Skip to main content
  • 2650 Accesses

Abstract

In this chapter, we introduce a special non-contact scanning probe based current sensing technique: scanning conductive torsion mode microscopy (SCTMM), which allows for simultaneous topography and electrical current mapping on solid samples. Due to the low interacting force between the probe and sample surface, this new technique is particularly indicated for and usually applied to measurements on soft materials and fragile structures. We first describe the working principle and discuss the advantages of the technique and its limitations. We also review recent applications of this technique, including studies of structure-properties relationship, local conductivity of nanopillar arrays, electropolymerization of conjugated polymers, and molecular orientation of self-assembly structures. In the end, we discuss some potential improvements of future scanning probe based current sensing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sessolo M, Bolink HJ (2011) Hybrid organic–inorganic light-emitting diodes. Adv Mater 23(16):1829–1845

    Article  CAS  Google Scholar 

  2. Xu T, Qiao Q (2011) Conjugated polymer-inorganic semiconductor hybrid solar cells. Energy Environ Sci 4(8):2700–2720

    Article  CAS  Google Scholar 

  3. Baeg K-J, Binda M, Natali D, Caironi M, Noh Y-Y (2013) Organic light detectors: photodiodes and phototransistors. Adv Mater 25(31):4267–4295

    Article  CAS  Google Scholar 

  4. Ameri T, Khoram P, Min J, Brabec CJ (2013) Organic ternary solar cells: a review. Adv Mater 25(31):4245–4266

    Article  CAS  Google Scholar 

  5. Kelley TW, Granstrom E, Frisbie CD (1999) Conducting probe atomic force microscopy: a characterization tool for molecular electronics. Adv Mater 11(3):261–264

    Article  CAS  Google Scholar 

  6. Loiacono MJ, Granstrom EL, Frisbie CD (1998) Investigation of charge transport in thin, doped sexithiophene crystals by conducting probe atomic force microscopy. J Phys Chem B 102(10):1679–1688

    Article  CAS  Google Scholar 

  7. Zhu J, Lu L, Zeng K (2013) Nanoscale mapping of Lithium-Ion diffusion in a cathode within an all-solid-state Lithium-Ion battery by advanced scanning probe microscopy techniques. ACS Nano 7(2):1666–1675

    Article  CAS  Google Scholar 

  8. Hou J, Rouxel B, Qin W, Nonnenmann SS, Bonnell DA (2013) Tip loading effects on AFM-based transport measurements of metal–oxide interfaces. Nanotechnology 24(39):395703

    Article  Google Scholar 

  9. Yang H, Shin TJ, Ling M-M, Cho K, Ryu CY, Bao Z (2005) Conducting AFM and 2D GIXD studies on pentacene thin films. J Am Chem Soc 127(33):11542–11543

    Article  CAS  Google Scholar 

  10. Hendriksen BLM, Martin F, Qi Y, Mauldin C, Vukmirovic N, Ren J, Wormeester H, Katan AJ, Altoe V, Aloni S, Fréchet JMJ, Wang L-W, Salmeron M (2011) Electrical transport properties of oligothiophene-based molecular films studied by current sensing atomic force microscopy. Nano Lett 11(10):4107–4112

    Article  CAS  Google Scholar 

  11. Jean-Christophe B, Wibren DO, Laurence L, Dirk V, Jean M (2013) The importance of bridging points for charge transport in webs of conjugated polymer nanofibers. Adv Funct Mater 23(7):862–869

    Article  Google Scholar 

  12. Sun L, Wang J, Bonaccurso E (2010) Nanoelectronic properties of a model system and of a conjugated polymer: a study by Kelvin probe force microscopy and scanning conductive torsion mode microscopy. J Phys Chem C 114(15):7161–7168

    Article  CAS  Google Scholar 

  13. Sun L (2010) Nanoscopic studies of conjugated polymer blends by (electric) scanning probe microscopy. Dissertation, Johannes Gutenberg-Universität

    Google Scholar 

  14. Harris P, Huang L, Su C (2010) Electrical testing of soft delicate samples using Torsional Resonance Mode and TUNA. Application note, Bruker Corporation

    Google Scholar 

  15. Vetushka A, Itoh T, Nakanishi Y, Fejfar A, Nonomura S, Ledinsky M, Kocka J (2012) Conductive atomic force microscopy on carbon nanowalls. J Non Cryst Solids 358(17):2545–2547

    Article  CAS  Google Scholar 

  16. Dang X-D, Dante M, Nguyen T-Q (2008) Morphology and conductivity modification of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films induced by conductive atomic force microscopy measurements. Appl Phys Lett 93(24):241911

    Article  Google Scholar 

  17. Li C, Stephen M, Pittenger, B, Mednick, A, Michele G, Nguyen, T-Q (2011) Simultaneous electrical and mechanical property mapping at the nanoscale with PeakForce TUNA. Application note, Bruker Corporation

    Google Scholar 

  18. Huang L, Su C (2004) A torsional resonance mode AFM for in-plane tip surface interactions. Ultramicroscopy 100(3–4):277–285

    Article  CAS  Google Scholar 

  19. Kasai T, Bhushan B, Huang L, Su C (2004) Topography and phase imaging using the torsional resonance mode. Nanotechnology 15(7):731–742

    Article  CAS  Google Scholar 

  20. Berger R, Butt HJ, Retschke MB, Weber SAL (2009) Electrical modes in scanning probe microscopy. Macromol Rapid Commun 30(14):1167–1178

    Article  CAS  Google Scholar 

  21. Binnig G, Quate CF, Gerber C (1986) Atomic force microscopy. Phys Rev Lett 56(9):930–933

    Article  CAS  Google Scholar 

  22. Binnig G, Rohrer H (1982) Scanning tunneling microscopy. Helv Phys Acta 55(6):726–735

    CAS  Google Scholar 

  23. Berger R, Domanski AL, Weber SAL (2013) Electrical characterization of organic solar cell materials based on scanning force microscopy. Eur Polym J 49(8):1907–1915

    Article  CAS  Google Scholar 

  24. Musumeci C, Hutchison JA, Samori P (2013) Controlling the morphology of conductive PEDOT by in situ electropolymerization, from thin films to nanowires with variable electrical properties. Nanoscale 5(17):7756–7761

    Article  CAS  Google Scholar 

  25. Musumeci C, Rosnes MH, Giannazzo F, Symes MD, Cronin L, Pignataro B (2011) Smart high-κ nanodielectrics using solid supported polyoxometalate-rich nanostructures. ACS Nano 5(12):9992–9999

    Article  CAS  Google Scholar 

  26. Weber SAL, Berger R (2013) Electrical tip-sample contact in scanning conductive torsion mode. Appl Phys Lett 102(16):163105

    Article  Google Scholar 

  27. Weber SAL, Haberkorn N, Theato P, Berger R (2010) Mapping of local conductivity variations on fragile nanopillar arrays by scanning conductive torsion mode microscopy. Nano Lett 10(4):1194–1197

    Article  CAS  Google Scholar 

  28. Su C, Huang L, Prater C, Bhushan B (2007) Torsional resonance microscopy and its applications. In: Bhushan B, Kawata S, Fuchs H (eds) Applied scanning probe methods series, Series V: nanoscience and technology. Springer, Berlin/Heidelberg, pp 113–148

    Google Scholar 

  29. Yurtsever A, Gigler AM, Dietz C, Stark RW (2008) Frequency modulated torsional resonance mode atomic force microscopy on polymers. Appl Phys Lett 92(14):143103

    Article  Google Scholar 

  30. Yurtsever A, Gigler AM, Stark RW (2009) Amplitude and frequency modulation torsional resonance mode atomic force microscopy of a mineral surface. Ultramicroscopy 109(3):275–279

    Article  CAS  Google Scholar 

  31. Rabe U, Kopycinska M, Hirsekorn S, Arnold W (2002) Evaluation of the contact resonance frequencies in atomic force microscopy as a method for surface characterization (invited). Ultrasonics 40(1–8):49–54

    Article  CAS  Google Scholar 

  32. Wang J, Sun L, Mpoukouvalas K, Fassbender B, Bonaccurso E, Brunklaus G, Muehlebach A, Rime F, Butt H, Wegner G (2009) Facile synthesis of spherical polyelectrolyte brushes as carriers for conducting polymers to be used in plastic electronics. Macromol Chem Phys 210(18):1504–1509

    Article  CAS  Google Scholar 

  33. Wang J, Sun L, Mpoukouvalas K, Lienkamp K, Lieberwirth I, Fassbender B, Bonaccurso E, Brunklaus G, Muehlebach A, Beierlein T, Tilch R, Butt H, Wegner G (2009) Construction of redispersible polypyrrole core-shell nanoparticles for application in polymer electronics. Adv Mater 21(10–11):1137–1141

    Article  CAS  Google Scholar 

  34. Cornil J, Beljonne D, Calbert JP, Brédas JL (2001) Interchain interactions in organic π-conjugated materials: impact on electronic structure, optical response, and charge transport. Adv Mater 13(14):1053–1067

    Article  CAS  Google Scholar 

  35. Pingree LSC, Reid OG, Ginger DS (2009) Scanning probe microscopy: electrical scanning probe microscopy on active organic electronic devices. Adv Mater 21(1):19–28

    Article  CAS  Google Scholar 

  36. Sun L, Wang J, Butt H-J, Bonaccurso E (2011) Influence of relative humidity on the nanoscopic topography and dielectric constant of thin films of PPy:PSS. Small 7(7):950–956

    Article  CAS  Google Scholar 

  37. Yang X, Loos J (2007) Toward high-performance polymer solar cells: the importance of morphology control. Macromolecules 40(5):1353–1362

    Article  CAS  Google Scholar 

  38. Haberkorn N, Lechmann MC, Sohn BH, Char K, Gutmann JS, Theato P (2009) Templated organic and hybrid materials for optoelectronic applications. Macromol Rapid Commun 30(14):1146–1166

    Article  CAS  Google Scholar 

  39. Jørgensen M, Norrman K, Krebs FC (2008) Stability/degradation of polymer solar cells. Solar Energy Mater Solar Cells 92(7):686–714

    Article  Google Scholar 

  40. Moons E (2002) Conjugated polymer blends: linking film morphology to performance of light emitting diodes and photodiodes. J Phys Condens Matter 14(47):12235

    Article  CAS  Google Scholar 

  41. Gao W, Sattayasamitsathit S, Uygun A, Pei A, Ponedal A, Wang J (2012) Polymer-based tubular microbots: role of composition and preparation. Nanoscale 4(7):2447–2453

    Article  CAS  Google Scholar 

  42. Branzoi F, Branzoi V, Musina A (2013) Coatings based on conducting polymers and functionalized carbon nanotubes obtained by electropolymerization. Prog Org Coat 76(4):632–638

    Google Scholar 

  43. Sarac AS, Ozgul SE, Gencturk A, Schulz B, Gilsing HD, Faltz H (2010) Morphological and impedance studies on electropolymerized 3,4-(2,2-dibenzylpropylenedioxy)thiophene nanostructures on micron sized single carbon fiber. Prog Org Coat 69(4):527–533

    Article  CAS  Google Scholar 

  44. Miras HN, Yan J, Long D-L, Cronin L (2012) Engineering polyoxometalates with emergent properties. Chem Soc Rev 41(22):7403–7430

    Google Scholar 

  45. Rosnes MH, Musumeci C, Pradeep CP, Mathieson JS, Long D-L, Song Y-F, Pignataro B, Cogdell R, Cronin L (2010) Assembly of modular asymmetric organic–inorganic polyoxometalate hybrids into anisotropic nanostructures. J Am Chem Soc 132(44):15490–15492

    Article  CAS  Google Scholar 

  46. Loos J (2005) The art of SPM: scanning probe microscopy in materials science. Adv Mater 17(15):1821–1833

    Article  CAS  Google Scholar 

  47. Yurtsever A, Gigler AM, Macias E, Stark RW (2007) Response of a laterally vibrating nanotip to surface forces. Appl Phys Lett 91(25):253120

    Article  Google Scholar 

  48. Desbief S, Hergue N, Douheret O, Surin M, Dubois P, Geerts Y, Lazzaroni R, Leclere P (2012) Nanoscale investigation of the electrical properties in semiconductor polymer-carbon nanotube hybrid materials. Nanoscale 4(8):2705–2712

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sun, L., Bonaccurso, E. (2015). Scanning Conductive Torsion Mode Microscopy. In: Kumar, C.S.S.R. (eds) Surface Science Tools for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44551-8_6

Download citation

Publish with us

Policies and ethics