A, Sorensen M, Zhang F, Fong HH, Pozdin VA, Smilgies D-M, Malliaras GG (2010) Importance of C 2 symmetry for the device performance of a newly synthesized family of fused-ring thiophenes. Chem Mater 22:2770–2779

    Article  Google Scholar 

  26. Osaka I, Abe T, Shinamura S, Takimiya K (2011) Impact of isomeric structures on transistor performances in naphthodithiophene semiconducting polymers. J Am Chem Soc 133:6852–6860

    Article  Google Scholar 

  27. Li Y, Singh SP, Sonar P (2010) A high mobility p-type DPP-thieno[3,2-b]thiophene copolymer for organic thin-film transistors. Adv Mater 22:4862–4866

    Article  Google Scholar 

  28. Li Y, Sonar P, Singh SP, Soh MS, van Meurs M, Tan J (2011) Annealing-free high-mobility diketopyrrolopyrrole–quaterthiophene copolymer for solution-processed organic thin film transistors. J Am Chem Soc 133:2198–2204

    Article  Google Scholar 

  29. Ha JS, Kim KH, Choi DH (2011) 2,5-Bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4-(2H,5H)-dione-based donor–acceptor alternating copolymer bearing 5,5′-di(thiophen-2-yl)-2,2′-biselenophene exhibiting 1.5 cm2 V−1 s−1 hole mobility in thin-film transistors. J Am Chem Soc 133:10364–10367

    Article  Google Scholar 

  30. Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dotz F, Kastler M, Facchetti A (2009) A high-mobility electron-transporting polymer for printed transistors. Nature 457:679–686

    Article  Google Scholar 

  31. Bijleveld JC, Zoombelt AP, Mathijssen SGJ, Wienk MM, Turbiez M, de Leeuw DM, Janssen RAJ (2009) Poly(diketopyrrolopyrrole–terthiophene) for ambipolar logic and photovoltaics. J Am Chem Soc 131:16616–16617

    Article  Google Scholar 

  32. Sonar P, Singh SP, Li Y, Soh MS, Dodabalapur A (2010) A low-bandgap diketopyrrolopyrrole-benzothiadiazole-based copolymer for high-mobility ambipolar organic thin-film transistors. Adv Mater 22:5409–5413

    Article  Google Scholar 

  33. Bronstein H, Chen Z, Ashraf RS, Zhang W, Du J, Durrant JR, Shakya Tuladhar P, Song K, Watkins SE, Geerts Y, Wienk MM, Janssen RAJ, Anthopoulos T, Sirringhaus H, Heeney M, McCulloch I (2011) Thieno[3,2-b]thiophene–diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J Am Chem Soc 133:3272–3275

    Article  Google Scholar 

  34. Bürgi L, Turbiez M, Pfeiffer R, Bienewald F, Kirner H-J, Winnewisser C (2008) High-mobility ambipolar near-infrared light-emitting polymer field-effect transistors. Adv Mater 20:2217–2224

    Article  Google Scholar 

  35. Mei J, Kim DH, Ayzner AL, Toney MF, Bao Z (2011) Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J Am Chem Soc 133:20130–20133

    Article  Google Scholar 

  36. Lei T, Dou J-H, Pei J (2012) Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv Mater 24:6457–6461

    Article  Google Scholar 

  37. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L (2007) Charge transport in organic semiconductors. Chem Rev 107:926–952

    Article  Google Scholar 

  38. Tsao HN, Cho DM, Park I, Hansen MR, Mavrinskiy A, Yoon DY, Graf R, Pisula W, Spiess HW, Müllen K (2011) Ultrahigh mobility in polymer field-effect transistors by design. J Am Chem Soc 133:2605–2612

    Article  Google Scholar 

  39. Chen H, Guo Y, Yu G, Zhao Y, Zhang J, Gao D, Liu H, Liu Y (2012) Highly π-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv Mater 24:4618–4622

    Article  Google Scholar 

  40. Niedzialek D, Lemaur V, Dudenko D, Shu J, Hansen MR, Andreasen JW, Pisula W, Müllen K, Cornil J, Beljonne D (2013) Probing the relation between charge transport and supramolecular organization down to ångström resolution in a benzothiadiazole-cyclopentadithiophene copolymer. Adv Mater 25:1939–1947

    Article  Google Scholar 

  41. Letizia JA, Salata MR, Tribout CM, Facchetti A, Ratner MA, Marks TJ (2008) N-channel polymers by design: optimizing the interplay of solubilizing substituents, crystal packing, and field-effect transistor characteristics in polymeric bithiophene-imide semiconductors. J Am Chem Soc 130:9679–9694

    Article  Google Scholar 

  42. van Pham C, Burkhardt A, Shabana R, Cunningham DD, Mark HB, Zimmer H (1989) A convenient synthesis of 2,5-thienylene oligomers: some of their spectroscopic and electrochemical properties. Phosphorus Sulfur Silicon Relat Elem 46:153–168

    Google Scholar 

  43. Sotgiu G, Zambianchi M, Barbarella G, Botta C (2002) Synthesis and optical properties of soluble sexithiophenes with one central head-to-head junction. Tetrahedron 58:2245–2251

    Article  Google Scholar 

  44. Li Y, Li Z, Wang C, Li H, Lu H, Xu B, Tian W (2010) Novel low-bandgap oligothiophene-based donor-acceptor alternating conjugated copolymers: synthesis, properties, and photovoltaic applications. J Polym Sci Part A: Polym Chem 48:2765–2776

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Lei .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lei, T. (2015). Side Chain Effects and Design of Isoindigo-Based Polymers. In: Design, Synthesis, and Structure-Property Relationship Study of Polymer Field-Effect Transistors. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45667-5_2

Download citation

Publish with us

Policies and ethics