Skip to main content

Photosynthesis and Leaf Senescence as Determinants of Plant Productivity

  • Chapter
  • First Online:
Biotechnological Approaches to Barley Improvement

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 69))

Abstract

The productivity of crop plants is directly related to net photosynthesis over the growing season. For example, there is a direct link between the duration of flag leaf photosynthesis and cereal grain yields. The optimisation of electron transport, carbon assimilation and assimilate production is important at all stages of leaf development, not least during senescence when chloroplasts are dismantled and photosynthetic proteins are recycled for vegetative or reproductive development and in particular for grain filling. The energy-producing reactions of the thylakoid membranes are closely linked to the energy-utilising reactions of metabolism. Imbalances in these processes favour an enhanced production of reactive oxygen species (ROS) that may act as signals leading to changes in nuclear gene expression. The sensing and signalling functions of chloroplasts may change during the breakdown of stromal and thylakoid membrane components and may vary between species and cultivars which use different strategies for dismantling of the photosynthetic apparatus during senescence. A knowledge of how chloroplast to nucleus signalling is altered during senescence, particularly in relation to redox and hormone signalling pathways, will provide novel insights that can be incorporated into breeding strategies aimed at enhancing productivity by prolonging the lifespan of leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbink TEM, Peart JR, Mos TNM, Baulcombe DC, Bol JF, Linthorst HJM (2002) Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem II enhances virus replication in plants. Virology 295:307–319

    CAS  PubMed  Google Scholar 

  • Anderson JM (1999) Insights into the consequence of grana stacking of thylakoid membranes in vascular plants: a personal perspective. Aust J Plant Physiol 26:625–639

    CAS  Google Scholar 

  • Anderson JM, Andersson B (1981) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Proc Aust Biochem Soc 14:124

    Google Scholar 

  • Anderson JM, Andersson B (1982) The architecture of photosynthetic membranes – lateral and transverse organization. Trends Biochem Sci 7:288–292

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Physiol Plant Mol Biol 55:373–399

    CAS  Google Scholar 

  • Austin RB, Bingham J, Blackwell RD, Evans LT, Ford MA, Morgan CL, Taylor M (1980) Genetic improvements in winter wheat yields since 1900 and associated physiological changes. J Agric Sci 94:675–689

    Google Scholar 

  • Baena-Gonzalez E (2010) Energy signaling in the regulation of gene expression during stress. Mol Plant 3:300–313

    CAS  PubMed  Google Scholar 

  • Balazadeh S, Riano-Pachón D, Mueller-Roeber B (2008) Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol 10:63–75

    PubMed  Google Scholar 

  • Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Kohler B, Mueller-Roeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62:250–264

    CAS  PubMed  Google Scholar 

  • Balazadeh S, Kwasniewski M, Caldana C, Mehrnia M, Zanor MI, Xue GP, Mueller-Roeber B (2011) ORS1, an H2O2-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol Plant 4:346–360

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balzadeh S, Parlitz S, Mueller-Roeber B, Meyer RC (2008) Natural developmental variations in leaf and plant senescence in Arabidopsis thaliana. Plant Biol 10:136–147

    Google Scholar 

  • Barth C, Moeder W, Klessig DF, Conklin PL (2004) The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol 134:1784–1792

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123:335–343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartoli CG, Guiamet JJ, Kiddle G, Pastori GM, Di Cagno R, Theodoulou FL, Foyer CH (2005) Ascorbate content of wheat leaves is not determined by maximal L-galactono-1,4-lactone dehydrogenase (GalLDH) activity under drought stress. Plant Cell Environ 28:1073–1081

    CAS  Google Scholar 

  • Bartoli CG, Casalongue C, Simontacchi M, Marquez-Garcia B, Foyer CH (2013) Interactions between hormone and redox signalling pathways. Environ Exp Bot 94:73–88

    CAS  Google Scholar 

  • Baruah A, Simkova K, Hincha DK, Apel K, Laloi C (2009) Modulation of (1)O(2)-mediated retrograde signaling by the PLEIOTROPIC RESPONSE LOCUS 1 (PRL1) protein, a central integrator of stress and energy signaling. Plant J 60:22–32

    CAS  PubMed  Google Scholar 

  • Bingham IJ, Blake J, Foulkes MJ, Spink J (2007) Is barley in the UK sink limited? Post-anthesis radiation interception, radiation-use efficiency and source-sink balance. Field Crops Res 101:198–211

    Google Scholar 

  • Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43:545–580

    CAS  PubMed  Google Scholar 

  • Bouvier F, Mialoundama AS, Camara B (2009) A sentinel role for plastids. In: Sandelius AS, Aronsson H (eds) The chloroplast. Springer, Berlin, pp 267–292

    Google Scholar 

  • Brevis JC, Dubcovsky J (2010) Effects of the chromosome region including the Gpc-B1 locus on wheat grain and protein. Crop Sci 50:93–104

    CAS  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence – a genomics approach. Plant Biotechnol 1:3–22

    CAS  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    CAS  PubMed  Google Scholar 

  • Camp PJ, Huber SC, Burke JJ, Moreland DE (1982) Biochemical changes that occur during senescence of wheat leaves. Plant Physiol 70:1641–1646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casano LM, Martin M, Sabater B (1994) Sensitivity of superoxide dismutase transcript levels and activities to oxidative stress is lower in mature-senescent than in young barley leaves. Plant Physiol 106:1033–1039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casano LM, Martín M, Zapata JM, Sabater B (1999) Leaf-age and paraquat concentration-dependent effects on the levels of enzymes protecting against photooxidative stress. Plant Sci 149:13–22

    CAS  Google Scholar 

  • Chen JB, Liang Y, Hu XY, Wang XX, Tan FQ, Zhang HQ, Ren ZL, Luo PG (2010) Physiological characterization of ‘stay green’ wheat cultivars during the grain filling stage under field growing conditions. Acta Physiol Plant 32:875–882

    CAS  Google Scholar 

  • Chen CC, Han GQ, He HQ, Westcott M (2011) Yield, protein, and remobilization of water soluble carbohydrate and nitrogen of three spring wheat cultivars as influenced by nitrogen input. Agron J 103:786–795

    CAS  Google Scholar 

  • Christiansen MW, Holm PB, Gregersen PL (2011) Characterization of barley (Hordeum vulgare L.) NAC transcription factors suggests conserved functions compared to both monocots and discots. BMC Res Notes 4:302

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cutler AJ, Krochko JE (1999) Formation and breakdown of ABA. Trends Plant Sci 4:472–478

    PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. In: Merchant S, Briggs WR, Ort D (eds) Annual review of plant biology, vol 61., pp 651–679

    Google Scholar 

  • Dai J, Gao Y, Zou Q (2004) Changes in activity of energy dissipating mechanisms in wheat flag leaves during senescence. Plant Biol 6:171–177

    CAS  PubMed  Google Scholar 

  • Delatte TL, Sedijani P, Kondou Y, Matsui M, de Jong GJ, Somsen GW, Wiese-Klinkenberg A, Primavesi LF, Paul MJ, Schluepmann H (2011) Growth arrest by trehalose-6-phosphate: an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway. Plant Physiol 157:160–174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Devoto A, Turner JG (2005) Jasmonate-regulated Arabidopsis stress signalling network. Physiol Plant 123:161–172

    CAS  Google Scholar 

  • Ding L, Wang KJ, Jiang GM, Liu MZ, Niu SL, Gao LM (2005) Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. Field Crops Res 93:108–115

    Google Scholar 

  • Feller U, Anders I, Mae T (2008) Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J Exp Bot 59:1615–1624

    CAS  PubMed  Google Scholar 

  • Fey V, Wagner R, Brautigam K, Pfannschmidt T (2005) Photosynthetic redox control of nuclear gene expression. J Exp Bot 56:1491–1498

    CAS  PubMed  Google Scholar 

  • Fischer AM (2007) Nutrient remobilization during leaf senescence. In: Gan S (ed) Senescence processes in plants. Blackwell, Oxford, pp 87–107

    Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    CAS  PubMed  Google Scholar 

  • Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63:1637–1661

    CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    PubMed  Google Scholar 

  • Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inze D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436–445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gebeyehou G, Knott DR, Baker RJ (1982) Rate and duration of grain filling in durum wheat cultivars. Crop Sci 22:337–34

    Google Scholar 

  • Gepstein S, Thimann KV (1980) Changes in the abscisic acid content of oat leaves during senescence. Proc Natl Acad Sci U S A 77:2050–2053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gepstein S, Sabehi G, Carp M-J, Hajouj T, Nesher MF, Yariv I, Dor C, Bassani M (2003) Large-scale identification of leaf senescence-associated genes. Plant J 36:629–642

    CAS  PubMed  Google Scholar 

  • Gong Y, Zhang J, Gao J, Lu L, Wang J (2005) Slow export of photoassimilate from stay-green leaves during late grain-filling stage in hybrid winter wheat (Triticum aestivum L.). J Agron Crop Sci 191:292–299

    CAS  Google Scholar 

  • Gonzalez A, Bermejo V, Gimeno BS (2010) Effect of different physiological traits on grain yield in barley grown under irrigated and terminal water deficit conditions. J Agric Sci 148:319–328

    CAS  Google Scholar 

  • Graaff E, Schwacke R, Schneider A, Desimone M, Flügge U-I, Kunze R (2006) Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792

    PubMed Central  PubMed  Google Scholar 

  • Grabowski E, Miao Y, Mulisch M, Krupinska K (2008) Single-stranded DNA binding protein Whirly1 in barley leaves is located in chloroplasts and nuclei of the same cell. Plant Physiol 147:1800–1804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gregersen PL, Holm PB, Krupinska K (2008) Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biol 10:37–49

    CAS  PubMed  Google Scholar 

  • Gregersen PL, Culetic A, Boschian L, Krupinska K (2013) Plant senescence and crop productivity. Plant Mol Biol 82:603–622

    CAS  PubMed  Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo YF, Gan SS (2005) Leaf senescence: signals, execution, and regulation. Curr Top Dev Biol 71:83

    CAS  PubMed  Google Scholar 

  • Guo YF, Gan SS (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612

    CAS  PubMed  Google Scholar 

  • Hafsi M, Mechmeche W, Bouamama L, Djekoune A, Zaharieva M, Monneveux P (2000) Flag leaf senescence, as evaluated by numerical image analysis, and its relationship with yield under drought in durum wheat. J Agron Crop Sci 185:275–280

    Google Scholar 

  • Ham B-K, Park J, Lee A-B, Kim M, Lee I-J, Kim K-J, Kwon C, Paek K-H (2006) Tobacco Tsip1, a DnaJ-type Zn finger protein, is recruited to and potentiates Tsi-mediated transcriptional activation. Plant Cell 18:2005–2020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson J, Smeekens S (2009) Sugar perception and signaling – an update. Curr Opin Plant Biol 12:562–567

    CAS  PubMed  Google Scholar 

  • He Y, Fukushige H, Hildebrand DF, Gan S (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128:876–884

    CAS  PubMed Central  PubMed  Google Scholar 

  • He P, Osaki M, Takebe M, Shinano T, Wasaki J (2005) Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J Exp Bot 56:1117–1128

    CAS  PubMed  Google Scholar 

  • Hensel LL, Grbic V, Baumgarten DA, Bleecker AB (1993) Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5:553–564

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hilditch P, Thomas H, Rogers L (1986) Leaf senescence in a nonyellowing mutant of Festuca pratensis – photosynthesis and photosynthetic electron transport. Planta 167:146–151

    CAS  PubMed  Google Scholar 

  • Hörtensteiner S (2009) Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci 14:155–162

    PubMed  Google Scholar 

  • Humbeck K, Quast S, Krupinska K (1996) Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. Plant Cell Environ 19:337–344

    CAS  Google Scholar 

  • Huner NPA, Maxwell DP, Gray GR, Savitch LV, Krol M, Ivanov AG, Falk S (1996) Sensing environmental temperature change through imbalances between energy supply and energy consumption: redox state of photosystem II. Physiol Plant 98:358–364

    CAS  Google Scholar 

  • Hung KT, Kao CH (2004) Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. J Plant Physiol 161:1347–1357

    CAS  PubMed  Google Scholar 

  • Inaba T, Ito-Inaba Y (2010) Versatile roles of plastids in plant growth and development. Plant Cell Physiol 51:1847–1853

    CAS  PubMed  Google Scholar 

  • Innes P, Blackwell RD (1983) Some effects of leaf posture on the yield and water economy of winter wheat. J Agric Sci 101:367–376

    Google Scholar 

  • Inze A, Vanderauwera S, Hoeberichts FA, Vandorpe M, Van Gaever T, Van Breusegem F (2012) A subcellular localization compendium of hydrogen peroxide-induced proteins. Plant Cell Environ 35:308–320

    CAS  PubMed  Google Scholar 

  • Iqbal M, Navabi A, Salmon DF, Yang RC, Spaner D (2007) Simultaneous selection for early maturity, increased grain yield and elevated grain protein content in spring wheat. Plant Breed 126:244–250

    Google Scholar 

  • Isemer R, Mulisch M, Schäfer A, Kirchner S, Koop HU, Krupinska K (2012) Recombinant Whirly1 translocates from transplastomic chloroplasts to the nucleus. FEBS Lett 586:85–88

    CAS  PubMed  Google Scholar 

  • Ishida H, Yoshimoto K, Izuni M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson M, Mae T (2008) Mobilization of Rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148:142–155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Isidro J, Alvara F, Royo C, Villegas D, Miralles DJ, del Moral LFG (2011) Changes in duration of developmental phases of durum wheat caused by breeding in Spain and Italy during the 20th century and its impact on yield. Ann Bot 107:1355–1366

    PubMed Central  PubMed  Google Scholar 

  • Izumi M, Ishida H (2011) The changes of leaf carbohydrate contents as a regulator of autophagic degradation of chloroplasts via rubisco-containing bodies during leaf senescence. Plant Signal Behav 6:685–687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Izumi M, Wada S, Makino A, Ishida H (2010) The autophagic degradation of chloroplasts via rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis. Plant Physiol 154:1196–1209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jing H-C, Hebeler R, Oeljeklaus S, Sitek B, Stühler K, Meyer H, Sturre M, Hille J, Warscheid B, Dijkwel P (2008) Early leaf senescence is associated with an altered cellular redox balance in Arabidopsis cpr5/old1 mutants. Plant Biol 10:85–89

    CAS  PubMed  Google Scholar 

  • Karpinski S, Gabrys H, Mateo A, Karpinska B, Mullineaux PM (2003) Light perception in plant disease defence signalling. Curr Opin Plant Biol 6:390–396

    CAS  PubMed  Google Scholar 

  • Kerchev PI, Pellny TK, Vivancos PD, Kiddle G, Hedden P, Driscoll S, Vanacker H, Verrier PJ, Hancock RD, Foyer CH (2011) The transcription factor ABI-4 is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis. Plant Cell 23:3319–3334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim C, Lee KP, Baruah A, Nater M, Gobel C, Feussner I, Apel K (2009) O-1(2)-mediated retrograde signaling during late embryogenesis predetermines plastid differentiation in seedlings by recruiting abscisic acid. Proc Natl Acad Sci U S A 106:9920–9924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kingston-Smith AH, Thomas H, Foyer CH (1997) Chlorophyll a fluorescence, enzyme and antioxidant analysis provide evidence for the operation of alternative electron sinks during leaf senescence in a stay-green mutant of Festuca pratensis. Plant Cell Environ 20:1323–1337

    CAS  Google Scholar 

  • Krupinska K, Humbeck K (2004) Photosynthesis and chloroplast breakdown (Review). In: Noóden LD (ed) Plant cell death processes. Elsevier, San Diego, CA, pp 169–188

    Google Scholar 

  • Krupinska K, Mulisch M, Hollmann J, Tokarzc K, Zschiesche W, Kage H, Humbeck K, Bilger W (2012) An alternative strategy of dismantling of the chloroplasts during leaf senescence observed in a high yield variety of barley. Physiol Plant 144:189–200

    CAS  PubMed  Google Scholar 

  • Kura-Hotta M, Satoh K, Katoh S (1987) Relationship between photosynthesis and chlorophyll content during leaf senescence of rice seedlings. Plant Cell Physiol 28:1321–1329

    CAS  Google Scholar 

  • Lee KP, Kim C, Landgraf F, Apel K (2007) EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:10270–10275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lehto K, Tikkanen M, Hiriart JB, Paakkarinen V, Aro EM (2003) Depletion of the photosystem II core complex in mature tobacco leaves infected by the flavum strain of tobacco mosaic virus. Mol Plant Microbe Interact 16:1135–1144

    CAS  PubMed  Google Scholar 

  • Leister D (2005) Genomics-based dissection of the cross-talk of chloroplasts with the nucleus and mitochondria in Arabidopsis. Gene 354:110–116

    CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    CAS  PubMed  Google Scholar 

  • Lu QT, Wen XG, Lu CM, Zhang QD, Kuang TY (2003) Photoinhibition and photoprotection in senescent leaves of field-grown wheat plants. Plant Physiol Biochem 41:749–754

    CAS  Google Scholar 

  • Luo PG, Zhang HY, Shu K, Wu XH, Zhang HQ, Ren ZL (2009) The physiological genetic effects of 1BL/1RS translocated chromosome in “stay green” wheat cultivar CN17. Can J Plant Sci 89:1–10

    CAS  Google Scholar 

  • Mateo A, Funck D, Mühlenbock P, Kular B, Mullineaux PM, Karpinski S (2006) Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. J Exp Bot 57:1795–1807

    CAS  PubMed  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    CAS  PubMed  Google Scholar 

  • Miersch I, Heise J, Zelmer I, Humbeck K (2000) Differential degradation of the photosynthetic apparatus during leaf senescence in barley (Hordeum vulgare L.). Plant Biol 2:618–623

    Google Scholar 

  • Mizrahi Y, Blumenfe A, Richmond AE (1970) Abscisic acid and transpiration in leaves in relation to osmotic root stress. Plant Physiol 46:169–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morris K, Mackerness SA, Page T, John F, Murphy AM, Carr JP, Buchanan-Wollaston V (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 23:677–685

    CAS  PubMed  Google Scholar 

  • Mühlenbock P, Szechynska-Hebda M, Plaszczyca M, Baudo M, Mullineaux PM, Parker JE, Karpinska B, Karpinski S (2008) Chloroplast signaling and LESION SIMULATING DISEASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis. Plant Cell 20:2339–2356

    PubMed Central  PubMed  Google Scholar 

  • Naruoka Y, Sherman JD, Lanning SP, Blake NK, Martin JM, Talbert LE (2012) Genetic analysis of green leaf duration in spring wheat. Crop Sci 52:99–109

    Google Scholar 

  • Navabpour S, Morris K, Allen R, Harrison E, A-H-Mackerness S, Buchanan-Wollaston V (2003) Expression of senescence-enhanced genes in response to oxidative stress. J Exp Bot 54:2285–2292

    CAS  PubMed  Google Scholar 

  • Op den Camp R, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Göbel C, Fueussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parry MAJ, Reynolds M, Salvucci ME, Raines C, Andralojc PJ, Zhu XG, Price GD, Condon AG, Furbank RT (2011) Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J Exp Bot 62:453–467

    CAS  PubMed  Google Scholar 

  • Parthier B (1990) Jasmonates – hormonal regulators or stress factors in leaf senescence. J Plant Growth Regul 9:57–63

    CAS  Google Scholar 

  • Pastori GM, del Rio LA (1994) An activated-oxygen-mediated role for peroxisomes in the mechanism of senescence of pea leaves. Planta 193:385–391

    CAS  Google Scholar 

  • Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH (2005) Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol 139:1291–1303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pfannschmidt T (2010) Plastidial retrograde signalling – a true “plastid factor” or just metabolite signatures? Trends Plant Sci 15:427–435

    CAS  PubMed  Google Scholar 

  • Pfannschmidt T, Bräutigam K, Wagner R, Dietzel L, Schröter Y, Steiner S, Nykytenko A (2009) Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. Ann Bot 103:599–607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Philosoph-Hadas S, Hadas E, Aharoni N (1993) Characterization and use in Elisa of a new monoclonal antibody for quantification of abscisic acid in senescing rice leaves. Plant Growth Regul 12:71–78

    CAS  Google Scholar 

  • Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr Opin Plant Biol 6:379–389

    CAS  PubMed  Google Scholar 

  • Pogson BJ, Woo NS, Förster B, Small ID (2008) Plastid signalling to the nucleus and beyond. Trends Plant Sci 13:602–609

    CAS  PubMed  Google Scholar 

  • Price J, Laxmi A, St Martin SK, Jang JC (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prins A, van Heerden P, Olmos E, Kunert K, Foyer C (2008) Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) vesicular bodies. J Exp Bot 59:1935–1950

    CAS  PubMed  Google Scholar 

  • Pruzinska A, Anders I, Aubry S, Schenk N, Tapernoux-Luthi E, Muller T, Krautler B, Hortensteiner S (2007) In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19:369–387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quiles MJ, Garcia C, Cuello J (1995) Differential-effects of abscisic-acid and methyl jasmonate on endoproteinases in senescing barley leaves. Plant Growth Regul 16:197–204

    CAS  Google Scholar 

  • Reynolds MP, Pellegrineschi A, Skovmand B (2005) Sink-limitation to yield and biomass: a summary of some investigations in spring wheat. Ann Appl Biol 146:39–49

    Google Scholar 

  • Rivero R, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci U S A 104:19631–19636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rolland F, Sheen J (2005) Sugar sensing and signalling networks in plants. Biochem Soc Trans 33:269–271

    CAS  PubMed  Google Scholar 

  • Rosenwasser S, Rot I, Sollner E, Meyer AJ, Smith Y, Fluhr R, Leviatan N, Friedman H (2011) Organelles contribute differentially to reactive oxygen-species-related events during extended darkness. Plant Physiol 156:185–201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    CAS  PubMed  Google Scholar 

  • Schurmann P, Buchanan BB (2008) The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid Redox Signal 10:1235–1273

    CAS  PubMed  Google Scholar 

  • Schippers JHM, Jing H-C, Hille J, Dijkwel PP (2007) Developmental and hormonal control of leaf senescence. In: Gan S (ed) Senescence processes in plants. Blackwell, Oxford, pp 145–170

    Google Scholar 

  • Schwacke R, Fischer K, Ketelsen B, Krupinska K, Krause K (2007) Comparative survey of plastid and mitochondrial targeting properties of transcription factors in Arabidopsis and rice. Mol Genet Genome 277:631–646

    CAS  Google Scholar 

  • Seiler C, Harshavardhan VT, Rajesh K, Reddy PS, Strickert M, Rolletschek H, Scholz U, Wobus U, Sreenivasulu N (2011) ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J Exp Bot 62:2615–2632

    CAS  PubMed  Google Scholar 

  • Shang Y, Yan L, Liu Z-Q, Cao Z, Mei C, Xin Q, Wu F-Q, Wang X-F, Du S-Y, Jiang T, Zhang X-F, Zhao R, Sun H-L, Liu R, Yu Y-T, Zhang D-P (2010) The Mg-Chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22:1909–1935

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soitamo AJ, Piippo M, Allahverdiyeva Y, Battchikova N, Aro EM (2008) Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol 8:13

    PubMed Central  PubMed  Google Scholar 

  • Spano G, Di Fonzo N, Perrotta C, Platani C, Ronga G, Lawlor DW, Napier JA, Shewry PR (2003) Physiological characterization of ‘stay green’ mutants in durum wheat. J Exp Bot 54:1415–1420

    CAS  PubMed  Google Scholar 

  • Strawn MA, Marr SK, Inoue K, Inada N, Zubieta C, Wildermuth MC (2007) Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem 282:5919–5933

    CAS  PubMed  Google Scholar 

  • Sun XW, Feng PQ, Xu XM, Guo HL, Ma JF, Chi W, Lin RC, Lu CM, Zhang LX (2011) A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus. Nat Commun 2:477

    PubMed  Google Scholar 

  • Tang YL, Wen XG, Lu CM (2005) Differential changes in degradation of chlorophyll-protein complexes of photosystem I and photosystem II during flag leaf senescence of rice. Plant Physiol Biochem 43:193–201

    CAS  PubMed  Google Scholar 

  • Thomas H, Stoddart J (1980) Leaf senescence. Annu Rev Plant Physiol 31:83–111

    CAS  Google Scholar 

  • Tollenaar M, Lee EA (2006) Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica 51:399–408

    Google Scholar 

  • Uauy C, Brevis J, Dubcovsky J (2006) The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J Exp Bot 57:2785–2794

    CAS  PubMed  Google Scholar 

  • Vadez V, Deshpande SP, Kholova J, Hammer GL, Borrell AK, Talwar HS, Hash CT (2011a) Stay-green quantitative trait loci’s effects on water extraction, transpiration efficiency and seed yield depend on recipient parent background. Funct Plant Biol 38:553–566

    Google Scholar 

  • Vadez V, Krishnamurthy L, Hash CT, Upadhyaya HD, Borrell AK (2011b) Yield, transpiration efficiency, and water-use variations and their interrelationships in the sorghum reference collection. Crop Pasture Sci 62:645–655

    Google Scholar 

  • Vaezi B, Bavei V, Shiran B (2010) Screening of barley genotypes for drought tolerance by agro-physiological traits in field condition. Afr J Agric Res 5:881–892

    Google Scholar 

  • Vanacker H, Sandalio LM, Jimenez A, Palma JM, Corpas FJ, Meseguer V, Gomez M, Sevilla F, Leterrier M, Foyer CH, del Rio LA (2006) Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition. J Exp Bot 57:1735–1745

    CAS  PubMed  Google Scholar 

  • Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149:885–893

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner R, Pfannschmidt T (2006) Eukaryotic transcription factors in plastids – bioinformatic assessment and implications for the evolution of gene expression machineries in plants. Gene 381:62–70

    CAS  PubMed  Google Scholar 

  • Wagner D, Przybyla D, Op den Camp R, Kim C, Landgraf F, Lee K, Würsch M, Laloi C, Nater M, Hideg E, Aple K (2004) The genetic basis of singlet oxygen-induced stress response of Arabidopsis thaliana. Science 306:1183–1185

    CAS  PubMed  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    CAS  PubMed  Google Scholar 

  • Wind J, Smeekens S, Hanson J (2010) Sucrose: metabolite and signaling molecule. Phytochem 71:1610–1614

    CAS  Google Scholar 

  • Wingler A, Delatte TL, O’Hara LE, Primavesi LF, Jhurreea D, Paul MJ, Schluepmann H (2012) Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Plant Physiol 158:1241–1251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolf FT (1956) Changes in chlorophyll-a and chlorophyll-b in autumn leaves. Am J Bot 43:714–718

    CAS  Google Scholar 

  • Woo HR, Chung KM, Park JH, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woo HR, Goh CH, Park JH, Teyssendier de la Serva B, Kim JH, Paark VI, Nam HG (2002) Extended leaf longevity in the ore4-1 mutant of Arabidopsis with a reduced expression of a plastid ribosomal protein gene. Plant J 31(3):331–340

    CAS  PubMed  Google Scholar 

  • Woo HR, Kim JH, Nam HG, Lim PO (2004) The delayed leaf senescence mutants of Arabidopsis, ore1, ore3, and ore9 are tolerant to oxidative stress. Plant Cell Physiol 45:923–932

    CAS  PubMed  Google Scholar 

  • Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI, Asensi-Fabado MA, Munné-Bosch S, Antonio C, Tohge T, Fernie AR, Kaufmann K, Xue GP, Mueller-Roeber B, Balazadeh S (2012) JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24:482–506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ (2003) Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ 26:1621–1631

    CAS  Google Scholar 

  • Zapata JM, Guéra A, Esteban-Carrasco A, Martín M, Sabater B (2005) Chloroplasts regulate leaf senescence: delayed senescence in transgenic ndhF-defective tobacco. Cell Death Differ 12:1277–1284

    CAS  PubMed  Google Scholar 

  • Zhang YH, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RAC, Powers SJ, Schluepmann H, Delatte T, Wingler A, Paul MJ (2009) Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol 149:1860–1871

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    CAS  PubMed  Google Scholar 

  • Zimmermann P, Zentgraf U (2005) The correlation between oxidative stress and leaf senescence during plant development. Cell Mol Biol Lett 10:515–534

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Luca Boschian (University of Kiel) for critical reading of the manuscript and for preparation of the figures. We acknowledge funding of the European Community in the frame of the MC-ITN ‘CropLife’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Krupinska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gregersen, P.L., Foyer, C.H., Krupinska, K. (2014). Photosynthesis and Leaf Senescence as Determinants of Plant Productivity. In: Kumlehn, J., Stein, N. (eds) Biotechnological Approaches to Barley Improvement. Biotechnology in Agriculture and Forestry, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44406-1_7

Download citation

Publish with us

Policies and ethics