Skip to main content

Modification and Potential Applications of Organic–Inorganic Non-Siliceous Hybrid Materials

  • Chapter
  • First Online:
Mesoporous Organic-Inorganic Non-Siliceous Hybrid Materials

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 711 Accesses

Abstract

Applications of organic–inorganic non-siliceous hybrid materials are emerging. But the developments of mesoporous hybrid materials lag far behind the achievements in syntheses. More strictly, there has been no breakthrough yet in practical applications. However, vital commercial applications are in prospect owing to substantial studies on mesoporous non-siliceous hybrid materials, especially on their intrinsic characteristics and extended modification potential. As compared to general bulk analogues, mesoporous materials possess higher specific surface areas and larger porosities, making them more applicable in many fields. Owing to their extensive porosity, adjustable composition, and controllable structures, mesoporous non-siliceous hybrid materials have been developed as multifunctional materials to display versatile and excellent performances beyond the traditional use as catalysts and adsorbents, even contributing to the developments in the fields ranging from energy storage and conversion to medical diagnosis and therapy. The hybrid frameworks also demonstrate the capability of post-decoration for improved performances and extended potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A. Özgür Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi, Ultrahigh porosity in metal–organic frameworks. Science 329, 424–428 (2010)

    CAS  Google Scholar 

  2. Q.R. Fang, D.Q. Yuan, J. Sculley, W.G. Lu, H.C. Zhou, A novel MOF with mesoporous cages for kinetic trapping of hydrogen. Chem. Commun. 48, 254–256 (2012)

    CAS  Google Scholar 

  3. B. Mu, P.M. Schoenecker, K.S. Walton, Gas adsorption study on mesoporous metal–organic framework UMCM-1. J. Phys. Chem. C 114, 6464–6471 (2010)

    CAS  Google Scholar 

  4. L. Liu, Q.F. Deng, X.X. Hou, Z.Y. Yuan, User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture. J. Mater. Chem. 22, 15540–15548 (2012)

    CAS  Google Scholar 

  5. L. Liu, Q.F. Deng, T.Y. Ma, X.Z. Lin, X.X. Hou, Y.P. Liu, Z.Y. Yuan, Ordered mesoporous carbons: citric acid-catalyzed synthesis, nitrogen doping and CO2 capture. J. Mater. Chem. 21, 16001–16009 (2011)

    CAS  Google Scholar 

  6. R. Serna-Guerrero, E. Dána, A. Sayari, New insights into the interactions of CO2 with amine-functionalized silica. Ind. Eng. Chem. Res. 47, 9406–9412 (2008)

    CAS  Google Scholar 

  7. Z.X. Wu, N. Hao, G.K. Xiao, L.Y. Liu, P. Webley, D.Y. Zhao, One-pot generation of mesoporous carbon supported nanocrystalline calcium oxides capable of efficient CO2 capture over a wide range of temperatures. Phys. Chem. Chem. Phys. 13, 2495–2503 (2011)

    CAS  Google Scholar 

  8. T.Y. Ma, Z.Y. Yuan, Organic-additive-assisted synthesis of hierarchically meso-/macroporous titanium phosphonates. Eur. J. Inorg. Chem. 19, 2941–2948 (2010)

    Google Scholar 

  9. Y.P. Zhu, T.Z. Ren, Z.Y. Yuan, Mesoporous non-siliceous inorganic–organic hybrids: a promising platform for designing multifunctional materials. New J. Chem. 38, 1905–1922 (2014)

    CAS  Google Scholar 

  10. T.Y. Ma, X.Z. Lin, X.J. Zhang, Z.Y. Yuan, High surface area titanium phosphonate materials with hierarchical porosity for multi-phase adsorption. New J. Chem. 34, 1209–1216 (2010)

    CAS  Google Scholar 

  11. T.Y. Ma, X.Z. Lin, Z.Y. Yuan, Cubic mesoporous titanium phosphonates with multifunctionality. Chem. Eur. J. 16, 8487–8494 (2010)

    CAS  Google Scholar 

  12. G.P. Knowles, S.W. Delaney, A.L. Chaffee, Diethylenetriamine[propyl(silyl)]-functionalized (DT) mesoporous silicas as CO2 adsorbents. Ind. Eng. Chem. Res. 45, 2626–2633 (2006)

    CAS  Google Scholar 

  13. X.J. Wang, P.Z. Li, Y.F. Chen, Q. Zhang, H.C. Zhang, X.X. Chan, R. Ganguly, Y.X. Li, J.W. Jiang, Y.L. Zhao, A rationally designed nitrogen-rich metal–organic framework and its exceptionally high CO2 and H2 Uptake Capability. Sci. Report 3, 1–5 (2013)

    Google Scholar 

  14. L.F. Song, J. Zhang, L.X. Sun, F. Xu, F. Li, H.Z. Zhang, X.L. Si, C.L. Jiao, Z.B. Li, S. Liu, Y.L. Liu, H.Y. Zhou, D.L. Sun, Y. Du, Z. Cao, Z. Gabelica, Mesoporous metal–organic frameworks: design and applications. Energy Environ. Sci. 5, 7508–7520 (2012)

    CAS  Google Scholar 

  15. T.Y. Ma, X.Z. Lin, X.J. Zhang, Z.Y. Yuan, Hierarchical mesostructured titanium phosphonates with unusual uniform lines of macropores. Nanoscale 3, 1690–1696 (2011)

    CAS  Google Scholar 

  16. M.M. Maroto-Valer, Z. Tang, Y. Zhang, CO2 capture by activated and impregnated anthracites. Fuel Process. Technol. 86, 1487–1502 (2005)

    CAS  Google Scholar 

  17. T.Y. Ma, X.Z. Lin, Z.Y. Yuan, Periodic mesoporous titanium phosphonate hybrid materials. J. Mater. Chem. 20, 7406–7415 (2010)

    CAS  Google Scholar 

  18. K.Z. Hossain, L. Mercier, Intraframework metal ion adsorption in ligand-functionalized mesoporous silica. Adv. Mater. 14, 1053–1056 (2002)

    CAS  Google Scholar 

  19. T.Z. Ren, X.H. Zhu, T.Y. Ma, Z.Y. Yuan, Adsorption of methylene blue from aqueous solution by periodic mesoporous titanium phosphonate materials. Adsorpt. Sci. Technol. 31, 535–548 (2013)

    CAS  Google Scholar 

  20. J. Kim, R.J. Desch, S.W. Thiel, V.V. Guliants, N.G. Pinto, Energetics of biomolecule adsorption on mesostructured cellular foam silica. Micropor. Mesopor. Mater. 170, 95–104 (2013)

    CAS  Google Scholar 

  21. Y.P. Zhu, T.Y. Ma, Y.L. Liu, T.Z. Ren, Z.Y. Yuan, Metal phosphonate hybrid materials: from densely layered to hierarchically nanoporous structures. Inorg. Chem. Front. 1, 360–383 (2014)

    CAS  Google Scholar 

  22. F.N. Shi, L. Cunha-Silva, R.A.S. Ferreira, L. Mafra, T. Trindade, L.D. Carlos, F.A.A. Paz, J. Rocha, Interconvertable modular framework and layered lanthanide(III)-etidronic acid coordination polymers. J. Am. Chem. Soc. 130, 150–167 (2008)

    CAS  Google Scholar 

  23. Z.Y. Yuan, B.L. Su, Insights into hierarchically meso-macroporous structured materials. J. Mater. Chem. 16, 663–677 (2006)

    CAS  Google Scholar 

  24. T. Salesch, S. Bachmann, S. Brugger, R. Rabelo-Schaefer, K. Albert, S. Steinbrecher, E. Plies, A. Mehdi, C. Reyé, R.J.P. Corriu, E. Lindner, New inorganic-organic hybrid materials for HPLC separation obtained by direct synthesis in the presence of a surfactant. Adv. Funct. Mater. 13, 134–142 (2002)

    Google Scholar 

  25. T.Y. Ma, H. Li, A.N. Tang, Z.Y. Yuan, Ordered, mesoporous metal phosphonate materials with microporous crystalline walls for selective separation techniques. Small 7, 1827–1837 (2011)

    CAS  Google Scholar 

  26. M. Vasylyev, R. Neumann, Preparation, characterization, and catalytic aerobic oxidation by a vanadium phosphonate mesoporous material constructed from a dendritic tetraphosphonate. Chem. Mater. 18, 2781–2783 (2006)

    CAS  Google Scholar 

  27. M. Vasylyev, E.J. Wachtel, R. Popovitz-Biro, R. Neumann, Titanium phosphonate porous materials constructed from dendritic tetraphosphonates. Chem. Eur. J. 12, 3507–3514 (2006)

    CAS  Google Scholar 

  28. A. Clearfield, Unconventional metal organic frameworks: porous cross-linked phosphonates. Dalton Trans. 28(44), 6089–6102 (2008)

    Google Scholar 

  29. K.J. Gagnon, H.P. Perry, A. Clearfield, Conventional and unconventional metal–organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem. Rev. 112, 1034–1054 (2012)

    CAS  Google Scholar 

  30. H.L. Jiang, Y. Tatsu, Z.H. Lu, Q. Xu, Non-, micro-, and mesoporous metal–organic framework isomers: reversible transformation, fluorescence sensing, and large molecule separation. J. Am. Chem. Soc. 132, 5586–5587 (2010)

    CAS  Google Scholar 

  31. T.Y. Ma, X.J. Zhang, G.S. Shao, J.L. Cao, Z.Y. Yuan, Ordered macroporous titanium phosphonate materials: synthesis, photocatalytic activity, and heavy metal ion adsorption. J. Phys. Chem. C 112, 3090–3096 (2008)

    CAS  Google Scholar 

  32. T.Y. Ma, X.J. Zhang, Z.Y. Yuan, Hierarchically meso-/macroporous titanium tetraphosphonate materials: synthesis, photocatalytic activity and heavy metal ion adsorption. Micropor. Mesopor. Mater. 123, 234–242 (2009)

    CAS  Google Scholar 

  33. Y.P. Zhu, M. Li, Y.L. Liu, T.Z. Ren, Z.Y. Yuan, Carbon-doped ZnO hybridized homogeneously with graphitic carbon nitride nanocomposites for photocatalysis. J. Phys. Chem. C 118, 10963–10971 (2014)

    CAS  Google Scholar 

  34. T.Y. Ma, J.L. Cao, G.S. Shao, X.J. Zhang, Z.Y. Yuan, Hierarchically structured squama-like cerium-doped titania: synthesis, photoactivity, and catalytic CO oxidation. J. Phys. Chem. C 113, 16658–16667 (2009)

    CAS  Google Scholar 

  35. X.J. Zhang, T.Y. Ma, Z.Y. Yuan, Titania-phosphonate hybrid porous materials: preparation, photocatalytic activity and heavy metal ion adsorption. J. Mater. Chem. 18, 2003–2010 (2008)

    CAS  Google Scholar 

  36. Y.P. Zhu, T.Y. Ma, T.Z. Ren, J. Li, G.H. Du, Z.Y. Yuan, Highly dispersed photoactive zinc oxide nanoparticles on mesoporous phosphonated titania hybrid. Appl. Catal. B 156–157, 44–55 (2014)

    Google Scholar 

  37. L.M. Yang, G.Y. Fang, J. Ma, E. Ganz, S.S. Han, Band gap engineering of paradigm MOF-5. Cryst. Growth Des. 4, 2532–2541 (2014)

    Google Scholar 

  38. J.L. Wang, C. Wang, W. Lin, Metal–organic frameworks for light harvesting and photocatalysis. ACS Catal. 2, 2630–2640 (2012)

    CAS  Google Scholar 

  39. C.G. Silva, I. Luz, F.X.L. Xamena, A. Corma, H. García, Water stable Zr-benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chem. Eur. J. 16, 11133–11138 (2010)

    CAS  Google Scholar 

  40. C. Wang, Z. Xie, K.E. Krafft, W. Lin, Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133, 13445–13454 (2011)

    CAS  Google Scholar 

  41. D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu, Z. Li, Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal–organic frameworks. Chem. Eur. J. 19, 14279–14285 (2013)

    CAS  Google Scholar 

  42. A. Fateeva, P.A. Chater, C.P. Ireland, A.A. Tahir, Y.Z. Khimyak, P.V. Wiper, J.R. Darwent, M.J. Rosseinsky, A water-stable porphyrin-based metal–organic framework active for visible-light photocatalysis. Angew. Chem. Int. Ed. 51, 7440–7444 (2012)

    CAS  Google Scholar 

  43. K. Barthelet, D. Riou, M. Nogues, G. Férey, Synthesis, structure, and magnetic properties of two new vanadocarboxylates with three-dimensional hybrid frameworks. Inorg. Chem. 42, 1739–1743 (2003)

    CAS  Google Scholar 

  44. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Google Scholar 

  45. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–320 (2013)

    CAS  Google Scholar 

  46. T.Y. Ma, Y.S. Wei, T.Z. Ren, L. Liu, Q. Guo, Z.Y. Yuan, Hexagonal mesoporous titanium tetrasulfonates with large conjugated hybrid framework for photoelectric conversion. ACS Appl. Mater. Interfaces 2, 3563–3571 (2010)

    CAS  Google Scholar 

  47. K. Hanson, M.K. Brennaman, H. Luo, C.R.K. Glasson, J.J. Concepcion, W. Song, T.J. Meyer, Photostability of phosphonate-derivatized, Ru-II polypyridyl complexes on metal oxide surfaces. ACS Appl. Mater. Interfaces 4, 1462–1469 (2012)

    CAS  Google Scholar 

  48. T.P. Brewster, S.J. Konezny, S.W. Sheehan, L.A. Martini, C.A. Schmuttenmaer, V.S. Batista, R.H. Crabtree, Hydroxamate anchors for improved photoconversion in dye-sensitized solar cells. Inorg. Chem. 52, 6752–6764 (2013)

    CAS  Google Scholar 

  49. R. Luschtinetz, J. Frenzel, T. Milek, G. Seifert, Adsorption of phosphonic acid at the TiO2 anatase (101) and rutile (110) surfaces. J. Phys. Chem. C 113, 5730–5740 (2009)

    CAS  Google Scholar 

  50. K.R. Mulhern, A. Orchard, D.F. Watson, M.R. Detty, Influence of surface-attachment functionality on the aggregation, persistence, and electron-transfer reactivity of chalcogenorhodamine dyes on TiO2. Langmuir 28, 7071–7082 (2012)

    CAS  Google Scholar 

  51. K. Hanson, M.K. Brennaman, A. Ito, H. Luo, W. Song, K.A. Parker, R. Ghosh, M.R. Norris, C.R.K. Glasson, J.J. Concepcion, R. Lopez, T.J. Meyer, Structure-property relationships in phosphonate-derivatized, Ru-II polypyridyl dyes on metal oxide surfaces in an aqueous environment. J. Phys. Chem. C 116, 14837–14847 (2012)

    CAS  Google Scholar 

  52. D.G. Brown, P.A. Schauer, J. Borau-Garcia, B.R. Fancy, C.P. Berlinguette, Stabilization of ruthenium sensitizers to TiO2 surfaces through cooperative anchoring groups. J. Am. Chem. Soc. 135, 1692–1695 (2013)

    CAS  Google Scholar 

  53. S. Rühle, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells. ChemPhysChem 11, 2290–2304 (2010)

    Google Scholar 

  54. I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 128, 2385–2393 (2006)

    CAS  Google Scholar 

  55. P. Ardalan, T.P. Brennan, H. Lee, J.R. Bakke, I.K. Ding, M.D. McGehee, S.F. Bent, Effects of self-assembled monolayers on solid-state CdS quantum dot sensitized solar cells. ACS Nano 3, 1495–1504 (2011)

    Google Scholar 

  56. R.S. Dibbell, D.G. Youker, D.F. Watson, Excited-state electron transfer from CdS quantum dots to TiO2 nanoparticles via molecular linkers with phenylene bridges. J. Phys. Chem. C 113, 18643–18651 (2009)

    CAS  Google Scholar 

  57. R.S. Dibbell, D.F. Watson, Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO2 nanoparticles. J. Phys. Chem. C 113, 3139–3149 (2009)

    CAS  Google Scholar 

  58. Q. Li, R. He, J.O. Jensen, N.J. Bjerrum, Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem. Mater. 15, 4896–4915 (2003)

    CAS  Google Scholar 

  59. G.K.H. Shimizu, R. Vaidhyanathan, J.M. Taylor, Phosphonate and sulfonate metal organic frameworks. Chem. Soc. Rev. 38, 1430–1449 (2009)

    CAS  Google Scholar 

  60. J.M. Taylor, R.K. Mah, I.L. Moudrakovski, C.I. Ratcliffe, R. Vaidhyanathan, G.K.H. Shimizu, Facile proton conduction via ordered water molecules in a phosphonate metal–organic framework. J. Am. Chem. Soc. 132, 14055–14057 (2010)

    CAS  Google Scholar 

  61. S. Kim, K.W. Dawson, B.S. Gelfand, J.M. Taylor, G.K.H. Shimizu, Enhancing proton conduction in a metal–organic framework by isomorphous ligand replacement. J. Am. Chem. Soc. 135, 963–966 (2013)

    CAS  Google Scholar 

  62. X.Q. Liang, F. Zhang, W. Feng, X.Q. Zou, C.J. Zhao, H. Na, C. Liu, F.X. Sun, G.S. Zhu, From metal–organic framework (MOF) to MOF-polymer composite membrane: enhancement of low-humidity proton conductivity. Chem. Sci. 4, 983–992 (2013)

    CAS  Google Scholar 

  63. A. Bhaumik, S. Inagaki, Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. J. Am. Chem. Soc. 123, 691–696 (2001)

    CAS  Google Scholar 

  64. T.Y. Ma, L. Liu, Q.F. Deng, X.Z. Lin, Z.Y. Yuan, Increasing the H+ exchange capacity of porous titanium phosphonate materials by protecting defective P–OH groups. Chem. Common. 47, 6015–6017 (2011)

    CAS  Google Scholar 

  65. F. Costantino, A. Donnadio, M. Casciola, Survey on the phase transitions and their effect on the ion-exchange and on the proton-conduction properties of a flexible and robust Zr phosphonate coordination polymer. Inorg. Chem. 51, 6992–7000 (2012)

    CAS  Google Scholar 

  66. T.L. Kinnibrugh, A.A. Ayi, V.I. Bakhmutov, J. Zoń, A. Clearfield, Probing structural changes in a phosphonate-based metal–organic framework exhibiting reversible dehydration. Cryst. Growth Des. 13, 2973–2981 (2013)

    CAS  Google Scholar 

  67. M. Sadakiyo, T. Yamada, H. Kitagawa, Rational designs for highly proton-conductive metal–organic frameworks. J. Am. Chem. Soc. 131, 9906–9907 (2009)

    CAS  Google Scholar 

  68. E. Pardo, C. Train, G. Gontard, K. Boubekeur, O. Fabelo, H. Liu, B. Dkhil, F. Lloret, K. Nakagawa, H. Tokoro, S. Ohkoshi, M. Verdaguer, High proton conduction in a chiral ferromagnetic metal-organic quartz-like framework. J. Am. Chem. Soc. 133, 15328–15331 (2011)

    CAS  Google Scholar 

  69. A. Shigematsu, T. Yamada, H. Kitagawa, Wide control of proton conductivity in porous coordination polymers. J. Am. Chem. Soc. 133, 2034–2036 (2011)

    CAS  Google Scholar 

  70. M.G. Goesten, J. Juan-Alcañiz, E.V. Ramos-Fernandez, K. Sai Sankar Gupta, E. Stavitski, H. Bekkum, J. Gascon, F. Kapteijn, Sulfation of metal–organic frameworks: opportunities for acid catalysis and proton conductivity. J. Catal. 281, 177–187 (2011)

    CAS  Google Scholar 

  71. V.G. Ponomareva, K.A. Kovalenko, A.P. Chupakhin, D.N. Dybtsev, E.S. Shutova, V.P. Fedin, Imparting high proton conductivity to a metal–organic framework material by controlled acid impregnation. J. Am. Chem. Soc. 134, 15640–15643 (2012)

    CAS  Google Scholar 

  72. J.K. Sun, Q. Xu, Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ. Sci. 7, 2071–2100 (2014)

    CAS  Google Scholar 

  73. P. Zhang, F. Sun, Z.H. Xiang, Z.G. Shen, J. Yun, D.P. Cao, ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 7, 442–450 (2014)

    CAS  Google Scholar 

  74. F. Afsahi, H. Vinh-Thang, S. Mikhailenko, S. Kaliaguine, Electrocatalyst synthesized from metal organic frameworks. J. Power Sources 239, 415–423 (2013)

    CAS  Google Scholar 

  75. A. Dutta, A.K. Patra, H. Uyama, A. Bhaumik, Template-free synthesis of a porous organic-inorganic hybrid tin(IV) phosphonate and its high catalytic activity for esterification of free fatty acids. ACS Appl. Mater. Interfaces 5, 9913–9917 (2013)

    CAS  Google Scholar 

  76. M. Pramanik, A. Bhaumik, Organic-inorganic hybrid supermicroporous iron(III) phosphonate nanoparticles as an efficient catalyst for the synthesis of biofuels. Chem. Eur. J. 19, 8507–8514 (2013)

    CAS  Google Scholar 

  77. X.Z. Lin, Z.Y. Yuan, Synthesis of mesoporous zirconium organophosphonate solid-acid catalysts. Eur. J. Inorg. Chem. 2012(16), 2661–2664 (2012)

    CAS  Google Scholar 

  78. M. Pramanik, M. Nandi, H. Uyama, A. Bhaumik, Organic-inorganic hybrid tinphosphonate material with mesoscopic void spaces: an excellent catalyst for the radical polymerization of styrene. Catal. Sci. Technol. 2, 613–620 (2012)

    CAS  Google Scholar 

  79. A. Dutta, M. Pramanik, A.K. Patra, M. Nandi, H. Uyama, A. Bhaumik, Hybrid porous tin(IV) phosphonate: an efficient catalyst for adipic acid synthesis and a very good adsorbent for CO2 uptake. Chem. Commun. 48, 6738–6740 (2012)

    CAS  Google Scholar 

  80. A.A.G. Shaikh, S. Sivaram, Organic carbonates. Chem. Rev. 96, 951–976 (1996)

    CAS  Google Scholar 

  81. J.L. Song, Z.F. Zhang, S.Q. Hu, T.B. Wu, T. Jiang, B.X. Han, MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chem. 11, 1031–1036 (2009)

    CAS  Google Scholar 

  82. D.A. Yang, H.Y. Cho, J. Kim, S.T. Yang, W.S. Ahn, CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ. Sci. 5, 6465–6473 (2012)

    CAS  Google Scholar 

  83. Y.W. Ren, Y.C. Shi, J.X. Chen, S.R. Yang, C.R. Qi, H.F. Jiang, Ni(salphen)-based metal–organic framework for the synthesis of cyclic carbonates by cycloaddition of CO2 to epoxides. RSC Adv. 3, 2167–2170 (2013)

    CAS  Google Scholar 

  84. D.W. Feng, W.C. Chung, Z.W. Wei, Z.Y. Gu, H.L. Jiang, Y.P. Chen, D.J. Darensbourg, H.C. Zhou, Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination. J. Am. Chem. Soc. 135, 17105–17110 (2013)

    CAS  Google Scholar 

  85. J. Kim, S.N. Kim, H.G. Jang, G. Seo, W.S. Ahn, CO2 cycloaddition of styrene oxide over MOF catalysts. Appl. Catal. A 453, 175–180 (2013)

    CAS  Google Scholar 

  86. Y.P. Zhu, Y.L. Liu, T.Z. Ren, Z.Y. Yuan, Mesoporous nickel phosphate/phosphonate hybrid microspheres with excellent performance for adsorption and catalysis. RSC Adv. 4, 16018–16021 (2014)

    CAS  Google Scholar 

  87. Y.P. Zhu, T.Z. Ren, Z.Y. Yuan, Hollow cobalt phosphonate spherical hybrid as high-efficiency Fenton catalyst. Nanoscale 6, 11395–11402 (2014)

    CAS  Google Scholar 

  88. Y.K. Hwang, D.Y. Hong, J.S. Chang, S.H. Jhung, Y.K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Férey, Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew. Chem. Int. Ed. 47, 4144–4148 (2008)

    CAS  Google Scholar 

  89. J. Gascon, U. Aktay, M.D. Hernandez-Alonso, G.P.M. van Klink, F. Kapteijn, Amino-based metal–organic frameworks as stable, highly active basic catalysts. J. Catal. 261, 75–87 (2009)

    CAS  Google Scholar 

  90. N.V. Maksimchuk, K.A. Kovalenko, V.P. Fedinm, O.A. Kholdeeva, Heterogeneous selective oxidation of alkenes to alpha, beta-unsaturated ketones over coordination polymer MIL-101. Adv. Synth. Catal. 352, 2943–2948 (2010)

    CAS  Google Scholar 

  91. T.Y. Ma, Z.Y. Yuan, Functionalized periodic mesoporous titanium phosphonate monoliths with large ion exchange capacity. Chem. Commun. 46, 2325–2327 (2010)

    CAS  Google Scholar 

  92. T.Y. Ma, Z.Y. Yuan, Periodic mesoporous titanium phosphonate spheres for high dispersion of CuO nanoparticles. Dalton Trans. 39, 9570–9578 (2010)

    CAS  Google Scholar 

  93. J.L. Cao, Y. Wang, X.L. Yu, S.R. Wang, S.H. Wu, Z.Y. Yuan, Mesoporous CuO-Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation. Appl. Catal. B 26, 26–34 (2008)

    Google Scholar 

  94. J.L. Cao, G.S. Shao, Y. Wang, Y.P. Liu, Z.Y. Yuan, CuO catalysts supported on attapulgite clay for low-temperature CO oxidation. Catal. Commun. 9, 2555–2559 (2008)

    CAS  Google Scholar 

  95. H.P. Perry, J. Law, J. Zon, A. Clearfield, Porous zirconium and tin phosphonates incorporating 2,2′-bipyridine as supports for palladium nanoparticles. Micropor. Mesopor. Mater. 149, 172–180 (2012)

    CAS  Google Scholar 

  96. X.Y. Liu, A.Q. Wang, X.F. Yang, T. Zhang, C.Y. Mou, D.S. Su, J. Li, Synthesis of thermally stable and highly active bimetallic Au-Ag nanoparticles on inert supports. Chem. Mater. 21, 410–418 (2009)

    CAS  Google Scholar 

  97. J. Canivet, S. Aguado, Y. Schuurman, D. Farrusseng, MOF-supported selective ethylene dimerization single-site catalysts through one-pot postsynthetic modification. J. Am. Chem. Soc. 135, 4195–4198 (2013)

    CAS  Google Scholar 

  98. F. Schroeder, D. Esken, M. Cokoja, M.W.E. van den Berg, O.I. Lebedev, G. Van Tendeloo, B. Walaszek, G. Buntkowsky, H.H. Limbach, B. Chaudret, R.A. Fischer, Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: a solid-state reference system for surfactant-stabilized ruthenium colloids. J. Am. Chem. Soc. 130, 6119–6130 (2008)

    CAS  Google Scholar 

  99. M. Meilikhov, K. Yusenko, D. Esken, S. Turner, G. Van Tendeloo, R.A. Fischer, Metals@MOFs loading MOFs with metal nanoparticles for hybrid functions. Eur. J. Inorg. Chem. 2010, 3701–3714 (2010)

    Google Scholar 

  100. A. Henschel, K. Gedrich, R. Kraehnert, S. Kaskel, Catalytic properties of MIL-101. Chem. Commun. 2008, 4192–4194 (2008)

    Google Scholar 

  101. Y. Pan, B. Yuan, Y. Li, D. He, Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal–organic framework. Chem. Commun. 46, 2280–2282 (2010)

    CAS  Google Scholar 

  102. H. Liu, Y. Liu, Y. Li, Z. Tang, H. Jiang, Metal–organic framework supported gold nanoparticles as a highly active heterogeneous catalyst for aerobic oxidation of alcohols. J. Phys. Chem. C 114, 13362–13369 (2010)

    CAS  Google Scholar 

  103. Y.K. Park, S.B. Choi, H.J. Nam, D.Y. Jung, H.C. Ahn, K. Choi, H. Furukawad, J. Kim, Catalytic nickel nanoparticles embedded in a mesoporous metal–organic framework. Chem. Commun. 46, 3086–3088 (2010)

    CAS  Google Scholar 

  104. S. Hudson, J. Cooney, E. Magner, Proteins in mesoporous silicates. Angew. Chem. Int. Ed. 47, 8582–8594 (2008)

    CAS  Google Scholar 

  105. V. Lykourinou, Y. Chen, X.S. Wang, L. Meng, T. Hoang, L.J. Ming, R.L. Musselman, S.Q. Ma, Immobilization of MP-11 into a mesoporous metal–organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis. J. Am. Chem. Soc. 133, 10382–10385 (2011)

    CAS  Google Scholar 

  106. X. Shi, J. Liu, C.M. Li, Q.H. Yang, Pore-size tunable mesoporous zirconium organophosphonates with chiral (L)-proline for enzyme adsorption. Inorg. Chem. 46, 7944–7952 (2007)

    CAS  Google Scholar 

  107. T.Y. Ma, X.J. Zhang, Z.Y. Yuan, Hierarchical meso-/macroporous aluminum phosphonate hybrid materials as multifunctional adsorbents. J. Phys. Chem. C 113, 12854–12862 (2009)

    CAS  Google Scholar 

  108. Y.P. Zhu, Y.L. Liu, T.Z. Ren, Z.Y. Yuan, Hollow manganese phosphonate microspheres with hierarchical porosity for efficient adsorption and separation. Nanoscale 6, 6627–6636 (2014)

    CAS  Google Scholar 

  109. P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006)

    CAS  Google Scholar 

  110. P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.S. Chang, Y.K. Hwang, V. Marsaud, P.N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, R. Gref, Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172–178 (2010)

    CAS  Google Scholar 

  111. X. Shi, J.P. Li, Y. Tang, Q.H. Yang, pH-Sensitive mesoporous zirconium diphosphonates for controllable colon-targeted delivery. J. Mater. Chem. 20, 6495–6504 (2010)

    CAS  Google Scholar 

  112. Y. Tang, Y.B. Ren, X. Shi, Bifunctional mesoporous zirconium phosphonates for delivery of nucleic acids. Inorg. Chem. 52, 1388–1397 (2013)

    CAS  Google Scholar 

  113. K.M.L. Taylor-Pashow, J.D. Rocca, Z. Xie, S. Tran, W. Lin, Postsynthetic modifications of iron-carboxylate nanoscale metal–organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 131, 14261–14263 (2009)

    CAS  Google Scholar 

  114. W.T. Al-Jamal, K. Kostarelos, Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res. 44, 1094–1104 (2011)

    CAS  Google Scholar 

  115. Y. Namiki, T. Fuchigami, N. Tada, R. Kawamura, S. Matsunuma, Y. Kitamoto, M. Nakagawa, Nanomedicine for cancer: lipid-based nanostructures for drug delivery and Monitoring. Acc. Chem. Res. 44, 1080–1093 (2011)

    CAS  Google Scholar 

  116. C. Wang, D.M. Liu, W.B. Lin, Metal–organic frameworks as a tunable platform for designing functional molecular materials. J. Am. Chem. Soc. 135, 13222–13234 (2013)

    CAS  Google Scholar 

  117. A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)

    CAS  Google Scholar 

  118. E. Duguet, S. Vasseur, S. Mornet, J.M. Devoiselle, Magnetic nanoparticles and their applications in medicine. Nanomedicine 1, 157–168 (2006)

    CAS  Google Scholar 

  119. L. Lartigue, C. Innocenti, T. Kalaivani, A. Awwad, D.M. Sanchez, Y. Guari, J. Larionova, C. Guerin, J.L.G. Montero, V. Barragan-Montero, P. Arosio, A. Lascialfari, D. Gatteschi, C. Sangregorio, Water-dispersible sugar-coated iron oxide nanoparticles. an evaluation of their relaxometric and magnetic hyperthermia properties. J. Am. Chem. Soc. 133, 10459–10472 (2011)

    CAS  Google Scholar 

  120. H. Dong, J. Huang, R.R. Koepsel, P. Ye, A.J. Russell, K. Matyjaszewski, Recyclable antibacterial magnetic nanoparticles grafted with quaternized poly(2-(dimethylamino)ethyl methacrylate) brushes. Biomacromolecules 12, 1305–1311 (2011)

    CAS  Google Scholar 

  121. C. Tudisco, V. Oliveri, M. Cantarella, G. Vecchio, G.G. Condorelli, Cyclodextrin anchoring on magnetic Fe3O4 nanoparticles modified with phosphonic linkers. Eur. J. Inorg. Chem. 32, 5323–5331 (2012)

    Google Scholar 

  122. H.K. Chang, F.N. Ishikawa, R. Zhang, R. Datar, R.J. Cote, M.E. Thompson, C.W. Zhou, Rapid, label-free, electrical whole blood bioassay based on nanobiosensor systems. ACS Nano 5, 9883–9891 (2011)

    CAS  Google Scholar 

  123. K. Wang, Z. Tang, C.J. Yang, Y. Kim, X. Fang, W. Li, Y. Wu, C.D. Medley, Z. Cao, J. Li, P. Colon, H. Lin, W. Tan, Molecular engineering of DNA: molecular beacons. Angew. Chem. Int. Ed. 48, 856–870 (2009)

    CAS  Google Scholar 

  124. K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, K.M. Shakesheff, Polymeric systems for controlled drug release. Chem. Rev. 99, 3181–3198 (1999)

    CAS  Google Scholar 

  125. H. Li, T.Y. Ma, D.M. Kong, Z.Y. Yuan, Mesoporous phosphonate-TiO2 nanoparticles for simultaneous bioresponsive sensing and controlled drug release. Analyst 4, 1084–1090 (2013)

    Google Scholar 

  126. E.Z. Lee, Y.S. Jun, W.H. Hong, A. Thomas, M.M. Jin, Cubic mesoporous graphitic carbon(IV) nitride: an all-in-one chemosensor for selective optical sensing of metal ions. Angew. Chem. Int. Ed. 49, 9706–9710 (2010)

    CAS  Google Scholar 

  127. Y.P. Zhu, T.Y. Ma, T.Z. Ren, Z.Y. Yuan, Mesoporous cerium phosphonate nanostructured hybrid spheres as label-free Hg2+ fluorescent probes. ACS Appl. Mater. Interfaces 6, 16344–16351 (2014)

    CAS  Google Scholar 

  128. B. Chen, L. Wang, F. Zapata, G. Qian, E.B. Lobkovsky, A luminescent microporous metal–organic framework for the recognition and sensing of anions. J. Am. Chem. Soc. 130, 6718–6719 (2008)

    CAS  Google Scholar 

  129. X. Zhu, H. Zheng, X. Wei, Z. Lin, L. Guo, B. Qiu, G. Chen, Metal–organic framework (MOF): a novel sensing platform for biomolecules. Chem. Commun. 49, 1276–1278 (2013)

    CAS  Google Scholar 

  130. F. Luo, S.R. Batten, Metal–organic framework (MOF): lanthanide(III)-doped approach for luminescence modulation and luminescent sensing. Dalton Trans. 39, 4485–4488 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Pei Zhu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Zhu, YP., Yuan, ZY. (2015). Modification and Potential Applications of Organic–Inorganic Non-Siliceous Hybrid Materials. In: Mesoporous Organic-Inorganic Non-Siliceous Hybrid Materials. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45634-7_5

Download citation

Publish with us

Policies and ethics