Skip to main content

Idiopathic Nephrotic Syndrome in Children: Clinical Aspects

  • Reference work entry
  • First Online:

Abstract

The most common cause of nephrotic syndrome in children is idiopathic nephrotic syndrome (INS), also called nephrosis [1]. INS is defined by the combination of a nephrotic syndrome (massive proteinuria, hypoalbuminemia, hyperlipidemia, and edema) and nonspecific histological abnormalities of the glomeruli including minimal changes, focal and segmental glomerular sclerosis (FSGS), and diffuse mesangial proliferation. On electron microscopy, glomeruli show an effacement of epithelial cell (podocyte) foot processes and no significant deposits of immunoglobulins or complement by immunofluorescence. In a majority of children, only minimal changes are seen on light microscopy. These children are referred to as having “minimal change disease.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Eddy AA, Symons JM. Nephrotic syndrome in childhood. Lancet. 2003;362(9384):629–39.

    Article  PubMed  Google Scholar 

  2. Bariety J, Bruneval P, Hill G, Irinopoulou T, Mandet C, Meyrier A. Posttransplantation relapse of FSGS is characterized by glomerular epithelial cell transdifferentiation. J Am Soc Nephrol. 2001;12(2):261–74.

    PubMed  CAS  Google Scholar 

  3. Barisoni L, Mokrzycki M, Sablay L, Nagata M, Yamase H, Mundel P. Podocyte cell cycle regulation and proliferation in collapsing glomerulopathies. Kidney Int. 2000;58(1):137–43.

    Article  PubMed  CAS  Google Scholar 

  4. Shankland SJ, Eitner F, Hudkins KL, Goodpaster T, D’Agati V, Alpers CE. Differential expression of cyclin-dependent kinase inhibitors in human glomerular disease: role in podocyte proliferation and maturation. Kidney Int. 2000;58(2):674–83.

    Article  PubMed  CAS  Google Scholar 

  5. Moudgil A, Nast CC, Bagga A, Wei L, Nurmamet A, Cohen AH, et al. Association of parvovirus B19 infection with idiopathic collapsing glomerulopathy. Kidney Int. 2001;59(6):2126–33.

    Article  PubMed  CAS  Google Scholar 

  6. Tanawattanacharoen S, Falk RJ, Jennette JC, Kopp JB. Parvovirus B19 DNA in kidney tissue of patients with focal segmental glomerulosclerosis. Am J Kidney Dis. 2000;35(6):1166–74.

    Article  PubMed  CAS  Google Scholar 

  7. Jefferson JA, Alpers CE. Glomerular disease: ‘suPAR’-exciting times for FSGS. Nat Rev Nephrol. 2013;9(3):127–8.

    Article  PubMed  CAS  Google Scholar 

  8. Wei C, El Hindi S, Li J, Fornoni A, Goes N, Sageshima J, et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med. 2011;17(8):952–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Kashgarian M, Hayslett JP, Siegel NJ. Lipoid nephrosis and focal sclerosis distinct entities or spectrum of disease. Nephron. 1974;13(2):105–8.

    Article  PubMed  CAS  Google Scholar 

  10. McAdams AJ, Valentini RP, Welch TR. The nonspecificity of focal segmental glomerulosclerosis. The defining characteristics of primary focal glomerulosclerosis, mesangial proliferation, and minimal change. Medicine (Baltimore). 1997;76(1):42–52.

    Article  CAS  Google Scholar 

  11. International Study of Kidney Disease in Children, Nephrotic syndrome in children: prediction of histopathology from clinical and laboratory characteristics at time of diagnosis. A report of the International Study of Kidney Disease in Children. Kidney Int. 1978;13(2):159–65.

    Google Scholar 

  12. McKinney PA, Feltbower RG, Brocklebank JT, Fitzpatrick MM. Time trends and ethnic patterns of childhood nephrotic syndrome in Yorkshire, UK. Pediatr Nephrol. 2001;16(12):1040–4.

    Article  PubMed  CAS  Google Scholar 

  13. Schlesinger ER, Sultz HA, Mosher WE, Feldman JG. The nephrotic syndrome. Its incidence and implications for the community. Am J Dis Child. 1968;116(6):623–32.

    Article  PubMed  CAS  Google Scholar 

  14. Wong W. Idiopathic nephrotic syndrome in New Zealand children, demographic, clinical features, initial management and outcome after twelve-month follow-up: results of a three-year national surveillance study. J Paediatr Child Health. 2007;43(5):337–41.

    Article  PubMed  Google Scholar 

  15. Srivastava RN, Mayekar G, Anand R, Choudhry VP, Ghai OP, Tandon HD. Nephrotic syndrome in Indian children. Arch Dis Child. 1975;50(8):626–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Anochie I, Eke F, Okpere A. Childhood nephrotic syndrome: change in pattern and response to steroids. J Natl Med Assoc. 2006;98(12):1977–81.

    PubMed Central  PubMed  Google Scholar 

  17. Coovadia HM, Adhikari M, Morel-Maroger L. Clinico-pathological features of the nephrotic syndrome in South African children. Q J Med. 1979;48(189):77–91.

    PubMed  CAS  Google Scholar 

  18. Doe JY, Funk M, Mengel M, Doehring E, Ehrich JH. Nephrotic syndrome in African children: lack of evidence for ‘tropical nephrotic syndrome’? Nephrol Dial Transplant. 2006;21(3):672–6.

    Article  PubMed  Google Scholar 

  19. Hayslett JP, Kashgarian M, Bensch KG, Spargo BH, Freedman LR, Epstein FH. Clinicopathological correlations in the nephrotic syndrome due to primary renal disease. Medicine (Baltimore). 1973;52(2):93–120.

    CAS  Google Scholar 

  20. Meadow SR, Sarsfield JK, Scott DG, Rajah SM. Steroid-responsive nephrotic syndrome and allergy: immunological studies. Arch Dis Child. 1981;56(7):517–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Salsano ME, Graziano L, Luongo I, Pilla P, Giordano M, Lama G. Atopy in childhood idiopathic nephrotic syndrome. Acta Paediatr. 2007;96(4):561–6.

    Article  PubMed  Google Scholar 

  22. Thomson PD, Stokes CR, Barratt TM, Turner MW, Soothill JF. HLA antigens and atopic features in steroid-responsive nephrotic syndrome of childhood. Lancet. 1976;2(7989):765–8.

    Article  PubMed  CAS  Google Scholar 

  23. Laurent J, Rostoker G, Robeva R, Bruneau C, Lagrue G. Is adult idiopathic nephrotic syndrome food allergy? Value of oligoantigenic diets. Nephron. 1987;47(1):7–11.

    Article  PubMed  CAS  Google Scholar 

  24. Audard V, Larousserie F, Grimbert P, Abtahi M, Sotto JJ, Delmer A, et al. Minimal change nephrotic syndrome and classical Hodgkin’s lymphoma: report of 21 cases and review of the literature. Kidney Int. 2006;69(12):2251–60.

    Article  PubMed  CAS  Google Scholar 

  25. Eagen JW. Glomerulopathies of neoplasia. Kidney Int. 1977;11(5):297–303.

    Article  PubMed  CAS  Google Scholar 

  26. Nakahara C, Wada T, Kusakari J, Kanemoto K, Kinugasa H, Sibasaki M, et al. Steroid-sensitive nephrotic syndrome associated with Kimura disease. Pediatr Nephrol. 2000;14(6):482–5.

    Article  PubMed  CAS  Google Scholar 

  27. Rajpoot DK, Pahl M, Clark J. Nephrotic syndrome associated with Kimura disease. Pediatr Nephrol. 2000;14(6):486–8.

    Article  PubMed  CAS  Google Scholar 

  28. Alwadhi RK, Mathew JL, Rath B. Clinical profile of children with nephrotic syndrome not on glucocorticoid therapy, but presenting with infection. J Paediatr Child Health. 2004;40(1–2):28–32.

    Article  PubMed  CAS  Google Scholar 

  29. Joven J, Villabona C, Vilella E, Masana L, Alberti R, Valles M. Abnormalities of lipoprotein metabolism in patients with the nephrotic syndrome. N Engl J Med. 1990;323(9):579–84.

    Article  PubMed  CAS  Google Scholar 

  30. Thabet MA, Salcedo JR, Chan JC. Hyperlipidemia in childhood nephrotic syndrome. Pediatr Nephrol. 1993;7(5):559–66.

    Article  PubMed  CAS  Google Scholar 

  31. Vaziri ND. Molecular mechanisms of lipid disorders in nephrotic syndrome. Kidney Int. 2003;63(5):1964–76.

    Article  PubMed  Google Scholar 

  32. Sato KA, Gray RW, Lemann Jr J. Urinary excretion of 25-hydroxyvitamin D in health and the nephrotic syndrome. J Lab Clin Med. 1982;99(3):325–30.

    PubMed  CAS  Google Scholar 

  33. Freundlich M, Bourgoignie JJ, Zilleruelo G, Abitbol C, Canterbury JM, Strauss J. Calcium and vitamin D metabolism in children with nephrotic syndrome. J Pediatr. 1986;108(3):383–7.

    Article  PubMed  CAS  Google Scholar 

  34. McVicar M, Exeni R, Susin M. Nephrotic syndrome and multiple tubular defects in children: an early sign of focal segmental glomerulosclerosis. J Pediatr. 1980;97(6):918–22.

    Article  PubMed  CAS  Google Scholar 

  35. Rodriguez-Soriano J, Vallo A, Castillo G, Oliveros R. Defect in urinary acidification in nephrotic syndrome and its correction by furosemide. Nephron. 1982;32(4):308–13.

    Article  PubMed  CAS  Google Scholar 

  36. Vaziri ND, Kaupke CJ, Barton CH, Gonzales E. Plasma concentration and urinary excretion of erythropoietin in adult nephrotic syndrome. Am J Med. 1992;92(1):35–40.

    Article  PubMed  CAS  Google Scholar 

  37. Vande Walle J, Mauel R, Raes A, Vandekerckhove K, Donckerwolcke R. ARF in children with minimal change nephrotic syndrome may be related to functional changes of the glomerular basal membrane. Am J Kidney Dis. 2004;43(3):399–404.

    Article  PubMed  Google Scholar 

  38. Cavagnaro F, Lagomarsino E. Peritonitis as a risk factor of acute renal failure in nephrotic children. Pediatr Nephrol. 2000;15(3–4):248–51.

    Article  PubMed  CAS  Google Scholar 

  39. Bohman SO, Jaremko G, Bohlin AB, Berg U. Foot process fusion and glomerular filtration rate in minimal change nephrotic syndrome. Kidney Int. 1984;25(4):696–700.

    Article  PubMed  CAS  Google Scholar 

  40. Sakarcan A, Timmons C, Seikaly MG. Reversible idiopathic acute renal failure in children with primary nephrotic syndrome. J Pediatr. 1994;125(5 Pt 1):723–7.

    Article  PubMed  CAS  Google Scholar 

  41. Fliser D, Zurbruggen I, Mutschler E, Bischoff I, Nussberger J, Franek E, et al. Coadministration of albumin and furosemide in patients with the nephrotic syndrome. Kidney Int. 1999;55(2):629–34.

    Article  PubMed  CAS  Google Scholar 

  42. Raij L, Keane WF, Leonard A, Shapiro FL. Irreversible acute renal failure in idiopathic nephrotic syndrome. Am J Med. 1976;61(2):207–14.

    Article  PubMed  CAS  Google Scholar 

  43. Krensky AM, Ingelfinger JR, Grupe WE. Peritonitis in childhood nephrotic syndrome: 1970–1980. Am J Dis Child. 1982;136(8):732–6.

    Article  PubMed  CAS  Google Scholar 

  44. Kerlin BA, Ayoob R, Smoyer WE. Epidemiology and pathophysiology of nephrotic syndrome-associated thromboembolic disease. Clin J Am Soc Nephrol. 2012;7(3):513–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Kerlin BA, Haworth K, Smoyer WE. Venous thromboembolism in pediatric nephrotic syndrome. Pediatr Nephrol. 2014;29(6):989–97.

    Article  PubMed  Google Scholar 

  46. Schlegel N. Thromboembolic risks and complications in nephrotic children. Semin Thromb Hemost. 1997;23(3):271–80.

    Article  PubMed  CAS  Google Scholar 

  47. Lilova MI, Velkovski IG, Topalov IB. Thromboembolic complications in children with nephrotic syndrome in Bulgaria (1974–1996). Pediatr Nephrol. 2000;15(1–2):74–8.

    Article  PubMed  CAS  Google Scholar 

  48. Kerlin BA, Blatt NB, Fuh B, Zhao S, Lehman A, Blanchong C, et al. Epidemiology and risk factors for thromboembolic complications of childhood nephrotic syndrome: a Midwest Pediatric Nephrology Consortium (MWPNC) study. J Pediatr. 2009;155(1):105–10, 10 e1.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Hoyer PF, Gonda S, Barthels M, Krohn HP, Brodehl J. Thromboembolic complications in children with nephrotic syndrome. Risk and incidence. Acta Paediatr Scand. 1986;75(5):804–10.

    Article  PubMed  CAS  Google Scholar 

  50. Zhang LJ, Wang ZJ, Zhou CS, Lu L, Luo S, Lu GM. Evaluation of pulmonary embolism in pediatric patients with nephrotic syndrome with dual energy CT pulmonary angiography. Acad Radiol. 2012;19(3):341–8.

    Article  PubMed  Google Scholar 

  51. Cueto SM, Cavanaugh SH, Benenson RS, Redclift MS. Computed tomography scan versus ventilation-perfusion lung scan in the detection of pulmonary embolism. J Emerg Med. 2001;21(2):155–64.

    Article  PubMed  CAS  Google Scholar 

  52. Feinstein EI, Kaptein EM, Nicoloff JT, Massry SG. Thyroid function in patients with nephrotic syndrome and normal renal function. Am J Nephrol. 1982;2(2):70–6.

    Article  PubMed  CAS  Google Scholar 

  53. Garin EH, Grant MB, Silverstein JH. Insulinlike growth factors in patients with active nephrotic syndrome. Am J Dis Child. 1989;143(7):865–7.

    PubMed  CAS  Google Scholar 

  54. Southwest Pediatric Nephrology Study Group, Focal segmental glomerulosclerosis in children with idiopathic nephrotic syndrome. A report of the Southwest Pediatric Nephrology Study Group. Kidney Int. 1985;27(2):442–9.

    Google Scholar 

  55. Paik KH, Lee BH, Cho HY, Kang HG, Ha IS, Cheong HI, et al. Primary focal segmental glomerular sclerosis in children: clinical course and prognosis. Pediatr Nephrol. 2007;22(3):389–95.

    Article  PubMed  Google Scholar 

  56. Gipson DS, Chin H, Presler TP, Jennette C, Ferris ME, Massengill S, et al. Differential risk of remission and ESRD in childhood FSGS. Pediatr Nephrol. 2006;21(3):344–9.

    Article  PubMed  Google Scholar 

  57. Ingulli E, Tejani A. Racial differences in the incidence and renal outcome of idiopathic focal segmental glomerulosclerosis in children. Pediatr Nephrol. 1991;5(4):393–7.

    Article  PubMed  CAS  Google Scholar 

  58. Churg J, Habib R, White RH. Pathology of the nephrotic syndrome in children: a report for the International Study of Kidney Disease in Children. Lancet. 1970;760(1):1299–302.

    Article  PubMed  CAS  Google Scholar 

  59. Powell HR. Relationship between proteinuria and epithelial cell changes in minimal lesion glomerulopathy. Nephron. 1976;16(4):310–7.

    Article  PubMed  CAS  Google Scholar 

  60. Kawano K, Wenzl J, McCoy J, Porch J, Kimmelstiel P. Lipoid nephrosis. A multifold blind study, including quantitation. Lab Invest. 1971;24(6):499–503.

    PubMed  CAS  Google Scholar 

  61. Waldherr R, Gubler MC, Levy M, Broyer M, Habib R. The significance of pure diffuse mesangial proliferation in idiopathic nephrotic syndrome. Clin Nephrol. 1978;10(5):171–9.

    PubMed  CAS  Google Scholar 

  62. White RH, Glasgow EF, Mills RJ. Clinicopathological study of nephrotic syndrome in childhood. Lancet. 1970;1(7661):1353–9.

    Article  PubMed  CAS  Google Scholar 

  63. Habib R, Gubler MC. Focal sclerosing glomerulonephritis. Perspect Nephrol Hypertens. 1973;1(Pt 1):263–78.

    PubMed  Google Scholar 

  64. Morita M, White RH, Coad NA, Raafat F. The clinical significance of the glomerular location of segmental lesions in focal segmental glomerulosclerosis. Clin Nephrol. 1990;33(5):211–9.

    PubMed  CAS  Google Scholar 

  65. Howie AJ, Brewer DB. The glomerular tip lesion: a previously undescribed type of segmental glomerular abnormality. J Pathol. 1984;142(3):205–20.

    Article  PubMed  CAS  Google Scholar 

  66. Ito H, Yoshikawa N, Aozai F, Hazikano H, Sakaguchi H, Akamatsu R, et al. Twenty-seven children with focal segmental glomerulosclerosis: correlation between the segmental location of the glomerular lesions and prognosis. Clin Nephrol. 1984;22(1):9–14.

    PubMed  CAS  Google Scholar 

  67. Deegens JK, Steenbergen EJ, Borm GF, Wetzels JF. Pathological variants of focal segmental glomerulosclerosis in an adult Dutch population–epidemiology and outcome. Nephrol Dial Transplant. 2008;23(1):186–92.

    Article  PubMed  Google Scholar 

  68. Huppes W, Hene RJ, Kooiker CJ. The glomerular tip lesion: a distinct entity or not? J Pathol. 1988;154(2):187–90.

    Article  PubMed  CAS  Google Scholar 

  69. Thomas DB, Franceschini N, Hogan SL, Ten Holder S, Jennette CE, Falk RJ, et al. Clinical and pathologic characteristics of focal segmental glomerulosclerosis pathologic variants. Kidney Int. 2006;69(5):920–6.

    Article  PubMed  CAS  Google Scholar 

  70. Fogo A, Hawkins EP, Berry PL, Glick AD, Chiang ML, MacDonell Jr RC, et al. Glomerular hypertrophy in minimal change disease predicts subsequent progression to focal glomerular sclerosis. Kidney Int. 1990;38(1):115–23.

    Article  PubMed  CAS  Google Scholar 

  71. Muda AO, Feriozzi S, Cinotti GA, Faraggiana T. Glomerular hypertrophy and chronic renal failure in focal segmental glomerulosclerosis. Am J Kidney Dis. 1994;23(2):237–41.

    Article  PubMed  CAS  Google Scholar 

  72. Jenis EH, Teichman S, Briggs WA, Sandler P, Hollerman CE, Calcagno PL, et al. Focal segmental glomerulosclerosis. Am J Med. 1974;57(5):695–705.

    Article  PubMed  CAS  Google Scholar 

  73. Erkan E, Garcia CD, Patterson LT, Mishra J, Mitsnefes MM, Kaskel FJ, et al. Induction of renal tubular cell apoptosis in focal segmental glomerulosclerosis: roles of proteinuria and Fas-dependent pathways. J Am Soc Nephrol. 2005;16(2):398–407.

    Article  PubMed  CAS  Google Scholar 

  74. Hyman LR, Burkholder PM. Focal sclerosing glomerulonephropathy with segmental hyalinosis. A clinicopathologic analysis. Lab Invest. 1973;28(5):533–44.

    PubMed  CAS  Google Scholar 

  75. Nagi AH, Alexander F, Lannigan R. Light and electron microscopical studies of focal glomerular sclerosis. J Clin Pathol. 1971;24(9):846–50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Grishman E, Churg J. Focal glomerular sclerosis in nephrotic patients: an electron microscopic study of glomerular podocytes. Kidney Int. 1975;7(2):111–22.

    Article  PubMed  CAS  Google Scholar 

  77. D’Agati VD, Fogo AB, Bruijn JA, Jennette JC. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis. 2004;43(2):368–82.

    Article  PubMed  Google Scholar 

  78. Stokes MB, Markowitz GS, Lin J, Valeri AM, D’Agati VD. Glomerular tip lesion: a distinct entity within the minimal change disease/focal segmental glomerulosclerosis spectrum. Kidney Int. 2004;65(5):1690–702.

    Article  PubMed  Google Scholar 

  79. Abeyagunawardena AS, Sebire NJ, Risdon RA, Dillon MJ, Rees L, Van’t Hoff W, et al. Predictors of long-term outcome of children with idiopathic focal segmental glomerulosclerosis. Pediatr Nephrol. 2007;22(2):215–21.

    Article  PubMed  Google Scholar 

  80. Detwiler RK, Falk RJ, Hogan SL, Jennette JC. Collapsing glomerulopathy: a clinically and pathologically distinct variant of focal segmental glomerulosclerosis. Kidney Int. 1994;45(5):1416–24.

    Article  PubMed  CAS  Google Scholar 

  81. Toth CM, Pascual M, Williams Jr WW, Delmonico FL, Cosimi AB, Colvin RB, et al. Recurrent collapsing glomerulopathy. Transplantation. 1998;65(7):1009–10.

    Article  PubMed  CAS  Google Scholar 

  82. Valeri A, Barisoni L, Appel GB, Seigle R, D’Agati V. Idiopathic collapsing focal segmental glomerulosclerosis: a clinicopathologic study. Kidney Int. 1996;50(5):1734–46.

    Article  PubMed  CAS  Google Scholar 

  83. Barisoni L, Kriz W, Mundel P, D’Agati V. The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol. 1999;10(1):51–61.

    PubMed  CAS  Google Scholar 

  84. Nash MA, Greifer I, Olbing H, Bernstein J, Bennett B, Spitzer A. The significance of focal sclerotic lesions of glomeruli in children. J Pediatr. 1976;88(5):806–13.

    Article  PubMed  CAS  Google Scholar 

  85. Couser WG, Stilmant MM. Mesangial lesions and focal glomerular sclerosis in the aging rat. Lab Invest. 1975;33(5):491–501.

    PubMed  CAS  Google Scholar 

  86. Michael AF, McLean RH, Roy LP, Westberg NG, Hoyer JR, Fish AJ, et al. Immunologic aspects of the nephrotic syndrome. Kidney Int. 1973;3(2):105–15.

    Article  PubMed  CAS  Google Scholar 

  87. Cohen AH, Border WA, Glassock RJ. Nehprotic syndrome with glomerular mesangial IgM deposits. Lab Invest. 1978;38(5):610–9.

    PubMed  CAS  Google Scholar 

  88. Habib R, Girardin E, Gagnadoux MF, Hinglais N, Levy M, Broyer M. Immunopathological findings in idiopathic nephrosis: clinical significance of glomerular “immune deposits”. Pediatr Nephrol. 1988;2(4):402–8.

    Article  PubMed  CAS  Google Scholar 

  89. Southwest Pediatric Nephrology Study Group, Association of IgA nephropathy with steroid-responsive nephrotic syndrome. A report of the Southwest Pediatric Nephrology Study Group. Am J Kidney Dis. 1985;5(3):157–64.

    Google Scholar 

  90. Lai KN, Lai FM, Chan KW, Ho CP, Leung AC, Vallance-Owen J. An overlapping syndrome of IgA nephropathy and lipoid nephrosis. Am J Clin Pathol. 1986;86(6):716–23.

    PubMed  CAS  Google Scholar 

  91. Jennette JC, Hipp CG. C1q nephropathy: a distinct pathologic entity usually causing nephrotic syndrome. Am J Kidney Dis. 1985;6(2):103–10.

    Article  PubMed  CAS  Google Scholar 

  92. Kersnik Levart T, Kenda RB, Avgustin Cavic M, Ferluga D, Hvala A, Vizjak A. C1Q nephropathy in children. Pediatr Nephrol. 2005;20(12):1756–61.

    Article  PubMed  Google Scholar 

  93. Markowitz GS, Schwimmer JA, Stokes MB, Nasr S, Seigle RL, Valeri AM, et al. C1q nephropathy: a variant of focal segmental glomerulosclerosis. Kidney Int. 2003;64(4):1232–40.

    Article  PubMed  CAS  Google Scholar 

  94. Mii A, Shimizu A, Masuda Y, Fujita E, Aki K, Ishizaki M, et al. Current status and issues of C1q nephropathy. Clin Exp Nephrol. 2009;13(4):263–74.

    Article  PubMed  CAS  Google Scholar 

  95. Carrie BJ, Salyer WR, Myers BD. Minimal change nephropathy: an electrochemical disorder of the glomerular membrane. Am J Med. 1981;70(2):262–8.

    Article  PubMed  CAS  Google Scholar 

  96. Kitano Y, Yoshikawa N, Nakamura H. Glomerular anionic sites in minimal change nephrotic syndrome and focal segmental glomerulosclerosis. Clin Nephrol. 1993;40(4):199–204.

    PubMed  CAS  Google Scholar 

  97. van den Born J, van den Heuvel LP, Bakker MA, Veerkamp JH, Assmann KJ, Berden JH. A monoclonal antibody against GBM heparan sulfate induces an acute selective proteinuria in rats. Kidney Int. 1992;41(1):115–23.

    Article  PubMed  Google Scholar 

  98. Guasch A, Deen WM, Myers BD. Charge selectivity of the glomerular filtration barrier in healthy and nephrotic humans. J Clin Invest. 1993;92(5):2274–82.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  99. Shalhoub RJ. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet. 1974;2(7880):556–60.

    Article  PubMed  CAS  Google Scholar 

  100. Savin VJ, Sharma R, Sharma M, McCarthy ET, Swan SK, Ellis E, et al. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N Engl J Med. 1996;334(14):878–83.

    Article  PubMed  CAS  Google Scholar 

  101. Ritz E. Pathogenesis of “idiopathic” nephrotic syndrome. N Engl J Med. 1994;330(1):61–2.

    Article  PubMed  CAS  Google Scholar 

  102. Ali AA, Wilson E, Moorhead JF, Amlot P, Abdulla A, Fernando ON, et al. Minimal-change glomerular nephritis. Normal kidneys in an abnormal environment? Transplantation. 1994;58(7):849–52.

    Article  PubMed  CAS  Google Scholar 

  103. Hoyer JR, Vernier RL, Najarian JS, Raij L, Simmons RL, Michael AF. Recurrence of idiopathic nephrotic syndrome after renal transplantation. Lancet. 1972;2(7773):343–8.

    Article  PubMed  CAS  Google Scholar 

  104. Dantal J, Godfrin Y, Koll R, Perretto S, Naulet J, Bouhours JF, et al. Antihuman immunoglobulin affinity immunoadsorption strongly decreases proteinuria in patients with relapsing nephrotic syndrome. J Am Soc Nephrol. 1998;9(9):1709–15.

    PubMed  CAS  Google Scholar 

  105. Zimmerman SW. Increased urinary protein excretion in the rat produced by serum from a patient with recurrent focal glomerular sclerosis after renal transplantation. Clin Nephrol. 1984;22(1):32–8.

    PubMed  CAS  Google Scholar 

  106. Le Berre L, Godfrin Y, Gunther E, Buzelin F, Perretto S, Smit H, et al. Extrarenal effects on the pathogenesis and relapse of idiopathic nephrotic syndrome in Buffalo/Mna rats. J Clin Invest. 2002;109(4):491–8.

    Article  PubMed Central  PubMed  Google Scholar 

  107. Lagrue G, Niaudet P, Guillot F, Lang P. Pregnancy and glomerulonephritis. Lancet. 1989;2(8670):1037.

    Article  PubMed  CAS  Google Scholar 

  108. Kemper MJ, Wolf G, Muller-Wiefel DE. Transmission of glomerular permeability factor from a mother to her child. N Engl J Med. 2001;344(5):386–7.

    Article  PubMed  CAS  Google Scholar 

  109. Lagrue G, Branellec A, Blanc C, Xheneumont S, Beaudoux F, Sobel A, et al. A vascular permeability factor in lymphocyte culture supernants from patients with nephrotic syndrome. II. Pharmacological and physicochemical properties. Biomedicine/[publiee pour l’AAICIG]. 1975;23(2):73–5.

    CAS  Google Scholar 

  110. Grimbert P, Valanciute A, Audard V, Pawlak A, Le gouvelo S, Lang P, et al. Truncation of C-mip (Tc-mip), a new proximal signaling protein, induces c-maf Th2 transcription factor and cytoskeleton reorganization. J Exp Med. 2003;198(5):797–807.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Mansour H, Cheval L, Elalouf JM, Aude JC, Alyanakian MA, Mougenot B, et al. T-cell transcriptome analysis points up a thymic disorder in idiopathic nephrotic syndrome. Kidney Int. 2005;67(6):2168–77.

    Article  PubMed  CAS  Google Scholar 

  112. Van Den Berg JG, Aten J, Chand MA, Claessen N, Dijkink L, Wijdenes J, et al. Interleukin-4 and interleukin-13 act on glomerular visceral epithelial cells. J Am Soc Nephrol. 2000;11(3):413–22.

    Google Scholar 

  113. Yap HK, Cheung W, Murugasu B, Sim SK, Seah CC, Jordan SC. Th1 and Th2 cytokine mRNA profiles in childhood nephrotic syndrome: evidence for increased IL-13 mRNA expression in relapse. J Am Soc Nephrol. 1999;10(3):529–37.

    PubMed  CAS  Google Scholar 

  114. Valanciute A, le Gouvello S, Solhonne B, Pawlak A, Grimbert P, Lyonnet L, et al. NF-kappa B p65 antagonizes IL-4 induction by c-maf in minimal change nephrotic syndrome. J Immunol. 2004;172(1):688–98.

    Article  PubMed  CAS  Google Scholar 

  115. Sahali D, Pawlak A, Le Gouvello S, Lang P, Valanciute A, Remy P, et al. Transcriptional and post-transcriptional alterations of IkappaBalpha in active minimal-change nephrotic syndrome. J Am Soc Nephrol. 2001;12(8):1648–58.

    PubMed  CAS  Google Scholar 

  116. Sahali D, Pawlak A, Valanciute A, Grimbert P, Lang P, Remy P, et al. A novel approach to investigation of the pathogenesis of active minimal-change nephrotic syndrome using subtracted cDNA library screening. J Am Soc Nephrol. 2002;13(5):1238–47.

    PubMed  CAS  Google Scholar 

  117. McCarthy ET, Sharma M, Savin VJ. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2010;5(11):2115–21.

    Article  PubMed  Google Scholar 

  118. Cheung PK, Klok PA, Baller JF, Bakker WW. Induction of experimental proteinuria in vivo following infusion of human plasma hemopexin. Kidney Int. 2000;57(4):1512–20.

    Article  PubMed  CAS  Google Scholar 

  119. Bakker WW, Borghuis T, Harmsen MC, van den Berg A, Kema IP, Niezen KE, et al. Protease activity of plasma hemopexin. Kidney Int. 2005;68(2):603–10.

    Article  PubMed  CAS  Google Scholar 

  120. Bakker WW, van Dael CM, Pierik LJ, van Wijk JA, Nauta J, Borghuis T, et al. Altered activity of plasma hemopexin in patients with minimal change disease in relapse. Pediatr Nephrol. 2005;20(10):1410–5.

    Article  PubMed  Google Scholar 

  121. Lennon R, Singh A, Welsh GI, Coward RJ, Satchell S, Ni L, et al. Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol. 2008;19(11):2140–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  122. Bock ME, Price HE, Gallon L, Langman CB. Serum soluble urokinase-type plasminogen activator receptor levels and idiopathic FSGS in children: a single-center report. Clin J Am Soc Nephrol. 2013;8(8):1304–11.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Cathelin D, Placier S, Ploug M, Verpont MC, Vandermeersch S, Luque Y, et al. Administration of recombinant soluble urokinase receptor per se is not sufficient to induce podocyte alterations and proteinuria in mice. J Am Soc Nephrol. 2014;25:1662–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  124. Sier CF, Stephens R, Bizik J, Mariani A, Bassan M, Pedersen N, et al. The level of urokinase-type plasminogen activator receptor is increased in serum of ovarian cancer patients. Cancer Res. 1998;58(9):1843–9.

    PubMed  CAS  Google Scholar 

  125. Sidenius N, Sier CF, Ullum H, Pedersen BK, Lepri AC, Blasi F, et al. Serum level of soluble urokinase-type plasminogen activator receptor is a strong and independent predictor of survival in human immunodeficiency virus infection. Blood. 2000;96(13):4091–5.

    PubMed  CAS  Google Scholar 

  126. Maas RJ, Deegens JK, Wetzels JF. Serum suPAR in patients with FSGS: trash or treasure? Pediatr Nephrol. 2013;28:1041–8.

    Article  PubMed  Google Scholar 

  127. Sever S, Trachtman H, Wei C, Reiser J. Is there clinical value in measuring suPAR levels in FSGS? Clin J Am Soc Nephrol. 2013;8(8):1273–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  128. Meijers B, Maas RJ, Sprangers B, Claes K, Poesen R, Bammens B, et al. The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis. Kidney Int. 2014;85(3):636–40.

    Article  PubMed  CAS  Google Scholar 

  129. Sinha A, Bajpai J, Saini S, Bhatia D, Gupta A, Puraswani M, et al. Serum-soluble urokinase receptor levels do not distinguish focal segmental glomerulosclerosis from other causes of nephrotic syndrome in children. Kidney Int. 2014;85(3):649–58.

    Article  PubMed  CAS  Google Scholar 

  130. Wada T, Nangaku M, Maruyama S, Imai E, Shoji K, Kato S, et al. A multicenter cross-sectional study of circulating soluble urokinase receptor in Japanese patients with glomerular disease. Kidney Int. 2014;85(3):641–8.

    Article  PubMed  CAS  Google Scholar 

  131. Deegens JK, Wetzels JF. Glomerular disease: the search goes on: suPAR is not the elusive FSGS factor. Nat Rev Nephrol. 2014;10(8):431–2.

    Article  PubMed  CAS  Google Scholar 

  132. Grimbert P, Audard V, Remy P, Lang P, Sahali D. Recent approaches to the pathogenesis of minimal-change nephrotic syndrome. Nephrol Dial Transplant. 2003;18(2):245–8.

    Article  PubMed  CAS  Google Scholar 

  133. Kemper MJ, Meyer-Jark T, Lilova M, Muller-Wiefel DE. Combined T- and B-cell activation in childhood steroid-sensitive nephrotic syndrome. Clin Nephrol. 2003;60(4):242–7.

    Article  PubMed  CAS  Google Scholar 

  134. Guigonis V, Dallocchio A, Baudouin V, Dehennault M, Hachon-Le Camus C, Afanetti M, et al. Rituximab treatment for severe steroid- or cyclosporine-dependent nephrotic syndrome: a multicentric series of 22 cases. Pediatr Nephrol. 2008;23(8):1269–79.

    Article  PubMed  Google Scholar 

  135. Ravani P, Magnasco A, Edefonti A, Murer L, Rossi R, Ghio L, et al. Short-term effects of rituximab in children with steroid- and calcineurin-dependent nephrotic syndrome: a randomized controlled trial. Clin J Am Soc Nephrol. 2011;6:1308–15.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  136. Sellier-Leclerc AL, Macher MA, Loirat C, Guerin V, Watier H, Peuchmaur M, et al. Rituximab efficiency in children with steroid-dependent nephrotic syndrome. Pediatr Nephrol. 2010;25(6):1109–15.

    Article  PubMed  Google Scholar 

  137. Haffner D, Fischer DC. Nephrotic syndrome and rituximab: facts and perspectives. Pediatr Nephrol. 2009;24(8):1433–8.

    Article  PubMed  Google Scholar 

  138. Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN, et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med. 2011;3(85):85ra46.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  139. Sellier-Leclerc AL, Duval A, Riveron S, Macher MA, Deschenes G, Loirat C, et al. A humanized mouse model of idiopathic nephrotic syndrome suggests a pathogenic role for immature cells. J Am Soc Nephrol. 2007;18(10):2732–9.

    Article  PubMed  Google Scholar 

  140. Garin EH, Diaz LN, Mu W, Wasserfall C, Araya C, Segal M, et al. Urinary CD80 excretion increases in idiopathic minimal-change disease. J Am Soc Nephrol. 2009;20(2):260–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  141. Teeninga N, Kist-van Holthe JE, van Rijswijk N, de Mos NI, Hop WC, Wetzels JF, et al. Extending prednisolone treatment does not reduce relapses in childhood nephrotic syndrome. J Am Soc Nephrol. 2013;24(1):149–59.

    Article  PubMed  CAS  Google Scholar 

  142. Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest. 2004;113(10):1390–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  143. Audard V, Zhang SY, Copie-Bergman C, Rucker-Martin C, Ory V, Candelier M, et al. Occurrence of minimal change nephrotic syndrome in classical Hodgkin lymphoma is closely related to the induction of c-mip in Hodgkin-Reed Sternberg cells and podocytes. Blood. 2010;115(18):3756–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  144. Zhang SY, Kamal M, Dahan K, Pawlak A, Ory V, Desvaux D, et al. c-mip impairs podocyte proximal signaling and induces heavy proteinuria. Sci Signal. 2010;3(122):ra39.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  145. Cara-Fuentes G, Johnson RJ, Reiser J, Garin EH. CD80 and suPAR in patients with minimal change disease and focal segmental glomerulosclerosis: diagnostic and pathogenic significance: response. Pediatr Nephrol. 2014;29(8):1467–8.

    Article  PubMed Central  PubMed  Google Scholar 

  146. Doucet A, Favre G, Deschenes G. Molecular mechanism of edema formation in nephrotic syndrome: therapeutic implications. Pediatr Nephrol. 2007;22(12):1983–90.

    Article  PubMed Central  PubMed  Google Scholar 

  147. Haws RM, Baum M. Efficacy of albumin and diuretic therapy in children with nephrotic syndrome. Pediatrics. 1993;91(6):1142–6.

    PubMed  CAS  Google Scholar 

  148. Rascher W, Tulassay T, Seyberth HW, Himbert U, Lang U, Scharer K. Diuretic and hormonal responses to head-out water immersion in nephrotic syndrome. J Pediatr. 1986;109(4):609–14.

    Article  PubMed  CAS  Google Scholar 

  149. Taylor B, Andrews N, Stowe J, Hamidi-Manesh L, Miller E. No increased risk of relapse after meningococcal C conjugate vaccine in nephrotic syndrome. Arch Dis Child. 2007;92(10):887–9.

    Article  PubMed Central  PubMed  Google Scholar 

  150. Ulinski T, Leroy S, Dubrel M, Danon S, Bensman A. High serological response to pneumococcal vaccine in nephrotic children at disease onset on high-dose prednisone. Pediatr Nephrol. 2008;23(7):1107–13.

    Article  PubMed  Google Scholar 

  151. Alpay H, Yildiz N, Onar A, Temizer H, Ozcay S. Varicella vaccination in children with steroid-sensitive nephrotic syndrome. Pediatr Nephrol. 2002;17(3):181–3.

    Article  PubMed  Google Scholar 

  152. Furth SL, Arbus GS, Hogg R, Tarver J, Chan C, Fivush BA. Varicella vaccination in children with nephrotic syndrome: a report of the Southwest Pediatric Nephrology Study Group. J Pediatr. 2003;142(2):145–8.

    Article  PubMed  Google Scholar 

  153. Elisaf M, Dardamanis M, Pappas M, Sferopoulos G, Siamopoulos KC. Treatment of nephrotic hyperlipidemia with lovastatin. Clin Nephrol. 1991;36(1):50–2.

    PubMed  CAS  Google Scholar 

  154. Wheeler DC, Bernard DB. Lipid abnormalities in the nephrotic syndrome: causes, consequences, and treatment. Am J Kidney Dis. 1994;23(3):331–46.

    Article  PubMed  CAS  Google Scholar 

  155. Prescott Jr WA, Streetman DA, Streetman DS. The potential role of HMG-CoA reductase inhibitors in pediatric nephrotic syndrome. Ann Pharmacother. 2004;38(12):2105–14.

    Article  PubMed  CAS  Google Scholar 

  156. Bak M, Serdaroglu E, Guclu R. Prophylactic calcium and vitamin D treatments in steroid-treated children with nephrotic syndrome. Pediatr Nephrol. 2006;21(3):350–4.

    Article  PubMed  Google Scholar 

  157. Woroniecki RP, Orlova TN, Mendelev N, Shatat IF, Hailpern SM, Kaskel FJ, et al. Urinary proteome of steroid-sensitive and steroid-resistant idiopathic nephrotic syndrome of childhood. Am J Nephrol. 2006;26(3):258–67.

    Article  PubMed  CAS  Google Scholar 

  158. Trainin EB, Boichis H, Spitzer A, Edelmann Jr CM, Greifer I. Late nonresponsiveness to steroids in children with the nephrotic syndrome. J Pediatr. 1975;87(4):519–23.

    Article  PubMed  CAS  Google Scholar 

  159. Tune BM, Mendoza SA. Treatment of the idiopathic nephrotic syndrome: regimens and outcomes in children and adults. J Am Soc Nephrol. 1997;8(5):824–32.

    PubMed  CAS  Google Scholar 

  160. McEnery PT, Strife CF. Nephrotic syndrome in childhood. Management and treatment in patients with minimal change disease, mesangial proliferation, or focal glomerulosclerosis. Pediatr Clin North Am. 1982;29(4):875–94.

    PubMed  CAS  Google Scholar 

  161. International Study of Kidney Disease in Children, The primary nephrotic syndrome in children. Identification of patients with minimal change nephrotic syndrome from initial response to prednisone. A report of the International Study of Kidney Disease in Children. J Pediatr. 1981;98(4):561–4.

    Google Scholar 

  162. Arbetsgemeinschaft fur Padiatrische Nephrologie, Alternate-day versus intermittent prednisone in frequently relapsing nephrotic syndrome. A report of “Arbetsgemeinschaft fur Padiatrische Nephrologie”. Lancet. 1979;1(8113):401–3.

    Google Scholar 

  163. Murnaghan K, Vasmant D, Bensman A. Pulse methylprednisolone therapy in severe idiopathic childhood nephrotic syndrome. Acta Paediatr Scand. 1984;73(6):733–9.

    Article  PubMed  CAS  Google Scholar 

  164. Lombel RM, Gipson DS, Hodson EM. Treatment of steroid-sensitive nephrotic syndrome: new guidelines from KDIGO. Pediatr Nephrol 2013;28:415–26.

    Google Scholar 

  165. Ehrich JH, Brodehl J. Long versus standard prednisone therapy for initial treatment of idiopathic nephrotic syndrome in children. Arbeitsgemeinschaft fur Padiatrische Nephrologie. Eur J Pediatr. 1993;152(4):357–61.

    Article  PubMed  CAS  Google Scholar 

  166. Bagga A, Hari P, Srivastava RN. Prolonged versus standard prednisolone therapy for initial episode of nephrotic syndrome. Pediatr Nephrol. 1999;13(9):824–7.

    Article  PubMed  CAS  Google Scholar 

  167. Ksiazek J, Wyszynska T. Short versus long initial prednisone treatment in steroid-sensitive nephrotic syndrome in children. Acta Paediatr. 1995;84(8):889–93.

    Article  PubMed  CAS  Google Scholar 

  168. Norero C, Delucchi A, Lagos E, Rosati P. Initial therapy of primary nephrotic syndrome in children: evaluation in a period of 18 months of two prednisone treatment schedules. Chilean Co-operative Group of Study of Nephrotic Syndrome in Children. Rev Med Chil. 1996;124(5):567–72.

    PubMed  CAS  Google Scholar 

  169. Ueda N, Chihara M, Kawaguchi S, Niinomi Y, Nonoda T, Matsumoto J, et al. Intermittent versus long-term tapering prednisolone for initial therapy in children with idiopathic nephrotic syndrome. J Pediatr. 1988;112(1):122–6.

    Article  PubMed  CAS  Google Scholar 

  170. Hodson EM, Knight JF, Willis NS, Craig JC. Corticosteroid therapy for nephrotic syndrome in children. Cochrane Database Syst Rev. 2005;1:CD001533.

    PubMed  Google Scholar 

  171. Yoshikawa N, Nakanishi K, Sako M, Oba MS, Mori R, Ota E, et al. A multicenter randomized trial indicates initial prednisolone treatment for childhood nephrotic syndrome for two months is not inferior to six-month treatment. Kidney Int. 2014; doi:10.1038/ki.2014.260.

    Google Scholar 

  172. Sinha A, Saha A, Kumar M, Sharma S, Afzal K, Mehta A, et al. Extending initial prednisolone treatment in a randomized control trial from 3 to 6 months did not significantly influence the course of illness in children with steroid-sensitive nephrotic syndrome. Kidney Int. 2014; doi:10.1038/ki.2014.240.

    Google Scholar 

  173. Hodson EM, Willis NS, Craig JC. Corticosteroid therapy for nephrotic syndrome in children. Cochrane Database Syst Rev. 2007;4:CD001533.

    PubMed  Google Scholar 

  174. Leisti S, Koskimies O. Risk of relapse in steroid-sensitive nephrotic syndrome: effect of stage of post-prednisone adrenocortical suppression. J Pediatr. 1983;103(4):553–7.

    Article  PubMed  CAS  Google Scholar 

  175. Schoeneman MJ. Minimal change nephrotic syndrome: treatment with low doses of hydrocortisone. J Pediatr. 1983;102(5):791–3.

    Article  PubMed  CAS  Google Scholar 

  176. Abeyagunawardena AS, Hindmarsh P, Trompeter RS. Adrenocortical suppression increases the risk of relapse in nephrotic syndrome. Arch Dis Child. 2007;92(7):585–8.

    Article  PubMed Central  PubMed  Google Scholar 

  177. Hoyer PF, Brodeh J. Initial treatment of idiopathic nephrotic syndrome in children: prednisone versus prednisone plus cyclosporine A: a prospective, randomized trial. J Am Soc Nephrol. 2006;17(4):1151–7.

    Article  PubMed  CAS  Google Scholar 

  178. Teeninga N, Kist-van Holthe JE, van den Akker EL, Kersten MC, Boersma E, Krabbe HG, et al. Genetic and in vivo determinants of glucocorticoid sensitivity in relation to clinical outcome of childhood nephrotic syndrome. Kidney Int. 2014;85:1444–53.

    Article  PubMed  CAS  Google Scholar 

  179. Broyer M, Terzi F, Lehnert A, Gagnadoux MF, Guest G, Niaudet P. A controlled study of deflazacort in the treatment of idiopathic nephrotic syndrome. Pediatr Nephrol. 1997;11(4):418–22.

    Article  PubMed  CAS  Google Scholar 

  180. MacDonald NE, Wolfish N, McLaine P, Phipps P, Rossier E. Role of respiratory viruses in exacerbations of primary nephrotic syndrome. J Pediatr. 1986;108(3):378–82.

    Article  PubMed  CAS  Google Scholar 

  181. Abeyagunawardena AS, Trompeter RS. Increasing the dose of prednisolone during viral infections reduces the risk of relapse in nephrotic syndrome: a randomised controlled trial. Arch Dis Child. 2008;93(3):226–8.

    Article  PubMed  CAS  Google Scholar 

  182. Gulati A, Sinha A, Sreenivas V, Math A, Hari P, Bagga A. Daily corticosteroids reduce infection-associated relapses in frequently relapsing nephrotic syndrome: a randomized controlled trial. Clin J Am Soc Nephrol. 2011;6(1):63–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  183. Mattoo TK, Mahmoud MA. Increased maintenance corticosteroids during upper respiratory infection decrease the risk of relapse in nephrotic syndrome. Nephron. 2000;85(4):343–5.

    Article  PubMed  CAS  Google Scholar 

  184. Polito C, Oporto MR, Totino SF, La Manna A, Di Toro R. Normal growth of nephrotic children during long-term alternate-day prednisone therapy. Acta Paediatr Scand. 1986;75(2):245–50.

    Article  PubMed  CAS  Google Scholar 

  185. Donatti TL, Koch VH, Fujimura MD, Okay Y. Growth in steroid-responsive nephrotic syndrome: a study of 85 pediatric patients. Pediatr Nephrol. 2003;18(8):789–95.

    Article  PubMed  Google Scholar 

  186. Emma F, Sesto A, Rizzoni G. Long-term linear growth of children with severe steroid-responsive nephrotic syndrome. Pediatr Nephrol. 2003;18(8):783–8.

    Article  PubMed  Google Scholar 

  187. Fakhouri F, Bocquet N, Taupin P, Presne C, Gagnadoux MF, Landais P, et al. Steroid-sensitive nephrotic syndrome: from childhood to adulthood. Am J Kidney Dis. 2003;41(3):550–7.

    Article  PubMed  Google Scholar 

  188. Leonard MB, Feldman HI, Shults J, Zemel BS, Foster BJ, Stallings VA. Long-term, high-dose glucocorticoids and bone mineral content in childhood glucocorticoid-sensitive nephrotic syndrome. N Engl J Med. 2004;351(9):868–75.

    Article  PubMed  CAS  Google Scholar 

  189. Biyikli NK, Emre S, Sirin A, Bilge I. Biochemical bone markers in nephrotic children. Pediatr Nephrol. 2004;19(8):869–73.

    Article  PubMed  Google Scholar 

  190. Kim SD, Cho BS. Pamidronate therapy for preventing steroid-induced osteoporosis in children with nephropathy. Nephron Clin Pract. 2006;102(3–4):c81–7.

    Article  PubMed  CAS  Google Scholar 

  191. Tanphaichitr P, Tanphaichitr D, Sureeratanan J, Chatasingh S. Treatment of nephrotic syndrome with levamisole. J Pediatr. 1980;96(3 Pt 1):490–3.

    Article  PubMed  CAS  Google Scholar 

  192. Boyer O, Moulder JK, Grandin L, Somers MJ. Short- and long-term efficacy of levamisole as adjunctive therapy in childhood nephrotic syndrome. Pediatr Nephrol. 2008;23(4):575–80.

    Article  PubMed  Google Scholar 

  193. Drachman R, Schlesinger M, Alon U, Mor J, Etzioni A, Shapira H, et al. Immunoregulation with levamisole in children with frequently relapsing steroid responsive nephrotic syndrome. Acta Paediatr Scand. 1988;77(5):721–6.

    Article  PubMed  CAS  Google Scholar 

  194. Mehta KP, Ali U, Kutty M, Kolhatkar U. Immunoregulatory treatment for minimal change nephrotic syndrome. Arch Dis Child. 1986;61(2):153–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  195. Mongeau JG, Robitaille PO, Roy F. Clinical efficacy of levamisole in the treatment of primary nephrosis in children. Pediatr Nephrol. 1988;2(4):398–401.

    Article  PubMed  CAS  Google Scholar 

  196. Niaudet P, Drachman R, Gagnadoux MF, Broyer M. Treatment of idiopathic nephrotic syndrome with levamisole. Acta Paediatr Scand. 1984;73(5):637–41.

    Article  PubMed  CAS  Google Scholar 

  197. British Association for Paediatric Nephrology. Levamisole for corticosteroid-dependent nephrotic syndrome in childhood. Lancet. 1991;337(8757):1555–7.

    Google Scholar 

  198. Dayal U, Dayal AK, Shastry JC, Raghupathy P. Use of levamisole in maintaining remission in steroid-sensitive nephrotic syndrome in children. Nephron. 1994;66(4):408–12.

    Article  PubMed  CAS  Google Scholar 

  199. Al-Saran K, Mirza K, Al-Ghanam G, Abdelkarim M. Experience with levamisole in frequently relapsing, steroid-dependent nephrotic syndrome. Pediatr Nephrol. 2006;21(2):201–5.

    Article  PubMed  CAS  Google Scholar 

  200. Barbano G, Ginevri F, Ghiggeri GM, Gusmano R. Disseminated autoimmune disease during levamisole treatment of nephrotic syndrome. Pediatr Nephrol. 1999;13(7):602–3.

    Article  PubMed  CAS  Google Scholar 

  201. Davin JC, Merkus MP. Levamisole in steroid-sensitive nephrotic syndrome of childhood: the lost paradise? Pediatr Nephrol. 2005;20(1):10–4.

    Article  PubMed  CAS  Google Scholar 

  202. Palcoux JB, Niaudet P, Goumy P. Side effects of levamisole in children with nephrosis. Pediatr Nephrol. 1994;8(2):263–4.

    Article  PubMed  CAS  Google Scholar 

  203. Hodson EM, Willis NS, Craig JC. Non-corticosteroid treatment for nephrotic syndrome in children. Cochrane Database Syst Rev. 2008;1:CD002290.

    PubMed  Google Scholar 

  204. Cameron JS, Chantler C, Ogg CS, White RH. Long-term stability of remission in nephrotic syndrome after treatment with cyclophosphamide. Br Med J. 1974;4(5935):7–11.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  205. Chiu J, Drummond KN. Long-term follow-up of cyclophosphamide therapy in frequent relapsing minimal lesion nephrotic syndrome. J Pediatr. 1974;84(6):825–30.

    Article  PubMed  CAS  Google Scholar 

  206. McDonald J, Murphy AV, Arneil GC. Long-term assessment of cyclophosphamide therapy for nephrosis in children. Lancet. 1974;2(7887):980–2.

    Article  PubMed  CAS  Google Scholar 

  207. Vester U, Kranz B, Zimmermann S, Buscher R, Hoyer PF. The response to cyclophosphamide in steroid-sensitive nephrotic syndrome is influenced by polymorphic expression of glutathion-S-transferases-M1 and -P1. Pediatr Nephrol. 2005;20(4):478–81.

    Article  PubMed  Google Scholar 

  208. International study of Kidney Disease in Children, Prospective, controlled trial of cyclophosphamide therapy in children with nephrotic syndrome. Report of the International study of Kidney Disease in Children. Lancet. 1974;2(7878):423–7.

    Google Scholar 

  209. Dundon S, O’Callaghan U, Raftery J. Stability of remission in minimal lesion nephrotic syndrome after treatment with prednisolone and cyclophosphamide. Int J Pediatr Nephrol. 1980;1(1):22–5.

    PubMed  CAS  Google Scholar 

  210. Siegel NJ, Gaudio KM, Krassner LS, McDonald BM, Anderson FP, Kashgarian M. Steroid-dependent nephrotic syndrome in children: histopathology and relapses after cyclophosphamide treatment. Kidney Int. 1981;19(3):454–9.

    Article  PubMed  CAS  Google Scholar 

  211. Arbeitsgemeinschaft fur Padiatrische Nephrologie, Cyclophosphamide treatment of steroid dependent nephrotic syndrome: comparison of eight week with 12 week course. Report of Arbeitsgemeinschaft fur Padiatrische Nephrologie. Arch Dis Child. 1987;62(11):1102–6.

    Google Scholar 

  212. Ueda N, Kuno K, Ito S. Eight and 12 week courses of cyclophosphamide in nephrotic syndrome. Arch Dis Child. 1990;65(10):1147–50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  213. Kemper MJ, Altrogge H, Ludwig K, Timmermann K, Muller-Wiefel DE. Unfavorable response to cyclophosphamide in steroid-dependent nephrotic syndrome. Pediatr Nephrol. 2000;14(8–9):772–5.

    Article  PubMed  CAS  Google Scholar 

  214. Kyrieleis HA, Levtchenko EN, Wetzels JF. Long-term outcome after cyclophosphamide treatment in children with steroid-dependent and frequently relapsing minimal change nephrotic syndrome. Am J Kidney Dis. 2007;49(5):592–7.

    Article  PubMed  CAS  Google Scholar 

  215. Cammas B, Harambat J, Bertholet-Thomas A, Bouissou F, Morin D, Guigonis V, et al. Long-term effects of cyclophosphamide therapy in steroid-dependent or frequently relapsing idiopathic nephrotic syndrome. Nephrol Dial Transplant. 2011;26(1):178–84.

    Article  PubMed  CAS  Google Scholar 

  216. Azib S, Macher MA, Kwon T, Dechartres A, Alberti C, Loirat C, et al. Cyclophosphamide in steroid-dependent nephrotic syndrome. Pediatr Nephrol. 2011;26(6):927–32.

    Article  PubMed  Google Scholar 

  217. Zagury A, de Oliveira AL, de Moraes CA, de Araujo Montalvao JA, Novaes RH, de Sa VM, et al. Long-term follow-up after cyclophosphamide therapy in steroid-dependent nephrotic syndrome. Pediatr Nephrol. 2011;26(6):915–20.

    Article  PubMed  Google Scholar 

  218. Arbeitsgemeinschaft fur Padiatrische Nephrologie, Effect of cytotoxic drugs in frequently relapsing nephrotic syndrome with and without steroid dependence. N Engl J Med. 1982;306(8):451–4.

    Google Scholar 

  219. Gulati S, Pokhariyal S, Sharma RK, Elhence R, Kher V, Pandey CM, et al. Pulse cyclophosphamide therapy in frequently relapsing nephrotic syndrome. Nephrol Dial Transplant. 2001;16(10):2013–7.

    Article  PubMed  CAS  Google Scholar 

  220. Donia AF, Gazareen SH, Ahmed HA, Moustafa FE, Shoeib AA, Ismail AM, et al. Pulse cyclophosphamide inadequately suppresses reoccurrence of minimal change nephrotic syndrome in corticoid-dependent children. Nephrol Dial Transplant. 2003;18(10):2054–8.

    Article  PubMed  CAS  Google Scholar 

  221. Prasad N, Gulati S, Sharma RK, Singh U, Ahmed M. Pulse cyclophosphamide therapy in steroid-dependent nephrotic syndrome. Pediatr Nephrol. 2004;19(5):494–8.

    Article  PubMed  Google Scholar 

  222. Latta K, von Schnakenburg C, Ehrich JH. A meta-analysis of cytotoxic treatment for frequently relapsing nephrotic syndrome in children. Pediatr Nephrol. 2001;16(3):271–82.

    Article  PubMed  CAS  Google Scholar 

  223. Hsu AC, Folami AO, Bain J, Rance CP. Gonadal function in males treated with cyclophosphamide for nephrotic syndrome. Fertil Steril. 1979;31(2):173–7.

    PubMed  CAS  Google Scholar 

  224. Penso J, Lippe B, Ehrlich R, Smith Jr FG. Testicular function in prepubertal and pubertal male patients treated with cyclophosphamide for nephrotic syndrome. J Pediatr. 1974;84(6):831–6.

    Article  PubMed  CAS  Google Scholar 

  225. Trompeter RS, Evans PR, Barratt TM. Gonadal function in boys with steroid-responsive nephrotic syndrome treated with cyclophosphamide for short periods. Lancet. 1981;1(8231):1177–9.

    Article  PubMed  CAS  Google Scholar 

  226. Watson AR, Taylor J, Rance CP, Bain J. Gonadal function in women treated with cyclophosphamide for childhood nephrotic syndrome: a long-term follow-up study. Fertil Steril. 1986;46(2):331–3.

    PubMed  CAS  Google Scholar 

  227. Baluarte HJ, Hiner L, Gruskin AB. Chlorambucil dosage in frequently relapsing nephrotic syndrome: a controlled clinical trial. J Pediatr. 1978;92(2):295–8.

    Article  PubMed  CAS  Google Scholar 

  228. Grupe WE, Makker SP, Ingelfinger JR. Chlorambucil treatment of frequently relapsing nephrotic syndrome. N Engl J Med. 1976;295(14):746–9.

    Article  PubMed  CAS  Google Scholar 

  229. Williams SA, Makker SP, Ingelfinger JR, Grupe WE. Long-term evaluation of chlorambucil plus prednisone in the idiopathic nephrotic syndrome of childhood. N Engl J Med. 1980;302(17):929–33.

    Article  PubMed  CAS  Google Scholar 

  230. Niaudet P, Habib R. Cyclosporine in the treatment of idiopathic nephrosis. J Am Soc Nephrol. 1994;5(4):1049–56.

    PubMed  CAS  Google Scholar 

  231. Ishikura K, Yoshikawa N, Nakazato H, Sasaki S, Iijima K, Nakanishi K, et al. Two-year follow-up of a prospective clinical trial of cyclosporine for frequently relapsing nephrotic syndrome in children. Clin J Am Soc Nephrol. 2012;7(10):1576–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  232. Hulton SA, Neuhaus TJ, Dillon MJ, Barratt TM. Long-term cyclosporin A treatment of minimal-change nephrotic syndrome of childhood. Pediatr Nephrol. 1994;8(4):401–3.

    Article  PubMed  CAS  Google Scholar 

  233. Niaudet P. Comparison of cyclosporin and chlorambucil in the treatment of steroid-dependent idiopathic nephrotic syndrome: a multicentre randomized controlled trial. The French Society of Paediatric Nephrology. Pediatr Nephrol. 1992;6(1):1–3.

    Article  PubMed  CAS  Google Scholar 

  234. Ponticelli C, Edefonti A, Ghio L, Rizzoni G, Rinaldi S, Gusmano R, et al. Cyclosporin versus cyclophosphamide for patients with steroid-dependent and frequently relapsing idiopathic nephrotic syndrome: a multicentre randomized controlled trial. Nephrol Dial Transplant. 1993;8(12):1326–32.

    PubMed  CAS  Google Scholar 

  235. Tejani A, Suthanthiran M, Pomrantz A. A randomized controlled trial of low-dose prednisone and ciclosporin versus high-dose prednisone in nephrotic syndrome of children. Nephron. 1991;59(1):96–9.

    Article  PubMed  CAS  Google Scholar 

  236. Hirano T, Kawamura T, Fukuda S, Kohsaka S, Yoshikawa N, Yoshida M, et al. Implication of cholesterol in cyclosporine pharmacodynamics in minimal change nephrotic syndrome. Clin Pharmacol Ther. 2003;74(6):581–90.

    Article  PubMed  CAS  Google Scholar 

  237. Ingulli E, Tejani A. Severe hypercholesterolemia inhibits cyclosporin A efficacy in a dose-dependent manner in children with nephrotic syndrome. J Am Soc Nephrol. 1992;3(2):254–9.

    PubMed  CAS  Google Scholar 

  238. Ishikura K, Ikeda M, Hattori S, Yoshikawa N, Sasaki S, Iijima K, et al. Effective and safe treatment with cyclosporine in nephrotic children: a prospective, randomized multicenter trial. Kidney Int. 2008;73(10):1167–73.

    Article  PubMed  CAS  Google Scholar 

  239. Habib R, Niaudet P. Comparison between pre- and posttreatment renal biopsies in children receiving ciclosporine for idiopathic nephrosis. Clin Nephrol. 1994;42(3):141–6.

    PubMed  CAS  Google Scholar 

  240. Iijima K, Hamahira K, Tanaka R, Kobayashi A, Nozu K, Nakamura H, et al. Risk factors for cyclosporine-induced tubulointerstitial lesions in children with minimal change nephrotic syndrome. Kidney Int. 2002;61(5):1801–5.

    Article  PubMed  Google Scholar 

  241. Meyrier A, Noel LH, Auriche P, Callard P. Long-term renal tolerance of cyclosporin A treatment in adult idiopathic nephrotic syndrome. Collaborative Group of the Societe de Nephrologie. Kidney Int. 1994;45(5):1446–56.

    Article  PubMed  CAS  Google Scholar 

  242. Freundlich M. Bone mineral content and mineral metabolism during cyclosporine treatment of nephrotic syndrome. J Pediatr. 2006;149(3):383–9.

    Article  PubMed  CAS  Google Scholar 

  243. Sinha MD, MacLeod R, Rigby E, Clark AG. Treatment of severe steroid-dependent nephrotic syndrome (SDNS) in children with tacrolimus. Nephrol Dial Transplant. 2006;21(7):1848–54.

    Article  PubMed  CAS  Google Scholar 

  244. Dittrich K, Knerr I, Rascher W, Dotsch J. Transient insulin-dependent diabetes mellitus in children with steroid-dependent idiopathic nephrotic syndrome during tacrolimus treatment. Pediatr Nephrol. 2006;21(7):958–61.

    Article  PubMed  Google Scholar 

  245. Afzal K, Bagga A, Menon S, Hari P, Jordan SC. Treatment with mycophenolate mofetil and prednisolone for steroid-dependent nephrotic syndrome. Pediatr Nephrol. 2007;22(12):2059–65.

    Article  PubMed  Google Scholar 

  246. Bagga A, Hari P, Moudgil A, Jordan SC. Mycophenolate mofetil and prednisolone therapy in children with steroid-dependent nephrotic syndrome. Am J Kidney Dis. 2003;42(6):1114–20.

    Article  PubMed  CAS  Google Scholar 

  247. Fujinaga S, Ohtomo Y, Umino D, Takemoto M, Shimizu T, Yamashiro Y, et al. A prospective study on the use of mycophenolate mofetil in children with cyclosporine-dependent nephrotic syndrome. Pediatr Nephrol. 2007;22(1):71–6.

    Article  PubMed  Google Scholar 

  248. Gellermann J, Querfeld U. Frequently relapsing nephrotic syndrome: treatment with mycophenolate mofetil. Pediatr Nephrol. 2004;19(1):101–4.

    Article  PubMed  Google Scholar 

  249. Hogg RJ, Fitzgibbons L, Bruick J, Bunke M, Ault B, Baqi N, et al. Mycophenolate mofetil in children with frequently relapsing nephrotic syndrome: a report from the Southwest Pediatric Nephrology Study Group. Clin J Am Soc Nephrol. 2006;1(6):1173–8.

    Article  PubMed  CAS  Google Scholar 

  250. Mendizabal S, Zamora I, Berbel O, Sanahuja MJ, Fuentes J, Simon J. Mycophenolate mofetil in steroid/cyclosporine-dependent/resistant nephrotic syndrome. Pediatr Nephrol. 2005;20(7):914–9.

    Article  PubMed  CAS  Google Scholar 

  251. Novak I, Frank R, Vento S, Vergara M, Gauthier B, Trachtman H. Efficacy of mycophenolate mofetil in pediatric patients with steroid-dependent nephrotic syndrome. Pediatr Nephrol. 2005;20(9):1265–8.

    Article  PubMed  Google Scholar 

  252. Barletta GM, Smoyer WE, Bunchman TE, Flynn JT, Kershaw DB. Use of mycophenolate mofetil in steroid-dependent and -resistant nephrotic syndrome. Pediatr Nephrol. 2003;18(8):833–7.

    Article  PubMed  Google Scholar 

  253. Dorresteijn EM, Kist-van Holthe JE, Levtchenko EN, Nauta J, Hop WC, van der Heijden AJ. Mycophenolate mofetil versus cyclosporine for remission maintenance in nephrotic syndrome. Pediatr Nephrol. 2008;23(11):2013–20.

    Article  PubMed  Google Scholar 

  254. Baudouin V, Alberti C, Lapeyraque AL, Bensman A, Andre JL, Broux F, et al. Mycophenolate mofetil for steroid-dependent nephrotic syndrome: a phase II Bayesian trial. Pediatr Nephrol. 2012;27(3):389–96.

    Article  PubMed  Google Scholar 

  255. Ito S, Kamei K, Ogura M, Udagawa T, Fujinaga S, Saito M, et al. Survey of rituximab treatment for childhood-onset refractory nephrotic syndrome. Pediatr Nephrol. 2013;28(2):257–64.

    Article  PubMed  Google Scholar 

  256. Ruggenenti P, Ruggiero B, Cravedi P, Vivarelli M, Massella L, Marasa M, et al. Rituximab in steroid-dependent or frequently relapsing idiopathic nephrotic syndrome. J Am Soc Nephrol. 2014;25:850–63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  257. Sellier-Leclerc AL, Baudouin V, Kwon T, Macher MA, Guerin V, Lapillonne H, et al. Rituximab in steroid-dependent idiopathic nephrotic syndrome in childhood–follow-up after CD19 recovery. Nephrol Dial Transplant. 2012;27(3):1083–9.

    Article  PubMed  CAS  Google Scholar 

  258. Iijima K, Sako M, Nozu K, Mori R, Tuchida N, Kamei K, et al. Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet. 2014;384:1273–81.

    Article  PubMed  CAS  Google Scholar 

  259. Ito S, Kamei K, Ogura M, Sato M, Fujimaru T, Ishikawa T, et al. Maintenance therapy with mycophenolate mofetil after rituximab in pediatric patients with steroid-dependent nephrotic syndrome. Pediatr Nephrol. 2011;26(10):1823–8.

    Article  PubMed  Google Scholar 

  260. Fujinaga S, Someya T, Watanabe T, Ito A, Ohtomo Y, Shimizu T, et al. Cyclosporine versus mycophenolate mofetil for maintenance of remission of steroid-dependent nephrotic syndrome after a single infusion of rituximab. Eur J Pediatr. 2013;172(4):513–8.

    Article  PubMed  CAS  Google Scholar 

  261. Giangiacomo J, Cleary TG, Cole BR, Hoffsten P, Robson AM. Serum immunoglobulins in the nephrotic syndrome. A possible cause of minimal-change nephrotic syndrome. N Engl J Med. 1975;293(1):8–12.

    Article  PubMed  CAS  Google Scholar 

  262. Delbe-Bertin L, Aoun B, Tudorache E, Lapillone H, Ulinski T. Does rituximab induce hypogammaglobulinemia in patients with pediatric idiopathic nephrotic syndrome? Pediatr Nephrol. 2013;28(3):447–51.

    Article  PubMed  Google Scholar 

  263. Chaumais MC, Garnier A, Chalard F, Peuchmaur M, Dauger S, Jacqz-Agrain E, et al. Fatal pulmonary fibrosis after rituximab administration. Pediatr Nephrol. 2009;24(9):1753–5.

    Article  PubMed  Google Scholar 

  264. Sellier-Leclerc AL, Belli E, Guerin V, Dorfmuller P, Deschenes G. Fulminant viral myocarditis after rituximab therapy in pediatric nephrotic syndrome. Pediatr Nephrol. 2013;28:1875–9.

    Article  PubMed  Google Scholar 

  265. Sato M, Ito S, Ogura M, Kamei K, Miyairi I, Miyata I, et al. Atypical Pneumocystis jiroveci pneumonia with multiple nodular granulomas after rituximab for refractory nephrotic syndrome. Pediatr Nephrol. 2013;28(1):145–9.

    Article  PubMed  Google Scholar 

  266. Ardelean DS, Gonska T, Wires S, Cutz E, Griffiths A, Harvey E, et al. Severe ulcerative colitis after rituximab therapy. Pediatrics. 2010;126(1):e243–6.

    Article  PubMed  Google Scholar 

  267. Lombel RM, Gipson DS, Hodson EM. Treatment of steroid-sensitive nephrotic syndrome: new guidelines from KDIGO. Pediatr Nephrol. 2013;28(3):415–26.

    Article  PubMed  Google Scholar 

  268. Boyer O, Niaudet P. Nephrotic syndrome: rituximab in childhood steroid-dependent nephrotic syndrome. Nat Rev Nephrol. 2013;9(10):562–3.

    Article  PubMed  CAS  Google Scholar 

  269. Razzak M. Nephrotic syndrome: rituximab is safe and effective in FRNS and SDNS-but where to go from here? Nat Rev Nephrol. 2014;10(8):421.

    Article  PubMed  Google Scholar 

  270. Scharer K, Minges U. Long term prognosis of the nephrotic syndrome in childhood. Clin Nephrol. 1973;1(3):182–7.

    PubMed  CAS  Google Scholar 

  271. Trompeter RS, Lloyd BW, Hicks J, White RH, Cameron JS. Long-term outcome for children with minimal-change nephrotic syndrome. Lancet. 1985;1(8425):368–70.

    Article  PubMed  CAS  Google Scholar 

  272. Wynn SR, Stickler GB, Burke EC. Long-term prognosis for children with nephrotic syndrome. Clin Pediatr (Phila). 1988;27(2):63–8.

    Article  CAS  Google Scholar 

  273. Lewis MA, Baildom EM, Davis N, Houston IB, Postlethwaite RJ. Nephrotic syndrome: from toddlers to twenties. Lancet. 1989;1(8632):255–9.

    Article  PubMed  CAS  Google Scholar 

  274. Koskimies O, Vilska J, Rapola J, Hallman N. Long-term outcome of primary nephrotic syndrome. Arch Dis Child. 1982;57(7):544–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  275. Lahdenkari AT, Suvanto M, Kajantie E, Koskimies O, Kestila M, Jalanko H. Clinical features and outcome of childhood minimal change nephrotic syndrome: is genetics involved? Pediatr Nephrol. 2005;20(8):1073–80.

    Article  PubMed  Google Scholar 

  276. Ruth EM, Kemper MJ, Leumann EP, Laube GF, Neuhaus TJ. Children with steroid-sensitive nephrotic syndrome come of age: long-term outcome. J Pediatr. 2005;147(2):202–7.

    Article  PubMed  Google Scholar 

  277. Arbus GS, Poucell S, Bacheyie GS, Baumal R. Focal segmental glomerulosclerosis with idiopathic nephrotic syndrome: three types of clinical response. J Pediatr. 1982;101(1):40–5.

    Article  PubMed  CAS  Google Scholar 

  278. Hammad A, Yahia S, Gouida MS, Bakr A, El-Farahaty RM. Low expression of glucocorticoid receptors in children with steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2013;28(5):759–63.

    Article  PubMed  Google Scholar 

  279. Mendoza SA, Reznik VM, Griswold WR, Krensky AM, Yorgin PD, Tune BM. Treatment of steroid-resistant focal segmental glomerulosclerosis with pulse methylprednisolone and alkylating agents. Pediatr Nephrol. 1990;4(4):303–7.

    Article  PubMed  CAS  Google Scholar 

  280. Tune BM, Kirpekar R, Sibley RK, Reznik VM, Griswold WR, Mendoza SA. Intravenous methylprednisolone and oral alkylating agent therapy of prednisone-resistant pediatric focal segmental glomerulosclerosis: a long-term follow-up. Clin Nephrol. 1995;43(2):84–8.

    PubMed  CAS  Google Scholar 

  281. Pena A, Bravo J, Melgosa M, Fernandez C, Meseguer C, Espinosa L, et al. Steroid-resistant nephrotic syndrome: long-term evolution after sequential therapy. Pediatr Nephrol. 2007;22(11):1875–80.

    Article  PubMed  Google Scholar 

  282. Yorgin PD, Krasher J, Al-Uzri AY. Pulse methylprednisolone treatment of idiopathic steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2001;16(3):245–50.

    Article  PubMed  CAS  Google Scholar 

  283. Hari P, Bagga A, Jindal N, Srivastava RN. Treatment of focal glomerulosclerosis with pulse steroids and oral cyclophosphamide. Pediatr Nephrol. 2001;16(11):901–5.

    Article  PubMed  CAS  Google Scholar 

  284. Waldo FB, Benfield MR, Kohaut EC. Methylprednisolone treatment of patients with steroid-resistant nephrotic syndrome. Pediatr Nephrol. 1992;6(6):503–5.

    Article  PubMed  CAS  Google Scholar 

  285. Niaudet P. Treatment of childhood steroid-resistant idiopathic nephrosis with a combination of cyclosporine and prednisone. French Society of Pediatric Nephrology. J Pediatr. 1994;125(6 Pt 1):981–6.

    Article  PubMed  CAS  Google Scholar 

  286. Ingulli E, Singh A, Baqi N, Ahmad H, Moazami S, Tejani A. Aggressive, long-term cyclosporine therapy for steroid-resistant focal segmental glomerulosclerosis. J Am Soc Nephrol. 1995;5(10):1820–5.

    PubMed  CAS  Google Scholar 

  287. Gregory MJ, Smoyer WE, Sedman A, Kershaw DB, Valentini RP, Johnson K, et al. Long-term cyclosporine therapy for pediatric nephrotic syndrome: a clinical and histologic analysis. J Am Soc Nephrol. 1996;7(4):543–9.

    PubMed  CAS  Google Scholar 

  288. Singh A, Tejani C, Tejani A. One-center experience with cyclosporine in refractory nephrotic syndrome in children. Pediatr Nephrol. 1999;13(1):26–32.

    Article  PubMed  CAS  Google Scholar 

  289. Ehrich JH, Geerlings C, Zivicnjak M, Franke D, Geerlings H, Gellermann J. Steroid-resistant idiopathic childhood nephrosis: overdiagnosed and undertreated. Nephrol Dial Transplant. 2007;22(8):2183–93.

    Article  PubMed  Google Scholar 

  290. Garin EH, Orak JK, Hiott KL, Sutherland SE. Cyclosporine therapy for steroid-resistant nephrotic syndrome. A controlled study. Am J Dis Child. 1988;142(9):985–8.

    Article  PubMed  CAS  Google Scholar 

  291. Lieberman KV, Tejani A. A randomized double-blind placebo-controlled trial of cyclosporine in steroid-resistant idiopathic focal segmental glomerulosclerosis in children. J Am Soc Nephrol. 1996;7(1):56–63.

    PubMed  CAS  Google Scholar 

  292. Ponticelli C, Rizzoni G, Edefonti A, Altieri P, Rivolta E, Rinaldi S, et al. A randomized trial of cyclosporine in steroid-resistant idiopathic nephrotic syndrome. Kidney Int. 1993;43(6):1377–84.

    Article  PubMed  CAS  Google Scholar 

  293. Bhimma R, Adhikari M, Asharam K, Connolly C. Management of steroid-resistant focal segmental glomerulosclerosis in children using tacrolimus. Am J Nephrol. 2006;26(6):544–51.

    Article  PubMed  CAS  Google Scholar 

  294. Gulati S, Prasad N, Sharma RK, Kumar A, Gupta A, Baburaj VP. Tacrolimus: a new therapy for steroid-resistant nephrotic syndrome in children. Nephrol Dial Transplant. 2008;23(3):910–3.

    Article  PubMed  CAS  Google Scholar 

  295. Loeffler K, Gowrishankar M, Yiu V. Tacrolimus therapy in pediatric patients with treatment-resistant nephrotic syndrome. Pediatr Nephrol. 2004;19(3):281–7.

    Article  PubMed  Google Scholar 

  296. Gulati A, Sinha A, Gupta A, Kanitkar M, Sreenivas V, Sharma J, et al. Treatment with tacrolimus and prednisolone is preferable to intravenous cyclophosphamide as the initial therapy for children with steroid-resistant nephrotic syndrome. Kidney Int. 2012;82(10):1130–5.

    Article  PubMed  CAS  Google Scholar 

  297. Choudhry S, Bagga A, Hari P, Sharma S, Kalaivani M, Dinda A. Efficacy and safety of tacrolimus versus cyclosporine in children with steroid-resistant nephrotic syndrome: a randomized controlled trial. Am J Kidney Dis. 2009;53(5):760–9.

    Article  PubMed  CAS  Google Scholar 

  298. Wang W, Xia Y, Mao J, Chen Y, Wang D, Shen H, et al. Treatment of tacrolimus or cyclosporine A in children with idiopathic nephrotic syndrome. Pediatr Nephrol. 2012;27(11):2073–9.

    Article  PubMed  Google Scholar 

  299. Tarshish P, Tobin JN, Bernstein J, Edelmann Jr CM. Cyclophosphamide does not benefit patients with focal segmental glomerulosclerosis. A report of the International Study of Kidney Disease in Children. Pediatr Nephrol. 1996;10(5):590–3.

    Article  PubMed  CAS  Google Scholar 

  300. Rennert WP, Kala UK, Jacobs D, Goetsch S, Verhaart S. Pulse cyclophosphamide for steroid-resistant focal segmental glomerulosclerosis. Pediatr Nephrol. 1999;13(2):113–6.

    Article  PubMed  CAS  Google Scholar 

  301. Bajpai A, Bagga A, Hari P, Dinda A, Srivastava RN. Intravenous cyclophosphamide in steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2003;18(4):351–6.

    PubMed  Google Scholar 

  302. Elhence R, Gulati S, Kher V, Gupta A, Sharma RK. Intravenous pulse cyclophosphamide–a new regime for steroid-resistant minimal change nephrotic syndrome. Pediatr Nephrol. 1994;8(1):1–3.

    Article  PubMed  CAS  Google Scholar 

  303. Montane B, Abitbol C, Chandar J, Strauss J, Zilleruelo G. Novel therapy of focal glomerulosclerosis with mycophenolate and angiotensin blockade. Pediatr Nephrol. 2003;18(8):772–7.

    Article  PubMed  Google Scholar 

  304. de Mello VR, Rodrigues MT, Mastrocinque TH, Martins SP, de Andrade OV, Guidoni EB, et al. Mycophenolate mofetil in children with steroid/cyclophosphamide-resistant nephrotic syndrome. Pediatr Nephrol. 2010;25(3):453–60.

    Article  PubMed  Google Scholar 

  305. Gipson DS, Trachtman H, Kaskel FJ, Greene TH, Radeva MK, Gassman JJ, et al. Clinical trial of focal segmental glomerulosclerosis in children and young adults. Kidney Int. 2011;80(8):868–78.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  306. Bagga A, Sinha A, Moudgil A. Rituximab in patients with the steroid-resistant nephrotic syndrome. N Engl J Med. 2007;356(26):2751–2.

    Article  PubMed  CAS  Google Scholar 

  307. Gulati A, Sinha A, Jordan SC, Hari P, Dinda AK, Sharma S, et al. Efficacy and safety of treatment with rituximab for difficult steroid-resistant and -dependent nephrotic syndrome: multicentric report. Clin J Am Soc Nephrol. 2010;5(12):2207–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  308. Kamei K, Okada M, Sato M, Fujimaru T, Ogura M, Nakayama M, et al. Rituximab treatment combined with methylprednisolone pulse therapy and immunosuppressants for childhood steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2014;29:1181–7.

    Article  PubMed  Google Scholar 

  309. Prytula A, Iijima K, Kamei K, Geary D, Gottlich E, Majeed A, et al. Rituximab in refractory nephrotic syndrome. Pediatr Nephrol. 2010;25(3):461–8.

    Article  PubMed  Google Scholar 

  310. Sinha A, Bagga A. Rituximab therapy in nephrotic syndrome: implications for patients’ management. Nat Rev Nephrol. 2013;9(3):154–69.

    Article  PubMed  CAS  Google Scholar 

  311. Kari JA, El-Morshedy SM, El-Desoky S, Alshaya HO, Rahim KA, Edrees BM. Rituximab for refractory cases of childhood nephrotic syndrome. Pediatr Nephrol. 2011;26(5):733–7.

    Article  PubMed  Google Scholar 

  312. Magnasco A, Ravani P, Edefonti A, Murer L, Ghio L, Belingheri M, et al. Rituximab in children with resistant idiopathic nephrotic syndrome. J Am Soc Nephrol. 2012;23(6):1117–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  313. Zachwieja J, Silska M, Ostalska-Nowicka D, Soltysiak J, Lipkowska K, Blumczynski A, et al. Efficacy and safety of rituximab treatment in children with primary glomerulonephritis. J Nephrol. 2012;25(6):1060–6.

    Article  PubMed  CAS  Google Scholar 

  314. Savin VJ, McCarthy ET, Sharma R, Charba D, Sharma M. Galactose binds to focal segmental glomerulosclerosis permeability factor and inhibits its activity. Transl Res. 2008;151(6):288–92.

    Article  PubMed  CAS  Google Scholar 

  315. De Smet E, Rioux JP, Ammann H, Deziel C, Querin S. FSGS permeability factor-associated nephrotic syndrome: remission after oral galactose therapy. Nephrol Dial Transplant. 2009;24(9):2938–40.

    Article  PubMed  CAS  Google Scholar 

  316. Sgambat K, Banks M, Moudgil A. Effect of galactose on glomerular permeability and proteinuria in steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2013;28(11):2131–5.

    Article  PubMed  Google Scholar 

  317. Donker AJ, Brentjens JR, van der Hem GK, Arisz L. Treatment of the nephrotic syndrome with indomethacin. Nephron. 1978;22(4–6):374–81.

    Article  PubMed  CAS  Google Scholar 

  318. Velosa JA, Torres VE. Benefits and risks of nonsteroidal antiinflammatory drugs in steroid-resistant nephrotic syndrome. Am J Kidney Dis. 1986;8(5):345–50.

    Article  PubMed  CAS  Google Scholar 

  319. Bennett WM. The adverse renal effects of nonsteroidal anti-inflammatory drugs: increasing problems or overrated risk. Am J Kidney Dis. 1983;2(4):477.

    Article  PubMed  CAS  Google Scholar 

  320. Clive DM, Stoff JS. Renal syndromes associated with nonsteroidal antiinflammatory drugs. N Engl J Med. 1984;310(9):563–72.

    Article  PubMed  CAS  Google Scholar 

  321. Kleinknecht C, Broyer M, Gubler MC, Palcoux JB. Irreversible renal failure after indomethacin in steroid-resistant nephrosis. N Engl J Med. 1980;302(12):691.

    PubMed  CAS  Google Scholar 

  322. Martinez Vea A, Garcia Ruiz C, Carrera M, Oliver JA, Richart C. Effect of captopril in nephrotic-range proteinuria due to renovascular hypertension. Nephron. 1987;45(2):162–3.

    Article  PubMed  CAS  Google Scholar 

  323. Ferder LF, Inserra F, Daccordi H, Smith RD. Enalapril improved renal function and proteinuria in chronic glomerulopathies. Nephron. 1990;55 Suppl 1:90–5.

    Article  PubMed  Google Scholar 

  324. Milliner DS, Morgenstern BZ. Angiotensin converting enzyme inhibitors for reduction of proteinuria in children with steroid-resistant nephrotic syndrome. Pediatr Nephrol. 1991;5(5):587–90.

    Article  PubMed  CAS  Google Scholar 

  325. Kim EM, Striegel J, Kim Y, Matas AJ, Najarian JS, Mauer SM. Recurrence of steroid-resistant nephrotic syndrome in kidney transplants is associated with increased acute renal failure and acute rejection. Kidney Int. 1994;45(5):1440–5.

    Article  PubMed  CAS  Google Scholar 

  326. Striegel JE, Sibley RK, Fryd DS, Mauer SM. Recurrence of focal segmental sclerosis in children following renal transplantation. Kidney Int Suppl. 1986;19:S44–50.

    PubMed  CAS  Google Scholar 

  327. Morales JM, Andres A, Prieto C, Martinez MA, Praga M, Ruilope LM, et al. Clinical and histological sequence of recurrent focal segmental glomerulosclerosis. Nephron. 1988;48(3):241–2.

    Article  PubMed  CAS  Google Scholar 

  328. Verani RR, Hawkins EP. Recurrent focal segmental glomerulosclerosis. A pathological study of the early lesion. Am J Nephrol. 1986;6(4):263–70.

    Article  PubMed  CAS  Google Scholar 

  329. Chang JW, Pardo V, Sageshima J, Chen L, Tsai HL, Reiser J, et al. Podocyte foot process effacement in postreperfusion allograft biopsies correlates with early recurrence of proteinuria in focal segmental glomerulosclerosis. Transplantation. 2012;93(12):1238–44.

    Article  PubMed Central  PubMed  Google Scholar 

  330. Fine RN. Recurrence of nephrotic syndrome/focal segmental glomerulosclerosis following renal transplantation in children. Pediatr Nephrol. 2007;22(4):496–502.

    Article  PubMed Central  PubMed  Google Scholar 

  331. Senggutuvan P, Cameron JS, Hartley RB, Rigden S, Chantler C, Haycock G, et al. Recurrence of focal segmental glomerulosclerosis in transplanted kidneys: analysis of incidence and risk factors in 59 allografts. Pediatr Nephrol. 1990;4(1):21–8.

    Article  PubMed  CAS  Google Scholar 

  332. Ding WY, Koziell A, McCarthy HJ, Bierzynska A, Bhagavatula MK, Dudley JA, et al. Initial steroid sensitivity in children with steroid-resistant nephrotic syndrome predicts post-transplant recurrence. J Am Soc Nephrol. 2014;25(6):1342–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  333. Habib R, Hebert D, Gagnadoux MF, Broyer M. Transplantation in idiopathic nephrosis. Transplant Proc. 1982;14(3):489–95.

    PubMed  CAS  Google Scholar 

  334. Rizzoni G, Ehrich JH, Brunner FP, Geerlings W, Fassbinder W, Landais P, et al. Combined report on regular dialysis and transplantation of children in Europe, 1990. Nephrol Dial Transplant. 1991;6 Suppl 4:31–42.

    PubMed  Google Scholar 

  335. Leumann EP, Briner J, Donckerwolcke RA, Kuijten R, Largiader F. Recurrence of focal segmental glomerulosclerosis in the transplanted kidney. Nephron. 1980;25(2):65–71.

    Article  PubMed  CAS  Google Scholar 

  336. Maizel SE, Sibley RK, Horstman JP, Kjellstrand CM, Simmons RL. Incidence and significance of recurrent focal segmental glomerulosclerosis in renal allograft recipients. Transplantation. 1981;32(6):512–6.

    Article  PubMed  CAS  Google Scholar 

  337. Pinto J, Lacerda G, Cameron JS, Turner DR, Bewick M, Ogg CS. Recurrence of focal segmental glomerulosclerosis in renal allografts. Transplantation. 1981;32(2):83–9.

    Article  PubMed  CAS  Google Scholar 

  338. Cameron JS. Recurrent primary disease and de novo nephritis following renal transplantation. Pediatr Nephrol. 1991;5(4):412–21.

    Article  PubMed  CAS  Google Scholar 

  339. Ramos EL, Tisher CC. Recurrent diseases in the kidney transplant. Am J Kidney Dis. 1994;24(1):142–54.

    Article  PubMed  CAS  Google Scholar 

  340. Nehus EJ, Goebel JW, Succop PS, Abraham EC. Focal segmental glomerulosclerosis in children: multivariate analysis indicates that donor type does not alter recurrence risk. Transplantation. 2013;96(6):550–4.

    Article  PubMed  Google Scholar 

  341. Cochat P, Fargue S, Mestrallet G, Jungraithmayr T, Koch-Nogueira P, Ranchin B, et al. Disease recurrence in paediatric renal transplantation. Pediatr Nephrol. 2009;24(11):2097–108.

    Article  PubMed Central  PubMed  Google Scholar 

  342. Seikaly MG. Recurrence of primary disease in children after renal transplantation: an evidence-based update. Pediatr Transplant. 2004;8(2):113–9.

    Article  PubMed  Google Scholar 

  343. Artero M, Biava C, Amend W, Tomlanovich S, Vincenti F. Recurrent focal glomerulosclerosis: natural history and response to therapy. Am J Med. 1992;92(4):375–83.

    Article  PubMed  CAS  Google Scholar 

  344. Banfi G, Colturi C, Montagnino G, Ponticelli C. The recurrence of focal segmental glomerulosclerosis in kidney transplant patients treated with cyclosporine. Transplantation. 1990;50(4):594–6.

    Article  PubMed  CAS  Google Scholar 

  345. Pirson Y, Squifflet JP, Marbaix E, Alexandre GP, van Ypersele de Strihou C. Recurrence of focal glomerulosclerosis despite cyclosporin treatment after renal transplantation. Br Med J (Clin Res Ed). 1986;292(6531):1336.

    Article  CAS  Google Scholar 

  346. Schwarz A, Krause PH, Offermann G, Keller F. Recurrent and de novo renal disease after kidney transplantation with or without cyclosporine A. Am J Kidney Dis. 1991;17(5):524–31.

    Article  PubMed  CAS  Google Scholar 

  347. Vincenti F, Biava C, Tomlanovitch S, Amend Jr WJ, Garovoy M, Melzer J, et al. Inability of cyclosporine to completely prevent the recurrence of focal glomerulosclerosis after kidney transplantation. Transplantation. 1989;47(4):595–8.

    Article  PubMed  CAS  Google Scholar 

  348. Voets AJ, Hoitsma AJ, Koene RA. Recurrence of nephrotic syndrome during cyclosporin treatment after renal transplantation. Lancet. 1986;1(8475):266–7.

    Article  PubMed  CAS  Google Scholar 

  349. Ingulli E, Tejani A, Butt KM, Rajpoot D, Gonzalez R, Pomrantz A, et al. High-dose cyclosporine therapy in recurrent nephrotic syndrome following renal transplantation. Transplantation. 1990;49(1):219–21.

    Article  PubMed  CAS  Google Scholar 

  350. Mowry J, Marik J, Cohen A, Hogg R, Sahney S, Ettenger R. Treatment of recurrent focal segmental glomerulosclerosis with high-dose cyclosporine A and plasmapheresis. Transplant Proc. 1993;25(1 Pt 2):1345–6.

    PubMed  CAS  Google Scholar 

  351. Raafat RH, Kalia A, Travis LB, Diven SC. High-dose oral cyclosporin therapy for recurrent focal segmental glomerulosclerosis in children. Am J Kidney Dis. 2004;44(1):50–6.

    Article  PubMed  CAS  Google Scholar 

  352. Salomon R, Gagnadoux MF, Niaudet P. Intravenous cyclosporine therapy in recurrent nephrotic syndrome after renal transplantation in children. Transplantation. 2003;75(6):810–4.

    Article  PubMed  CAS  Google Scholar 

  353. Srivastava RN, Kalia A, Travis LB, Diven SC, Gugliuzza KK, Rajaraman S. Prompt remission of post-renal transplant nephrotic syndrome with high-dose cyclosporine. Pediatr Nephrol. 1994;8(1):94–5.

    Article  PubMed  CAS  Google Scholar 

  354. Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med. 2008;14(9):931–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  355. Dall’Amico R, Ghiggeri G, Carraro M, Artero M, Ghio L, Zamorani E, et al. Prediction and treatment of recurrent focal segmental glomerulosclerosis after renal transplantation in children. Am J Kidney Dis. 1999;34(6):1048–55.

    Article  PubMed  Google Scholar 

  356. Fencl F, Simkova E, Vondrak K, Janda J, Chadimova M, Stejskal J, et al. Recurrence of nephrotic proteinuria in children with focal segmental glomerulosclerosis after renal transplantation treated with plasmapheresis and immunoadsorption: case reports. Transplant Proc. 2007;39(10):3488–90.

    Article  PubMed  CAS  Google Scholar 

  357. Kawaguchi H, Hattori M, Ito K, Takahashi K, Ota K. Recurrence of focal glomerulosclerosis of allografts in children: the efficacy of intensive plasma exchange therapy before and after renal transplantation. Transplant Proc. 1994;26(1):7–8.

    PubMed  CAS  Google Scholar 

  358. Laufer J, Ettenger RB, Ho WG, Cohen AH, Marik JL, Fine RN. Plasma exchange for recurrent nephrotic syndrome following renal transplantation. Transplantation. 1988;46(4):540–2.

    Article  PubMed  CAS  Google Scholar 

  359. Ponticelli C. Recurrence of focal segmental glomerular sclerosis (FSGS) after renal transplantation. Nephrol Dial Transplant. 2010;25(1):25–31.

    Article  PubMed  Google Scholar 

  360. Pradhan M, Petro J, Palmer J, Meyers K, Baluarte HJ. Early use of plasmapheresis for recurrent post-transplant FSGS. Pediatr Nephrol. 2003;18(9):934–8.

    Article  PubMed  Google Scholar 

  361. Saleem MA, Ramanan AV, Rees L. Recurrent focal segmental glomerulosclerosis in grafts treated with plasma exchange and increased immunosuppression. Pediatr Nephrol. 2000;14(5):361–4.

    Article  PubMed  CAS  Google Scholar 

  362. Canaud G, Martinez F, Noel LH, Mamzer MF, Niaudet P, Legendre C. Therapeutic approach to focal and segmental glomerulosclerosis recurrence in kidney transplant recipients. Transplant Rev (Orlando). 2010;24(3):121–8.

    Article  Google Scholar 

  363. Nozu K, Iijima K, Fujisawa M, Nakagawa A, Yoshikawa N, Matsuo M. Rituximab treatment for posttransplant lymphoproliferative disorder (PTLD) induces complete remission of recurrent nephrotic syndrome. Pediatr Nephrol. 2005;20(11):1660–3.

    Article  PubMed  Google Scholar 

  364. Pescovitz MD, Book BK, Sidner RA. Resolution of recurrent focal segmental glomerulosclerosis proteinuria after rituximab treatment. N Engl J Med. 2006;354(18):1961–3.

    Article  PubMed  CAS  Google Scholar 

  365. Apeland T, Hartmann A. Rituximab therapy in early recurrent focal segmental sclerosis after renal transplantation. Nephrol Dial Transplant. 2008;23(6):2091–4.

    Article  PubMed  CAS  Google Scholar 

  366. Hristea D, Hadaya K, Marangon N, Buhler L, Villard J, Morel P, et al. Successful treatment of recurrent focal segmental glomerulosclerosis after kidney transplantation by plasmapheresis and rituximab. Transpl Int Off J Eur Soc Organ Transplant. 2007;20(1):102–5.

    Article  CAS  Google Scholar 

  367. Meyer TN, Thaiss F, Stahl RA. Immediate versus long-term effect of rituximab in recurrent focal segmental glomerulosclerosis. Transpl Int Off J Eur Soc Organ Transplant. 2008;21(11):1102.

    Google Scholar 

  368. Westphal S, Hansson S, Mjornstedt L, Molne J, Swerkersson S, Friman S. Early recurrence of nephrotic syndrome (immunoglobulin m nephropathy) after renal transplantation successfully treated with combinations of plasma exchanges, immunoglobulin, and rituximab. Transplant Proc. 2006;38(8):2659–60.

    Article  PubMed  CAS  Google Scholar 

  369. El-Firjani A, Hoar S, Karpinski J, Bell R, Deschenes MJ, Knoll GA. Post-transplant focal segmental glomerulosclerosis refractory to plasmapheresis and rituximab therapy. Nephrol Dial Transplant. 2008;23(1):425.

    Article  PubMed  Google Scholar 

  370. Yabu JM, Ho B, Scandling JD, Vincenti F. Rituximab failed to improve nephrotic syndrome in renal transplant patients with recurrent focal segmental glomerulosclerosis. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2008;8(1):222–7.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Niaudet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Niaudet, P., Boyer, O. (2016). Idiopathic Nephrotic Syndrome in Children: Clinical Aspects. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43596-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43596-0_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43595-3

  • Online ISBN: 978-3-662-43596-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics