Skip to main content

Bone Mineral Density and Quantitative Imaging

  • Chapter
  • First Online:
Pitfalls in Diagnostic Radiology

Abstract

Quantitative imaging methods are widely used in the evaluation of bone metabolic status and to diagnose and to manage diseases of huge epidemiological, clinical, and economic impact, such as osteoporosis. Bone mineral density (BMD) is still the major factor in clinical determination of bone strength. The central technique in the imaging flowchart of metabolic bone diseases is dual-energy X-ray absorptiometry (DXA). Special consideration also deserves quantitative ultrasound (QUS), due to its relationships with fracture risks and to specific advantages. Quantitative computed tomography (QCT) and peripheral QCT equipments are also promising tools for the analysis of bone density and bone architectural properties and to bring such advanced analysis near clinical practice in the next future. On the other hand, magnetic resonance (MR)-based techniques are still confined to the research field. In quantitative imaging, the execution of the examination is particularly important because (a) the key point of the scan is the “measurement” and not qualitative evaluation of images; therefore, the evaluation is mainly given on the basis of acquired measures, and (b) it is often difficult to understand the presence and effect of errors after the results (measures) are obtained. This chapter describes and analyzes potential pitfalls in the execution and interpretation of quantitative imaging techniques involved in the field of bone metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMD:

Bone mineral density

BUA:

Broadband ultrasound attenuation

CT:

Computed tomography

DXA:

Dual-energy X-ray absorptiometry

HR-pQCT:

High-resolution pQCT

pQCT:

Peripheral QCT

QCT:

Quantitative computed tomography

QUS:

Quantitative ultrasound

References

  • Ashe MC, Khan KM, Kontulainen SA et al (2006) Accuracy of pQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation. Osteoporos Int 17:1241–1251

    Article  CAS  PubMed  Google Scholar 

  • Banse X, Devogelaer JP, Grynpas M (2002) Patient-specific microarchitecture of vertebral cancellous bone: a peripheral quantitative computed tomographic and histological study. Bone 30:829–835

    Article  CAS  PubMed  Google Scholar 

  • Barden HS, Markwardt P, Payne R et al (2003) Automated assessment of exclusion criteria for DXA lumbar spine scans. J Clin Densitom 6:401–410

    Article  PubMed  Google Scholar 

  • Barkmann R, Gluer C (1999) Error sources in quantitative ultrasound measurement. In: Njeh CF, Hans D, Fuerst T, Gluer CC, Genant HK (eds) Quantitative ultrasound: assessment of osteoporosis and bone status. Dunitz, London, pp 101–108

    Google Scholar 

  • Bazzocchi A, Ferrari F, Diano D et al (2012) Incidental findings with dual-energy X-ray absorptiometry: spectrum of possible diagnoses. Calcif Tissue Int 91:149–156

    Article  CAS  PubMed  Google Scholar 

  • Burge R, Dawson-Hughes B, Solomon DH et al (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475

    Article  PubMed  Google Scholar 

  • Burghardt AJ, Buie HR, Laib A et al (2010) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47:519–528

    Article  PubMed Central  PubMed  Google Scholar 

  • Cawkwell GD (1998) Movement artifact and dual X-ray absorptiometry. J Clin Densitom 1:141–147

    Article  Google Scholar 

  • Chappard C, Berger G, Roux C et al (1999) Ultrasound measurement on the calcaneus: influence of immersion time and rotation of the foot. Osteoporos Int 9:318–326

    Article  CAS  PubMed  Google Scholar 

  • Chappard C, Camus E, Lefebvre F et al (2000) Evaluation of error bounds on calcaneal speed of sound caused by surrounding soft tissue. J Clin Densitom 3:121–131

    Article  CAS  PubMed  Google Scholar 

  • Damilakis J, Guglielmi G (2010) Quality assurance and dosimetry in bone densitometry. Radiol Clin North Am 48:629–640

    Article  PubMed  Google Scholar 

  • Dasher LG, Newton CD, Lenchik L (2010) Dual X-ray absorptiometry in today’s clinical practice. Radiol Clin North Am 48:541–560

    Article  PubMed  Google Scholar 

  • Davies KM, Stegman MR, Heaney RP et al (1996) Prevalence and severity of vertebral fracture: the Saunders County Bone Quality Study. Osteoporos Int 6:160–165

    Article  CAS  PubMed  Google Scholar 

  • Diessel E, Fuerst T, Njeh CF et al (2000) Evaluation of a new body composition phantom for quality control and cross-calibration of DXA devices. J Appl Physiol 89:599–605

    CAS  PubMed  Google Scholar 

  • Dontas IA, Yiannakopoulos CK (2007) Risk factors and prevention of osteoporosis-related fractures. J Musculoskelet Neuronal Interact 7:68–272

    Google Scholar 

  • Dunnill MS, Anderson JA, Whitehead R (1967) Quantitative histological studies on age changes in bone. J Pathol Bacteriol 94:275–291

    Article  CAS  PubMed  Google Scholar 

  • Eastell R, Cedel SL, Wahner HW et al (1991) Classification of vertebral fractures. J Bone Miner Res 6:207–215

    Article  CAS  PubMed  Google Scholar 

  • El Maghraoui A, Roux C (2008) DXA scanning in clinical practice. QJM 101:605–617

    Article  PubMed  Google Scholar 

  • Evans WD, Jones EA, Owen GM (1995) Factors affecting the in vivo precision of broad-band ultrasonic attenuation. Phys Med Biol 40:137–151

    Article  CAS  PubMed  Google Scholar 

  • Gluer CC (1997) Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group. J Bone Miner Res 12:1280–1288

    Article  CAS  PubMed  Google Scholar 

  • Gluer CC (2008) A new quality of bone ultrasound research. IEEE Trans Ultrason Ferroelectr Freq Control 55:1524–1528

    Article  CAS  PubMed  Google Scholar 

  • Griffith JF, Genant HK (2011) New imaging modalities in bone. Curr Rheumatol Rep 13:241–250

    Article  PubMed Central  PubMed  Google Scholar 

  • Guglielmi G, de Terlizzi F (2009) Quantitative ultrasound in the assessment of osteoporosis. Eur J Radiol 71:425–431

    Article  PubMed  Google Scholar 

  • Guglielmi G, Grimston SK, Fischer KC et al (1994) Osteoporosis: diagnosis with lateral and posteroanterior dual x-ray absorptiometry compared with quantitative CT. Radiology 192:845–850

    Article  CAS  PubMed  Google Scholar 

  • Guglielmi G, Njeh CF, de Terlizzi F et al (2003) Phalangeal quantitative ultrasound, phalangeal morphometric variables, and vertebral fracture discrimination. Calcif Tissue Int 72:469–477

    Article  CAS  PubMed  Google Scholar 

  • Guglielmi G, Adams J, Link TM (2009) Quantitative ultrasound in the assessment of skeletal status. Eur Radiol 19:1837–1848

    Article  PubMed  Google Scholar 

  • Guglielmi G, de Terlizzi F, Scalzo G et al (2010a) Cortical thickness and medullary canal dimensions of the bone phalanx are predicted by quantitative ultrasound parameters. J Clin Densitom 13:219–227

    Article  PubMed  Google Scholar 

  • Guglielmi G, Scalzo G, de Terlizzi F et al (2010b) Quantitative ultrasound in osteoporosis and bone metabolism pathologies. Radiol Clin North Am 48:577–588

    Article  PubMed  Google Scholar 

  • Guglielmi G, Muscarella S, Bazzocchi A (2011) Integrated imaging approach to osteoporosis: state-of-the-art review and update. RadioGraphics 31:1343–1364

    Article  PubMed  Google Scholar 

  • Guglielmi G, Damilakis J, Solomou G et al (2012) Quality assurance of imaging techniques used in the clinical management of osteoporosis. Radiol Med 117(8):1347–1354

    Google Scholar 

  • Hans D, Schott AM, Arlot ME et al (1995) Influence of anthropometric parameters on ultrasound measurements of os calcis. Osteoporos Int 5:371–376

    Article  CAS  PubMed  Google Scholar 

  • Hans D, Dargent-Molina P, Schott AM et al (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348:511–514

    Article  CAS  PubMed  Google Scholar 

  • Hauache OM, Vieira JG, Alonso G et al (2000) Increased hip bone mineral density in a woman with gluteal silicon implant. J Clin Densitom 3:391–393

    Article  CAS  PubMed  Google Scholar 

  • Iki M, Kajita E, Mitamura S et al (1999) Precision of quantitative ultrasound measurement of the heel bone and effects of ambient temperature on the parameters. Osteoporos Int 10:462–467

    Article  CAS  PubMed  Google Scholar 

  • Jacobson JA, Jamadar DA, Hayes CW (2000) Dual X-ray absorptiometry: recognizing image artifacts and pathology. AJR Am J Roentgenol 174:1699–1705

    Article  CAS  PubMed  Google Scholar 

  • Johansen A, Stone MD (1997) The effect of ankle oedema on bone ultrasound assessment at the heel. Osteoporos Int 7:44–47

    Article  CAS  PubMed  Google Scholar 

  • Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936

    Article  PubMed  Google Scholar 

  • Kanis JA, Johnell O (2005) Requirements for DXA for the management of osteoporosis in Europe. Osteoporos Int 16:229–238

    Article  CAS  PubMed  Google Scholar 

  • Kanis JA, Melton LJ 3rd, Christiansen C et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    Article  CAS  PubMed  Google Scholar 

  • Khan AA, Bachrach L, Brown JP et al (2004) Standards and guidelines for performing central dual-energy x-ray absorptiometry in premenopausal women, men, and children. J Clin Densitom 7:51–64

    Article  PubMed  Google Scholar 

  • Kotzki PO, Buyck D, Hans D et al (1994) Influence of fat on ultrasound measurements of the os calcis. Calcif Tissue Int 54:91–95

    Article  CAS  PubMed  Google Scholar 

  • Krieg MA, Barkmann R, Gonnelli S et al (2008) Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom 11:163–187

    Article  PubMed  Google Scholar 

  • Krug R, Burghardt AJ, Majumdar S et al (2010) High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin North Am 48:601–621

    Article  PubMed Central  PubMed  Google Scholar 

  • Lang TF (2010) Quantitative computed tomography. Radiol Clin North Am 48:589–600

    Article  PubMed  Google Scholar 

  • Laugier P, Giat P, Berger G (1994) Broadband ultrasonic attenuation imaging: a new imaging technique of the os calcis. Calcif Tissue Int 54:83–86

    Article  CAS  PubMed  Google Scholar 

  • Lenchik L, Sartoris DJ (1997) Current concepts in osteoporosis. AJR Am J Roentgenol 168:905–911

    Article  CAS  PubMed  Google Scholar 

  • Lenchik L, Rochmis P, Sartoris DJ (1998) Optimized interpretation and reporting of dual X-ray absorptiometry (DXA) scans. AJR Am J Roentgenol 171:1509–1520

    Article  CAS  PubMed  Google Scholar 

  • Lewiecki EM, Binkley N, Petak SM (2006) DXA quality matters. J Clin Densitom 9:388–392

    Article  PubMed  Google Scholar 

  • Libber J, Binkley N, Krueger D (2012) Clinical observations in total body DXA: technical aspects of positioning and analysis. J Clin Densitom 15:282–289

    Article  PubMed  Google Scholar 

  • Link TM (2012) Osteoporosis imaging: state of the art and advanced imaging. Radiology 263:3–17

    Article  PubMed Central  PubMed  Google Scholar 

  • Maggio D, McCloskey EV, Camilli L et al (1998) Short-term reproducibility of proximal femur bone mineral density in the elderly. Calcif Tissue Int 63:296–299

    Article  CAS  PubMed  Google Scholar 

  • Moyad MA (2003) Osteoporosis: a rapid review of risk factors and screening methods. Urol Oncol 21:375–379

    Article  PubMed  Google Scholar 

  • Mueller TL, Stauber M, Kohler T et al (2009) Non-invasive bone competence analysis by high-resolution pQCT: an in vitro reproducibility study on structural and mechanical properties at the human radius. Bone 44:364–371

    Article  PubMed  Google Scholar 

  • Njeh CF, Hans D, Li J et al (2000) Comparison of six calcaneal quantitative ultrasound devices: precision and hip fracture discrimination. Osteoporos Int 11:1051–1062

    Article  CAS  PubMed  Google Scholar 

  • Njeh CF, Chen MB, Fan B et al (2001) Evaluation of a gel-coupled quantitative ultrasound device for bone status assessment. J Ultrasound Med 20:1219–1228

    CAS  PubMed  Google Scholar 

  • Pocock NA, Babichev A, Culton N et al (2000) Temperature dependency of quantitative ultrasound. Osteoporos Int 11:316–320

    Article  CAS  PubMed  Google Scholar 

  • Rosenthall L (1997) Influence of bone quality on precision of calcaneal ultrasonometry. Calcif Tissue Int 61:139–141

    Article  CAS  PubMed  Google Scholar 

  • Rothney MP, Brychta RJ, Schaefer EV et al (2009) Body composition measured by dual-energy X-ray absorptiometry half-body scans in obese adults. Obesity (Silver Spring) 17:1281–1286

    Google Scholar 

  • Staron RB, Greenspan R, Miller TT et al (1999) Computerized bone densitometric analysis: operator-dependent errors. Radiology 211:467–470

    Article  CAS  PubMed  Google Scholar 

  • Theodorou DJ, Theodorou SJ (2002) Dual-energy X-ray absorptiometry in clinical practice: application and interpretation of scans beyond the numbers. Clin Imaging 26:43–49

    Article  PubMed  Google Scholar 

  • U.S. Preventive Services Task Force (2011) Screening for osteoporosis: U.S. preventive services task force recommendation statement. Ann Intern Med 154:356–364

    Article  Google Scholar 

  • Watts NB (2004) Fundamentals and pitfalls of bone densitometry using dual-energy X-ray absorptiometry (DXA). Osteoporos Int 15:847–854

    Article  PubMed  Google Scholar 

  • Yu W, Gluer CC, Fuerst T et al (1995) Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women. Calcif Tissue Int 57:169–174

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Guglielmi MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guglielmi, G., Ferrari, F., Bazzocchi, A. (2015). Bone Mineral Density and Quantitative Imaging. In: Peh, W. (eds) Pitfalls in Diagnostic Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44169-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44169-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44168-8

  • Online ISBN: 978-3-662-44169-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics