Skip to main content

Phenole, Chinone und die biogene Bildung von Benzolkernen

  • Chapter
  • 89 Accesses

Part of the book series: Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology ((532,volume 10))

Abstract

Micro-organisms have been amongst the organisms of choice, both for the study of the oxidative catabolism of aromatic compounds, and in the elucidation of the biogenesis of benzene nuclei. The salient features of the biochemistry of these two processes have now become clearer, mainly as a result of work carried out during the past decade. It transpires that there is apparently no close connection between them; the degradative pathways of aromatic-ring fission are entirely different from those employed by micro-organisms in their biosyntheses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Ames, B.W., and H.K. Mitchell: The biosynthesis of histidine. J. of Biol. Chem. 212, 687–696 (1955).

    CAS  Google Scholar 

  • Arnow, L. E.: The formation of dopa by the exposure of tyrosine solutions to ultra-violet radiations. J. of Biol. Chem. 120, 151–153 (1937).

    CAS  Google Scholar 

  • Destruction of phenylalanine by ultraviolet radiant energy. Proc. Soc. Exper. Biol. a. Med. 49, 578-579 (1942).

    Google Scholar 

  • Audits, L. J.: A new soil perfusion apparatus. Nature (Lond.) 158, 419 (1946).

    Article  Google Scholar 

  • Biological detoxication of 2:4-dichlorophenoxyacetic acid in soils; isolation of an effective organism. Nature (Lond.) 166, 356 (1950).

    Google Scholar 

  • The biological detoxication of hormone herbicides in soil. Plant a. Soil 3, 170-192 (1951).

    Google Scholar 

  • The decomposition of 2:4-dichlorophenoxy-acetic acid and 2-methyl-4-chlorophenoxyacetic acid in the soil. J. Sci. Food Agricult. 3, 268-274 (1952).

    Google Scholar 

  • Audtts, L. J., and K. V. Symonds: Further studies on the breakdown of 2:4-dichlorophenoxyacetic acid by a soil bacterium. Ann. Appl. Biol. 42, 174–182 (1955).

    Article  Google Scholar 

  • Beadle, G. W., H.K. Mitchell and J. F. Nyc: Kynurenine as intermediate in the formation of nicotinic acid from tryptophan by Neurospora. Proc. Nat. Acad. Sci. U.S.A. 33, 155–158 (1947).

    Article  CAS  Google Scholar 

  • Beadle, G. W., and E. L. Tatttm: Genetic control of biochemical reactions in Neurospora. Proc. Nat. Acad. Sci. U.S.A. 27, 499–506 (1941).

    Article  CAS  Google Scholar 

  • Bell, G. R.: On the photochemical degradation of 2:4-d and structurally related compounds in the presence and absence of riboflavin. Bot. Gaz. 118, 133–136 (1956).

    Article  Google Scholar 

  • Beijerinck, M. W.: Verzamelde Geschriften, Delft 1–6 (1921-1940).

    Google Scholar 

  • Bergey, D.H.: Manual of Determinative Bacteriology. (Arranged by a Committee of the Society of American Bacteriologists), 6th Ed. Baltimore: Williams & Wilkins Co. 1948.

    Google Scholar 

  • Bernhard, K., u. E. Gressly: Zur Oxydation des Benzolrings im Tierkörper. Helvet. chim. Acta 24, 83–87 (1941).

    Article  CAS  Google Scholar 

  • Bernheim, F.: The oxidation of benzoic acid and related substances by certain Mycobacteria. J. of Biol. Chem. 143, 383–389 (1942).

    CAS  Google Scholar 

  • The effect of substituted benzoic acids on adaptive enzyme formation in a Mycobacterium. J. of Biol. Chem. 203, 775-780 (1953).

    Google Scholar 

  • Birch, A. J., and F. W. Donovan: Studies in relation to biosynthesis. Austral. J. Chem. 6, Parts 1, 2, 3, 360–378 (1953).

    Article  CAS  Google Scholar 

  • Birch, A. J., F. W. Donovan and F. Moewus: Biogenesis of flavonoids in Chlamydomonas eugametos. Nature (Lond.) 172, 902–904 (1953).

    Article  CAS  Google Scholar 

  • Birch, A. J., R. A. Massy-Westropp and C.J. Moye: Studies in relation to biosynthesis. VII. 2-Hydroxy-6-methylbenzoic acid in Penicillium griseofulvum Dierckx. Austral. J. Chem. 8, 539–544 (1955).

    Article  CAS  Google Scholar 

  • Birch, A. J., R. A. Massy-Westropp, R. W. Rickards and Herchel Smith: The conversion of acetic acid into griseofulvin in Penicillium griseofulvum Dierckx. Proc. Chem. Soc. 1957, 98.

    Google Scholar 

  • Birch, A. J., and C. J. Moye: Studies in relation to biosynthesis. Part X. A synthesis of lumichrome from non-benzenoid precursors. J. Chem. Soc. (Lond.) 1957, 412-414.

    Google Scholar 

  • Bloom, B. M., and G. M. Shull: Epoxidation of unsaturated steroids by micro-organisms. J. Amer. Chem. Soc. 77, 5767 (1955). [See also S. H. Eppstein, P. D. Meister, H. C. Murray and D. H. Peterson, Microbiological transformations of steroids and their applications to the synthesis of hormones. Vitamins a. Hormones 14, 359-432 (1956), ed. by R. S. Harris, G. F. Marrian and K. V. Thimann. New York: Academic Press, Inc.].

    Article  CAS  Google Scholar 

  • Boeseken, J., u. R. Engelberts: Formation of cis-cis-muconic acid and phenoquinone in the oxidation of phenol with peracetic acid. Proc. Acad. Sci. Amsterdam 34, 1292 (1931).

    CAS  Google Scholar 

  • Boeseken, J., and C.F. Metz: L’oxydation de quelques phenols par l’acide peracetique. Un passage de la série aromatique à la serie aliphatique. Rec. Trav. chim. Pays-Bas (Amsterd.) 54, 345–352 (1935).

    Article  CAS  Google Scholar 

  • Bourquelot, E. E., et G. Bertrand: La laccase dans les champignons. C. r. Soc. Biol. Paris 121, 783–786 (1895).

    CAS  Google Scholar 

  • Boyland, E.: The biological significance of metabolism of polycyclic hydrocarbons. Biochem. Soc. Symposia 1950, No 5, 40–54.

    CAS  Google Scholar 

  • Brown, E. G., T. W. Goodwin and S. Pendlington: Studies on the biosynthesis of riboflavin metabolism and flavinogenesis in Eremothecium ashbyii. Biochemie. J. 61, 37–46 (1955).

    CAS  Google Scholar 

  • Brown, J.P., and E. B. McCall: Some chlorinated hydroxy-phenoxyacetic acids. J. Chem. Soc. (Lond.) 1955, 3681-3687.

    Google Scholar 

  • Buswell, A. M.: Chemistry of water and sewage treatment. Amer. Chem. Soc, Monogr. Ser. No 38, Chem. Catalogue 1928.

    Google Scholar 

  • Buswell, A.M., and C. S. Boruff: The relation between the chemical composition of organic matter and the quality and quantity of gas produced during sludge digestion. Sewage Works J. 4, 454–460 (1932).

    CAS  Google Scholar 

  • Fermentation products from cornstalks. Ind. Eng. Chem. 22, 931 (1930).

    Google Scholar 

  • The anaerobic fermentation of lignin. J. Amer. Chem. Soc. 56, 886-888, 1751 (1934).

    Google Scholar 

  • Cavill, G. W. K., and D. L. Ford: The chemistry of plant growth regulators, Part 1. 2:4-Dichloro-6-hydroxyphenoxyacetic acid and related compounds. J. Chem. Soc. (Lond.) 1954, 565-568.

    Google Scholar 

  • Cohn, M., J. Monod, M. R. Pollock, S. Spiegelman and R. Y. Stanier: Terminology of enzyme formation. Nature (Lond.) 172, 1096 (1953).

    Article  CAS  Google Scholar 

  • Collie, J. N.: Derivatives of the multiple keton group. J. Chem. Soc. (Lond.) 1907, 1806-1813.

    Google Scholar 

  • Collins, F. M., and C. M. Sims: A compact soil perfusion apparatus. Nature (Lond.) 178, 1073 (1956).

    Article  Google Scholar 

  • Coulson, C.B., and W.C. Evans: Unpublished observations 1957.

    Google Scholar 

  • Czekalowski, J. W., and B. Szkarzynski: The breakdown of phenols and related compounds by bacteria. J. Gen. Microbiol. 2, 231–238 (1948).

    Article  CAS  Google Scholar 

  • Dagley, S., Mona E. Fewster and F. C. Happold: The bacterial oxidation of aromatic compounds. J. Gen. Microbiol. 8, 1–7 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Dagley, S., and M. D. Patel: Oxidation of ρ-cresol and related compounds by a Pseudomonas. Biochemie. J. 66, 227–233 (1957).

    CAS  Google Scholar 

  • Dalgliesh, C. E.: Nonspecific formation of hydroxylated metabolites of the aromatic amino acids. Arch. of Biochem. a. Biophysics 58, 214–226 (1955).

    Article  CAS  Google Scholar 

  • Davis, B. D.: The isolation of biochemically deficient mutants of bacteria by means of penicillin. Proc. Nat. Acad. Sci. U.S.A. 35, 1–10 (1949).

    Article  CAS  Google Scholar 

  • Nutritionally deficient bacterial mutants isolated by means of penicillin. Experientia (Basel) 6, 41-50 (1950).

    Google Scholar 

  • Aromatic biosynthesis. 1. The rôle of shikimic acid. J. of Biol. Chem. 191, 315-325 (1951).

    Google Scholar 

  • Intermediates in the biosynthesis of amino-acids. Symposium sur le métabolisme microbien. II. Congr. Internat. de Biochemie, p. 32-40, 1952.

    Google Scholar 

  • Aromatic biosynthesis. Preferential conversion in incompletely blocked mutants of a common precursor of several metabolites. J. Bacter. 64, 729-748 (1952).

    Google Scholar 

  • Biosynthesis of the aromatic amino-acids. Symposium on Amino Acid Metabolism, edit. W. D. McEleoy and B. Glass. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Perspectives and Horizons in Microbiology, edit. by S. A. Waksman. New Brunswick: Rutgers Univ. Press 1955.

    Google Scholar 

  • Some aspects of amino-acid biosynthesis in micro-organisms. Federat. Proc. 14, 691-695 (1955).

    Google Scholar 

  • Intermediates in amino-acid biosynthesis. Adv. Enzymol. 16, 247-312 (1955).

    Google Scholar 

  • Davis, B. D., C. Gilvarg and S. Mitsuhashi: Enzymes of aromatic biosynthesis. In Methods of Enzymology, edit, by S. P. Colowick and N. P. Kaplan, vol. 2, p. 300–311. New York: Academic Press 1955.

    Chapter  Google Scholar 

  • Davis, B. D., and Elizabeth S. Mingioli: Aromatic biosynthesis. VII. Accumulation of two derivatives of shikimic acid by bacterial mutants. J. Bacter. 66, 129–136 (1953).

    CAS  Google Scholar 

  • Dooren de Jong, L. E. den: Bijdrage tot de kennis van het mineralisatieproces. Thesis, Delft 1926.

    Google Scholar 

  • Drummond, Sir J. C., and I. L. Finar: Muconic acid as a metabolic product of benzene. Biochemic. J. 32, 79–84 (1938).

    CAS  Google Scholar 

  • Eadie, G. S., F. Bernheim and R.J. Fitzgerald: The kinetics of the oxidation of benzoic acid by certain Mycobacteria. J. of Biol. Chem. 176, 857–862 (1948).

    CAS  Google Scholar 

  • Ehrensvard, G.: On the origin of aromatic structures. Symposium sur le métabolisme microbien. II. Congr. Internat. de Biochemie, p. 72-85. 1952.

    Google Scholar 

  • Ehrensvärd, G., L. Reio, E. Saluste and R. Stjernholm: Acetic acid metabolism in Torulopsis utilis. J. of Biol. Chem. 189, 93–108 (1951).

    Google Scholar 

  • Eisner, Ulli, J. A. Elvidge and R. P. Linstead: Unsaturated lactones and related substances. Part V. Dihydro-ß-ketomuconic acid, and carboxylactones of the protoanemonin type. J. Chem. Soc. (Lond.) 1951, 1501-1512.

    Google Scholar 

  • Elvidge, J. A., R. P. Linstead, P. Sims and B. A. Orkin: The third isomeric (cis-trans-) muconic acid. J. Chem. Soc. (Lond.) 1950, 2235-2241.

    Google Scholar 

  • Erikson, D.: Studies on some lake-mud strains of Micromonospora. J. Bacter. 41, 277–300 (1941).

    CAS  Google Scholar 

  • Evans, R. A., W. H. Parr and W. C. Evans: Chromatography of phenols. Nature (Lond.) 164, 674 (1949).

    Article  CAS  Google Scholar 

  • Evans, W. C.: Oxidation of phenol and benzoic acid by some soil bacteria. Biochemic. J. 41, 373–382 (1947).

    CAS  Google Scholar 

  • The early intermediate formed in the oxidative metabolism of phthalic acid by certain soil bacteria. Biochemie. J. 61, x (1955).

    Google Scholar 

  • Biochemistry of the oxidative metabolism of aromatic compounds by micro-organisms. Annual Rep. Chem. Soc. (Lond.) 53, 279-294 (1956).

    Google Scholar 

  • Evans, W. C., and H. N. Fernley: Unpublished observations 1957.

    Google Scholar 

  • Evans, W. C., and F. C. Happold: The utilization of phenol by bacteria. J. Soc. Chem. Industr. 58, 55 (1939).

    Article  Google Scholar 

  • Evans, W. C., and P. Moss: The metabolism of the herbicide ρ-chlorophenoxy-acetic acid by a soil micro-organism-isolation of a β-chloromuconic acid on ring fission. Biochemie. J. 65, 8p (1957).

    CAS  Google Scholar 

  • Evans, W. C., and B. S. W. Smith: The oxidation of aromatic compounds by soil bacteria. Biochemie. J. 49, x (1951).

    CAS  Google Scholar 

  • The photochemical in-activation and microbial metabolism of the chlorophenoxyacetic acid herbicides. Biochemie. J. 57, xxx (1954).

    Google Scholar 

  • Evans, W. C., B. S. W. Smith, R. P. Linstead and J. A. Elvidge: Chemistry of the oxidative metabolism of certain aromatic compounds by micro-organisms. Nature (Lond.) 168, 772–775 (1951).

    Article  CAS  Google Scholar 

  • Fahreus, G.: On the oxidation of phenolic compounds by wood-rotting fungi. Kgl. Lantbrukgs-Hogskol. Ann. 16, 618–629 (1939).

    Google Scholar 

  • Fawcett, C. H., J. M. A. Ingram and R. L. Wain: β-Oxidation of ω-phenoxyalkylcarboxylic acids in the flax plant. Nature (Lond.) 170, 887–888 (1952).

    Article  CAS  Google Scholar 

  • Feigl, F.: Spot Tests, Vol. 2: Organic Applications. London: Elsevier Publ. Co. 1954.

    Google Scholar 

  • Fildes, Sir P.: Indole as a precursor in the synthesis of trypto-phan by bacteria. Brit. J. Exper. Path. 21, 315–319 (1940).

    CAS  Google Scholar 

  • Fischer, H. F., E. E. Conn, B. Vennesland and F. H. Westheimer: The enzymatic transfer of hydrogen. J. of Biol. Chem. 202, 687–697 (1953).

    Google Scholar 

  • Fischer, H. O. L., u. G. Dangschat: Übergang der Chinasäure in Shikimisäure. Naturwiss. 26, 562–563 (1938).

    Article  Google Scholar 

  • Fitzgerald, R. J., F. Bernheim and Dorothea B. Fitzgerald: The inhibition by streptomycin of adaptive enzyme formation in Mycobacteria. J. of Biol. Chem. 175, 195–200 (1948).

    CAS  Google Scholar 

  • Fowler, G. J., E. Ardern and W. T. Lockett: The oxidation of phenol by certain bacteria in pure culture. Proc. Roy. Soc. Lond., Ser. B 83, 149–156 (1911).

    Article  CAS  Google Scholar 

  • Geissman, T. A., and J. B. Harborne: The chemistry of flower pigmentation in Antirrhinum maw. Arch, of Biochem. a. Biophysics 55, 447–454 (1955).

    Article  CAS  Google Scholar 

  • Geissman, T. A., and T. Swain: Biosynthesis of flavonoid compounds in higher plants. Chem. a. Ind. 1957, 984.

    Google Scholar 

  • Ghosh, J. J., E. Adams and B.D. Davis: Tyrosine biosynthesis in E.coli; conversion of prephenic acid (PPA) to ρ-hydroxyphenyllactic acid (HPL). Federat. Proc. 15, 261 (1956).

    Google Scholar 

  • Gilvarg, C., and K. Bloch: Synthesis of phenylalanine and tyrosine in yeast. J. Amer. Chem. Soc. 72, 5791–5792 (1950).

    Article  CAS  Google Scholar 

  • Federat. Proc. 10, 189 (1951).

    Google Scholar 

  • Gordon, J., and J. W. McLeod: Quoted by F. C. Happold in: A system of Bacteriology in Relation to Medicine, Vol. 9, p. 163. 1931. Medical Research Council, Pub. H. M. S. O.

    Google Scholar 

  • Gordon, M. F. A. Haskins and H.K. Mitchell: The growth promoting properties of quinic acid. Proc. Nat. Acad. Sci. U.S.A. 36, 427–430 (1950).

    Article  CAS  Google Scholar 

  • Gottlieb, S., and M. Pelczar Microbial aspects of lignin degradation. Bacter. Rev. 15, 55–76 (1951).

    CAS  Google Scholar 

  • Gray, P. H. H., and H. G. Thornton: Soil bacteria that decompose certain aromatic compounds. Zbl. Bakter., 2. Abt. 73, 74–96 (1928).

    CAS  Google Scholar 

  • Gross, S. R., R.D. Gafford and E.L. Tatum: The metabolism of protocatechuic acid by Neurospora crassa. J. of Biol. Chem. 219, 781–796 (1956).

    CAS  Google Scholar 

  • Gross, S. R., and E. L. Tatum: Structural specificity of inducers of protocatechuic acid oxidase synthesis in Neurospora. Science (Lancaster, Pa.) 122, 1141 (1955).

    CAS  Google Scholar 

  • Gunsalus, I. C., G.F. Gunsalus and R.Y. Stanier: The enzymatic conversion of mandelic acid to benzoic acid. J. Bacter. 66, Parts 1, 2, 3, 4, 538–553 (1953).

    CAS  Google Scholar 

  • Gunter, Shirley E.: The enzymatic oxidation of ρ-hydroxymandelic acid to ρ-hydroxybenzoic acid. J. Bacter. 66, 341–346 (1953).

    CAS  Google Scholar 

  • Hansen, J. R., and K. P. Buchholtz: Inactivation of 2:4-d by riboflavin in light. Weeds (J. Assoc. Reg. Weed Control Con.) 1, 237–242 (1952).

    CAS  Google Scholar 

  • Happold, F. C: The correlation of the oxidation of certain phenols and of dimethyl-ρ-phenylenediamine by bacterial suspensions. Biochemic. J. 24, 1737–1743 (1930).

    CAS  Google Scholar 

  • The oxidation of aromatic rings by micro-organisms in metabolism. Biochem. Soc. Symposia 1950, No 5, 85-96.

    Google Scholar 

  • Happold, F. C., and A. Key: The bacterial purification of gasworks’ liquors. The action of the liquors on the bacterial flora of sewage. J. of Hyg. 32, 573–580 (1932).

    Article  CAS  Google Scholar 

  • Haskins, F. A., and H.K. Mitchell: Evidence for a tryptophan cycle in Neurospora. Proc. Nat. Acad. Sci. U.S.A. 35, 500–506 (1949).

    Article  CAS  Google Scholar 

  • Hayaishi, O., and Z. Hashimoto: Pyrocatechase. A new enzyme catalyzing the breakdown of pyrocatechin. Med. J. Osaka Univ. 2, 33–36 (1950).

    Google Scholar 

  • Hayaishi, O., M. Katagiri and S. Rothberg: Mechanism of the pyrocatechase reaction. J. Amer. Chem. Soc. 77, 5450–5451 (1955).

    Article  CAS  Google Scholar 

  • Hayaishi, O., and R. Y. Stanier: The bacterial oxidation of tryptophan. Enzymatic activities of cell-free extracts from bacteria employing the aromatic pathway. J. Bacter. 62, 691–709 (1951).

    CAS  Google Scholar 

  • The kynureninase of Pseudomonas fluorescens. J. of Biol. Chem. 195, 735-740 (1952).

    Google Scholar 

  • Hayano, M., M. Lindberg, R. Dorfman, J. Hancock and W. Doeting: On the mechanism of the C-11-β-hydroxy-lation of steroids; a study with H2 18O and 18O2. Arch, of Biochem. a. Biophysics 59, 529–531 (1955).

    Article  CAS  Google Scholar 

  • Henderson, L. M.: Quinolinic acid metabolism. 1. J. of Biol. Chem. 178, 1005–1006 (1949).

    CAS  Google Scholar 

  • Quinolinic acid metabolism. 2. Replacement of nicotinic acid for the growth of the rat and Neurospora. J. of Biol. Chem. 181, 677-685 (1949).

    Google Scholar 

  • Henderson, Moira E. K., and V. C. Farmer: Utilization by soil fungi of ρ-hydroxybenzaldehyde, ferulic acid, syringaldehyde, and vanillin. J. Gen. Microbiol. 12, 37–46 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Hockenhtjll, D. J. D., A. D. Walker, G. D. Wilkin and F. G. Winder: Oxidation of phenylacetic acid by Penicillium chrysogenum. Biochemie. J. 50, 605–609 (1952).

    Google Scholar 

  • Hopkins, Sir F. G., and S.W. Cole: Constitution of tryptophan. J. of Physiol. 29, 451–466 (1903).

    Google Scholar 

  • Horecker, B. L., P. Z. Smyrniotis, H. H. Hiatt and P.A. Marks: Tetrose phosphate and the formation of sedoheptulose-diphosphate. J. of Biol. Chem. 212, 827–836 (1955).

    CAS  Google Scholar 

  • Hughes, D. E.: A press for disrupting bacteria and other micro-organisms. Brit. J. Exper. Path. 32, 97–109 (1951).

    CAS  Google Scholar 

  • 6-Hydroxynicotinic acid as an intermediate in the oxidation of nicotinic acid by Pseudomonas fluorescens. Biochem. et Biophysica Acta 9, 226-227 (1952).

    Google Scholar 

  • Hunt, A. L., D. E. Hughes and J. M. Lowenstein: The hydroxylation of nicotinic acid by Pseudomonas fluorescens. Biochemie. J. 66, 2P (1957).

    Google Scholar 

  • Isono, M.: Oxidative metabolism of phenylacetic acid by Penicillium chrysogenum. J. Agricult. Chem. Soc. Japan 27, Parts 1–4, 193–301 (1953); 28, Parts 5–6, 196-205 (1954).

    CAS  Google Scholar 

  • Jacobs, S. E.: The influence of antiseptics on the bacterial and protozoan population of greenhouse soils. I. Naphthalene. Ann. Appl. Biol. 18, 98–136 (1931).

    Article  Google Scholar 

  • Jaffe, M.: Über die Aufspaltung des Benzolrings im Organismus. Z. physiol. Chem. 62, 58–67 (1909).

    Article  Google Scholar 

  • Jakoby, W., and D. M. Bonner: Kynureninase from Neurospora: purification and properties. J. of Biol. Chem. 205, 699–707 (1953).

    CAS  Google Scholar 

  • Jakoby, W., and D. M. Bonner: Kynureninase from Neurospora: interaction of enzyme with substrates, coenzyme, and amines. J. of Biol. Chem. 205, 709–715 (1953).

    CAS  Google Scholar 

  • Jensen, H. L., and K. Gundersen: Biological decomposition of aromatic nitro-compounds. Nature (Lond.) 175, 341 (1955).

    Article  CAS  Google Scholar 

  • Acta agricult. scand. (Stockh.) 6, 100-114 (1956).

    Google Scholar 

  • Jensen, H. L., and H. I. Petersen: Decomposition of hormone herbicides by bacteria. Acta agricult. scand. (Stockh.) 2, 215–231 (1952).

    Article  CAS  Google Scholar 

  • Jones, J. D., B. S. W. Smith and W. C. Evans: Homogentisic acid an intermediate in the metabolism of tyrosine by the aromatic ring-splitting micro-organisms. Biochemie. J. 51, xi (1952).

    Google Scholar 

  • Kalan, E. B., B. D. Davis, P. R. Srinivasan and D. B. Sprinson: The conversion of various carbohydrates to 5-dehydro-shikimic acid by bacterial extracts. J. of Biol. Chem. 223, 907–912 (1956).

    CAS  Google Scholar 

  • Kalan, E. B., and P. R. Srinivasan: Synthesis of 5-dehydro-shikimic acid from carbohydrates in a cell-free extract. Symposium on Amino Acid Metabolism, edit. by W. D. McElroy and B. Glass, p. 826–830. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Karlsson, J. L., and H. A. Barker: Evidence against the occurrence of a tricarboxylic acid cycle in Azotobacter agilis. J. of Biol. Chem. 175, 913–921 (1948).

    CAS  Google Scholar 

  • Karstrom, H.: Enzymatische Adaptation bei Mikroorganismen. Erg. Enzymforsch. 7, 350–376 (1937/38). See also: Adaptation in Micro-organisms, Third Symp. Soc. Gen. Microbiol., edit. by E. F. Gale and E. Davis, Cambridge, Eng.: Cambridge Univ. Press 1953 and The Microbe’s Contribution to Biology by A. J. Kluyver, and C.B. van Niel. Cambridge, Mass.: Harvard Univ. Press 1956.

    Google Scholar 

  • Katagiri, M., and O. Hayaishi: Enzymatic degradation of β-ketoadipic acid. J. of Biol. Chem. 226, 439–448 (1957).

    CAS  Google Scholar 

  • Katagiri, M., and R. Sato: Accumulation of phenylalanine by a phenylalanine mutant of Escherichia coli. Science (Lancaster, Pa.) 118, 250 (1953).

    CAS  Google Scholar 

  • Kilby, B. A.: The formation of β-ketoadipic acid by bacterial fission of aromatic rings. Biochemic. J. 43, v (1948); 49, 671–677 (1951).

    CAS  Google Scholar 

  • Kluyver, A. J.: The Chemical Activities of Micro-organisms. London: Univ. Press 1931.

    Google Scholar 

  • Kluyver. A. J., and J. C. M. van Zijp: The production of homogentisic acid out of phenylacetic acid by Aspergillus niger. Antonie van Leeuwenhoek J. Microbiol. Serol. 17, 315–324 (1951).

    Article  CAS  Google Scholar 

  • Knox, W. E.: A Symposium on Amino Acid Metabolism. Edit, by W. D. McElroy and B. Glass. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Methods in Enzymology. Edit. by S. P. Colowick and N.O. Kaplan, vol. 2. New York: Academic Press 1955.

    Google Scholar 

  • Kubowitz, F.: Über die chemische Zusammensetzung der Kartoffeloxydase. Biochem. Z. 292, 221–229 (1937).

    CAS  Google Scholar 

  • Landa, S., and J. Eliasek: Biological degradation of phenols. Chem. Listy 47, 622–629, 1066-1070 (1953); 50, 1834-1839 (1956).

    CAS  Google Scholar 

  • Lederberg, J., and N. Zinder: Isolation of biochemically deficient mutants of bacteria by penicillin. J. Amer. Chem. Soc. 70, 4267–4268 (1948).

    Article  CAS  Google Scholar 

  • Lees, H., and J. H. Quastel: A new technique for the study of soil sterilization. Chem. a. Ind. 1944, 238-239.

    Google Scholar 

  • Loew, O.: Über das Verhalten der Chinasäure zu den Spaltpilzen. Ber. chem. Ges. 14, 450–452 (1881).

    Article  Google Scholar 

  • MacDonald, D. L., R. Y. Stanier and J. L. Ingraham: The enzymatic formation of β-carboxymuconic acid. J. of Biol. Chem. 210, 809–820 (1954).

    CAS  Google Scholar 

  • Martinon: Action of hydrogen peroxide on the phenols. Bull. Soc. Chim. 2, 43, 155–158 (1885).

    Google Scholar 

  • Mason, H. S.: Comparative biochemistry of the phenolase complex. Adv. Enzymol. 16, 105–184 (1955).

    CAS  Google Scholar 

  • Mason, H. S., I. Onopryenko and D. Buhler: Hydroxylation: the activation of oxygen by peroxidase. Biochim. et Biophysica Acta 24, 225 (1957).

    Article  CAS  Google Scholar 

  • Mehler, A. H.: A Symposium on Amino Acid Metabolism, edit. by W. D. McElroy and B. Glass, p. 882–908. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Miller, L. P.: Induced formation of ß-gentiobiosides in gladiolus corms and tomato plants treated with chemicals. Science (Lancaster, Pa.) 92, 42–43 (1940).

    CAS  Google Scholar 

  • Mitoma, C., and L. C. Leeper: Enzymatic conversion of phenylalanine to tyrosine. Federat. Proc. 13, 266 (1954).

    Google Scholar 

  • Mitoma, C., H. S. Posner, H. C. Reitz and S. Udenfriend: Enzymatic hydroxylation of aromatic compounds. Arch. of Biochem. a. Biophysics 61, 431–441 (1956).

    Article  CAS  Google Scholar 

  • Mitsuhashi, S., and B. D. Davis: Aromatic biosynthesis. XII. Conversion of 5-dehydroquinic acid to 5-dehydroshikimic acid by 5-dehydroquinase. Biochim. et Biophysica Acta 15, 54–61 (1954).

    Article  CAS  Google Scholar 

  • Aromatic biosynthesis. XIII. Conversion of quinic acid to 5-dehydroquinic acid by quinic dehydrogenase. Biochim. et Biophysica Acta 15, 268-280 (1954).

    Google Scholar 

  • Moore, F. W.: The utilization of pyridine by micro-organisms. J. Gen. Microbiol. 3, 143–146 (1949).

    Article  PubMed  CAS  Google Scholar 

  • Murphy, J. F., and R. W. Stone: The bacterial dissimilation of naphthalene. Canad. J. Microbiol. 1, 579–588 (1954/55).

    Article  Google Scholar 

  • Neunhoeffer, O.: Über Ringsprengung an o-Mtrophenolen durch Schwefelsäure. Ber. chem. Ges. 68, 1774–1781 (1935).

    Article  Google Scholar 

  • Nord, F.F., W.J. Schubert and S. N. Acerbo: On the mechanism of lignification. Naturwiss. 2, 35–36 (1957).

    Article  Google Scholar 

  • Nyc, J. F., H. K. Mitchell, E. Liefer and W. H. Langham: The use of isotopic carbon in a study of the metabolism of anthranilic acid in Neurospora. J. of Biol. Chem. 179, 783–787 (1949).

    CAS  Google Scholar 

  • Ogston, A. G.: Interpretations of experiments on metabolic processes using isotopic tracer elements. Nature (Lond.) 162, 963 (1948).

    Article  CAS  Google Scholar 

  • Parke, D. V., and R.T. Williams: The metabolism of benzene. The muconic acid excreted by rabbits receiving benzene. Determination of the isomeric muconic acids. Biochemie. J. 51, 339–348 (1952).

    CAS  Google Scholar 

  • Parr, W. H., R. A. Evans and W. C. Evans: The mechanism of the bacterial oxidation of certain aromatic compounds, together with the preparation of a cell-free enzyme system which accomplishes ring-cleavage. Biochemie. J. 45, xxix (1949).

    Google Scholar 

  • Partridge, C. W. H., D.M. Bonner and C. Yanofsky: A quantitative study of the relationship between tryptophan and niacin in Neurospora. J. of Biol. Chem. 194, 269–278 (1952).

    CAS  Google Scholar 

  • Perrier, A.: Fermentation of compounds of the cyclic series and the formation of humus substances. Ann. Sci. Agronom. (4) 30, 321–350 (1913).

    CAS  Google Scholar 

  • Plaut, G. W. E.: Biosynthesis of riboflavin. J. of Biol. Chem. 211, 111–116 (1954).

    CAS  Google Scholar 

  • Potter, V. R., and C. Heidelberger: Biosynthesis of “asymmetric” citric acid; a substantiation of the Ogston concept. Nature (Lond.) 164, 180–181 (1949).

    Article  CAS  Google Scholar 

  • Raper, H. S.: The aerobic oxidases. Physiologic. Rev. 8, 245–282 (1928).

    CAS  Google Scholar 

  • Note on the oxidation of tyrosine, tyramine, and phenylalanine with hydrogen peroxide. Biochemie. J. 26, 2000-2004 (1932).

    Google Scholar 

  • Rhuland, L. E., and R. C. Bard: The rôle of anthranilic acid in the nutrition of Lactobacillus arabinosus. J. Bacter. 63, 133–143 (1952).

    CAS  Google Scholar 

  • Robinson, Sir R.: The Structural Relations of Natural Products. Oxford: Clarendon Press 1955.

    Google Scholar 

  • Rogoff, M. H., and J. J. Reid: Bacterial decomposition of 2:4-d. J. Bacter. 71, 303–307 (1956).

    CAS  Google Scholar 

  • Rogoff, M. H., and I. Wender: The microbiology of coal. I. Bacterial oxidation of phenanthrene. J. Bacter. 73, 264 (1957).

    CAS  Google Scholar 

  • 3-Hydroxy-2-naphthoic acid as an intermediate in bacterial dissimilation of anthracene. J. Bacter. 74, 108 (1957).

    Google Scholar 

  • Roof, Betty S., Theodora J. Lannon and J. C. Turner: Bacterial oxidation of salicylic acid and related antirheumatic phenolic acids. Proc. Soc. Exper. Biol. a. Med. 84, 38–41 (1953).

    Article  CAS  Google Scholar 

  • Salamon, I.I., and B.D. Davis: Aromatic biosynthesis. IX. The isolation of a precursor of shikimic acid. J. Amer. Chem. Soc. 75, 5567–5571 (1953).

    Article  CAS  Google Scholar 

  • Saunders, B. H.: Peroxidase. Action and uses in organic synthesis. Roy. Inst. Chem. Monogr. 1957, No 1, 1–27.

    Google Scholar 

  • Schubert, W. J., and F.F. Nord: Lignification. Adv. Enzymol. 18, 349–378 (1957).

    CAS  Google Scholar 

  • Schultze, W. H.: A new method of testing the reducing and oxidizing power of bacteria. Zbl. Bakter., 1. Abt. 56, 544–545 (1910).

    Google Scholar 

  • Shigettra, H. T., and D. B. Sprinson: Biosynthesis of shikimic acid from labelled compounds. Federat. Proc. 11, 286 (1952).

    Google Scholar 

  • Simmonds, S.: The metabolism of phenylalanine and tyrosine in mutant strains of Escherichia coli. J. of Biol. Chem. 185, 755–762 (1950).

    CAS  Google Scholar 

  • Simpson, J. R.: M. Sc. Thesis, Univ. of Wales 1954.

    Google Scholar 

  • Simpson, J. R., and W.C. Evans: The metabolism of nitrophenols by certain bacteria. Biochemic. J. 55, xxiv (1953).

    CAS  Google Scholar 

  • Sistrom, W. R., and R. Y. Stanier: The mechanism of formation of β-ketoadipic acid by bacteria. J. of Biol. Chem. 210, 821–836 (1954).

    CAS  Google Scholar 

  • Enzymatic conversion of two geometrical isomers into enantiomorphs. Nature (Lond.) 174, 513-514 (1954).

    Google Scholar 

  • Sleeper, B. P.: The bacterial oxidation of aromatic compounds. Metabolism of benzoic acid labelled with 14C. J. Bacter. 62, 657–662 (1951).

    CAS  Google Scholar 

  • Sleeper, B. P., and R. Y. Stanier: The bacterial oxidation of aromatic compounds. 1. Adaptive patterns with respect to polyphenolic compounds. J. Bacter. 59, 117–127 (1950).

    CAS  Google Scholar 

  • Smith, B. S. W.: Ph.D. Thesis, Univ. of Wales 1954.

    Google Scholar 

  • Smith, B. S. W., J.D. Jones and W. C. Evans: Aromatic oxidative metabolism of certain benzene ring compounds by soil bacteria. Biochemie. J. 50, xxviii (1952).

    Google Scholar 

  • Snell, E. E.: Growth promotion on trypto-phan-deficient media by o-aminobenzoic acid and its attempted reversal with orthoanilamide. Arch, of Biochem. 2, 389–394 (1943).

    CAS  Google Scholar 

  • Sohngen, N. L.: Het onstaan en verdwijnen van waterstof en methaan onder den invloed van het organische leven. Thesis, Delft 1906.

    Google Scholar 

  • Spiegelman, S., and A.M. Campbell: The significance of induced enzyme formation. In: Currents in Biochemical Research, edit. D.E. Green, p. 115–161. New York: Inter-science Pub. Inc. 1956.

    Google Scholar 

  • Sprinson, D. B.: The rôle of carbohydrates in the biosynthesis of aromatic compounds. In: Essays in Biochemistry, p. 259–269, edit. S. Graff. New York: J. Wiley & Sons, Inc. 1956.

    Google Scholar 

  • Srinivasan, P. R., H. T. Shigeura, M. Sprecher, D. B. Sprinson and B. D. Davis: The biosynthesis of shikimic acid from d-glucose. J. of Biol. Chem. 220, 477–497 (1956).

    CAS  Google Scholar 

  • Srinivasan, P. R., D. B. Sprinson, E. B. Kalan and B. D. Davis: The enzymatic conversion of sedoheptulose-1:7-diphosphate to shikimic acid. J. of Biol. Chem. 223, 913–920 (1956).

    CAS  Google Scholar 

  • Stanier, R. Y.: Simultaneous adaptation. A new technique for the study of metabolic pathways. J. Bacter. 54, 339–348 (1947).

    CAS  Google Scholar 

  • The oxidation of aromatic compounds by fluorescent Pseudomonas. J. Bacter. 55, 477-494 (1948).

    Google Scholar 

  • Problems of bacterial oxidative metabolism. Bacter. Rev. 14, 179-197 (1950).

    Google Scholar 

  • The bacterial oxidation of aromatic compounds. Symposium sur le métabolisme microbien: II. Congr. Internat. de Biochemie, p. 64-71. 1952.

    Google Scholar 

  • Aspects of synthesis and order in growth. (3) The plasticity of enzymatic patterns in microbial cells, edit. by Dorothea Rudnick, p. 43-67. Princeton, New Jersey: Princeton Univ. Press 1955.

    Google Scholar 

  • Cleavage of aromatic rings with eventual formation of β-ketoadipic acid. In: Methods in Enzymology, vol. 2, p. 273-287; vol. 3, p. 614-620, edit. by S. P. Colowick and N. O. Kaplan. New York: Academic Press Inc. 1955, 1957.

    Google Scholar 

  • Stanier, R. Y., and O. Hayaishi: The bacterial oxidation of trypto-phan: a study in comparative biochemistry. Science (Lancaster, Pa.) 114, 326–330 (1951).

    CAS  Google Scholar 

  • Stanier, R. Y., O. Hayaishi and Martha Tsuchida: The bacterial oxidation of tryptophan. A general survey of the pathways. J. Bacter. 62, 355–366 (1951).

    CAS  Google Scholar 

  • Stanier, R. Y., and J. L. Ingraham: Protocatechuic acid oxidase. J. of Biol. Chem. 210, 799–808 (1954).

    CAS  Google Scholar 

  • Stanier, R. Y., and Martha Tsuchida: Adaptive enzymatic patterns in the bacterial oxidation of tryptophan. J. Bacter. 58, 45–60 (1949).

    CAS  Google Scholar 

  • Stapp, C., u. G. Spicher: Untersuchungen über die Wirkung von 2:4-d im Boden. IV. Mitt. Flavobacterium peregrinum n.sp. und seines Fähigkeit zum Abbau des Hormones. Zbl. Bakter., II. Abt. 108, 113 (1954).

    Google Scholar 

  • Steenson, T. I., and N. Walker: Observations on the bacterial oxidation of chlorophen-oxyacetic acids. Plant a. Soil 8, 17–32 (1956); see also J. Gen. Microbiol. 16, 146-155 (1957).

    Article  CAS  Google Scholar 

  • Stephenson, M.: Bacterial Metabolism, 3rd. edit. London: Longmans, Green and Co. 1949.

    Google Scholar 

  • C. N. Hinshelwood, The chemical kinetics of the bacterial cell. Oxford: Clarendon Press 1946.

    Google Scholar 

  • Strawinski, R. J.: The dissimilation of pure hydrocarbons by members of the genus Pseudomonas. Thesis, Pennsylvania State College 1943.

    Google Scholar 

  • Strawinski, R. J., and R. W. Stone: The utilization of hydrocarbons by bacteria. J. Bacter. 40, 461 (1940).

    Google Scholar 

  • Conditions governing the oxidation of naphthalene and the chemical analysis of its products. J. Bacter. 45, 16 (1943).

    Google Scholar 

  • Stormer, K.: Über die Wirkung des Schwefelkohlenstoffs und ähnlicher Stoffe auf den Boden. Zbl. Bakter., II. Abt. 20, 282–286 (1908).

    Google Scholar 

  • Stowe, B. B.: The production of indoleacetic acid by bacteria. Biochemic. J. 61, ix (1955).

    Google Scholar 

  • Suda, M., K. Hashimoto, H. Matsuoka and T. Kamahora: Further studies on pyrocatechase. Med. J. Osaka Univ. 2, 43–49 (1951).

    Google Scholar 

  • Suda, M., O. Hayaishi and Y. Oda: Studies of enzyme adaptation. Tokyo Symp. Enzyme Chem. 1, 79–84 (1949).

    Google Scholar 

  • Studies on adaptation. Successive adaptation with special reference to the metabolism of tryptophan. Med. J. Osaka Univ. 2, 21-31 (1950).

    Google Scholar 

  • Suda, M., H. Matsuoka and T. Kamahora: Enzymatic formation of ß-ketoadipic acid. Med. J. Osaka Univ. 3, 125–128 (1952).

    CAS  Google Scholar 

  • Suda, M., and Y. Taxeda: Metabolism of tyrosine. Application of the successive adaptation of bacteria for the analysis of the enzymatic breakdown of tyrosine. Med. J. Osaka Univ. 2, 37–40 (1950).

    Google Scholar 

  • Tattersfield, F.: The decomposition of naphthalene in the soil and the effect upou its insecticidal action. Ann. Appl. Biol. 15, 57–80 (1928).

    Article  CAS  Google Scholar 

  • Tatum, E. L., R. W. Barratt, N. Fries and D. Bonner: Biochemical mutant strains of Neurospora produced by physical and chemical treatment. Amer. J. Bot. 37, 38–46 (1950).

    Article  CAS  Google Scholar 

  • Tatum, E. L., and D. M. Bonner: Indole and serine in the biosynthesis and breakdown of tryptophan. Proc. Nat. Acad. Sci. U.S.A. 30, 30–37 (1944).

    Article  CAS  Google Scholar 

  • Tatum, E. L., D. M. Bonner and G. W. Beadle: Anthranilic acid and the biosynthesis of indole and tryptophan by Neurospora. Arch. of Biochem. 3, 477–478 (1944).

    CAS  Google Scholar 

  • Tatum, E. L., and S. R. Gross: Incorporation of carbon atoms 1 and 6 of glucose into protocatechuic acid by Neurospora. J. of Biol. Chem. 219, 797–807 (1956).

    CAS  Google Scholar 

  • Tatum, E. L., S. R. Gross, G. Ehrensvard and L. Garnjobst: Synthesis of aromatic compounds by Neurospora. Proc. Nat. Acad. Sci. U.S.A. 40, 271–276 (1954).

    Article  CAS  Google Scholar 

  • Tausson, V. O.: Basic Principles of Plant Bioenergetics. Collected works of V. O. Tausson, publishing house of Acad. Sciences of U.S.S.R. (1950), edit. N. A. Maximov.

    Google Scholar 

  • Thimann, K. V.: On the plant growth hormone produced by Rhizopus suinus. J. of Biol. Chem. 109, 279–291 (1935).

    CAS  Google Scholar 

  • Treccani, R. Benetti and A. Schiesser: Action of some Flavobacteria on benzoic acid and various phenols. IV. Internat. Congr. Soil Sci., vol. 1, p. 186–190. Groningen (Netherlands): Publ. Heitsema Bro. 1950.

    Google Scholar 

  • Treccani, V., N. Walker and G.H. Wiltshire: The metabolism of naphthalene by soil bacteria. J. Gen. Microbiol. 11, 341–348 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Udenfriend, S., C.T. Clarke, J. Axelrod and B. B. Brodie: Ascorbic acid in aromatic hydroxylation. 1. A model system for aromatic hydroxylation. J. of Biol. Chem. 208, 731–739 (1954).

    CAS  Google Scholar 

  • Udenfriend, S., and J. R. Cooper: The enzymatic conversion of phenylalanine to tyrosine. J. of Biol. Chem. 194, 503–511 (1952).

    CAS  Google Scholar 

  • Udenfriend, S., and C. Mitoma: Conversion of phenylalanine to tyrosine. A Symposium on Amino Acid Metabolism, edit, by W. D. McElroy and B. Glass. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Umbreit, W., W. A. Wood and I. C. Gunsalus: The activity of pyridoxal phosphate in tryptophan formation by cell-free enzyme preparations. J. of Biol. Chem. 165, 731–732 (1946).

    CAS  Google Scholar 

  • Underhill, E. W., J. Watkin and A. C. Neish: Biosynthesis of quer-cetin in buckwheat. Parts I and II. Canad. J. Biochem. a. Physiol. 35, 219–237 (1957).

    Article  CAS  Google Scholar 

  • Wagner, R.: Über Benzolbakterien. Z. Gärungsphysiol. 4, 289–319 (1914).

    CAS  Google Scholar 

  • Walker, N., and W. C. Evans: Metabolism of the monohydroxybenzoic acids by soil bacteria. Biochemie. J. 52, xxiii (1952).

    CAS  Google Scholar 

  • Walker, N., and G.H. Wiltshire: The breakdown of naphthalene by a soil bacterium. J. Gen. Microbiol. 8, 273–276 (1953); 12, 478-483 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Webley, D. M., R. B. Duff and V. C. Farmer: Formation of a β-hydroxy acid as an intermediate in the microbiological conversion of monochlorophenoxybutyric acids to the corresponding substituted acetic acids. Nature (Lond.) 179, 1130 (1957).

    Article  CAS  Google Scholar 

  • Weiss, U., B. D. Davis and Elizabeth S. Mingioli: Aromatic biosynthesis. X. Identification of an early precursor as 5-dehydroquinic acid. J. Amer. Chem. Soc. 75, 5572–5576 (1953).

    Article  CAS  Google Scholar 

  • Weiss, U., C. Gilvarg, Elizabeth S. Mingioli and B.D. Davis: Aromatic biosynthesis. XI. The aromatic step in the synthesis of phenylalanine. Science (Lancaster, Pa.) 119, 774–775 (1954).

    CAS  Google Scholar 

  • Weiss, U., and Elizabeth S. Mingioli: Aromatic biosynthesis. XV. The isolation and identification of shikimic acid-5-phosphate. J. Amer. Chem. Soc. 78, 2894–2898 (1956).

    Article  CAS  Google Scholar 

  • Winogradsky, S.: Microbiologie du sol. Oeuvres completes. Paris: Masson&Cie. 1949.

    Google Scholar 

  • Wiss, O., u. G. Bettendorf: 2. Die Isolierung und vorläufige Charakterisierung des primären Oxydationsproduktes der 3-Hydroxy-anthranilsäure. Z. physiol. Chem. 306, 145–153 (1957).

    Article  CAS  Google Scholar 

  • Wiss, O., H. Simmer u. H. Peters: Über die Umwandlung der 3-Hydroxy-anthranilsäure in Chinolinsäure und Nicotinsäure im tierischen Organismus. 1. Die enzy-matische Oxydation der 3-Hydroxy-anthranilsäure. Z. physiol. Chem. 304, 221–231 (1956).

    Article  CAS  Google Scholar 

  • Wortmann, J.: Diastatic ferment of bacteria. Z. physiol. Chem. 6, 287–329 (1882).

    Google Scholar 

  • Yaniv, H., and C. Gilvarg: Aromatic biosynthesis. XIV. 5-Dehydroshikimic acid reductase. J. of Biol. Chem. 213, 787–795 (1955).

    CAS  Google Scholar 

  • Yanofsky, C: Tryptophan desmo-lase of Neurospora: Partial purification and properties. J. of Biol. Chem. 194, 279–286 (1952).

    CAS  Google Scholar 

  • The absence of a tryptophan-niacin relationship in Escherichia coli and Bacillus subtilis. J. Bacter. 68, 577-584 (1954).

    Google Scholar 

  • Tryptophan and niacin synthesis in various organisms. Symp. on Amino Acid Metabolism, edit. W. D. McElroy and B. Glass, p. 930-939. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • On the conversion of anthranilic acid to indole. Science (Lancaster, Pa.) 121, 138 (1955).

    Google Scholar 

  • J. of Biol. Chem. 223, 171-184 (1956).

    Google Scholar 

  • Enzymatic studies with a series of tryptophan auxotrophs of E. coli. J. of Biol. Chem. 224,783-792 (1957).

    Google Scholar 

  • Young, L.: The oxidation of polycyclic hydrocarbons in the animal body. Biochem. Soc. Symp. 1950, No 5, 27-39.

    Google Scholar 

  • Zobell, C. E.: Action of micro-organisms on hydrocarbons. Bacter. Rev. 10, No 1-2, 1–49 (1946).

    CAS  Google Scholar 

  • Adv. Enzymol. 10, 443-486 (1950).

    Google Scholar 

  • Anchel, M.: Identification of the antibiotic substance from Cassia reticulata aus 4,5-dihydroxyanthraquinone-2-carboxylic acid. J. biol. Chem. 177, 169–177 (1949).

    PubMed  CAS  Google Scholar 

  • Andreae, S. R., and W. A. Andreae: Metabolism of scopoletin by healthy and virus-infected potato tubers. Canad. J. Res. 26, 31–44 (1948).

    Article  PubMed  CAS  Google Scholar 

  • Arnow, L. E.: The formation of dopa by the exposure of tyrosine solutions to ultra-violet radiations. J. biol. Chem. 120, 151–153 (1937).

    CAS  Google Scholar 

  • Destruction of phenylalanine by ultraviolet radiant energy. Proc. Soc. exp. Biol. 49, 578-579 (1942).

    Google Scholar 

  • Asano, M., and K. Yamaguti: Über die Konstitution des Embelins. J. pharma-ceut. Soc. Jap. 60, 34, 237 (1940). Zit. nach Hoffmann-Ostenhof 1955.

    Google Scholar 

  • Auterhoff, H.: Vergleichende Untersuchungen der Rinden von Rhamnus frangula und Rhamnus purshiana. IV. Mitt.: Anthrachinone. Arzneimittel-Forsch. 3, 137–139 (1953).

    CAS  Google Scholar 

  • Baker, D., and H. Nelson: Tyrosinase and plant respiration. J. gen. Physiol. 26, 269–276 (1943).

    Article  PubMed  CAS  Google Scholar 

  • Barnes, R. A., and N. N. Gerber: The antifungal agent from Osage orange wood. J. Amer. chem. Soc. 77, 3259–3262 (1955).

    Article  CAS  Google Scholar 

  • Bate-Smith, E. C., and T. N. Morris: Food Science. A Symposium on Quality and Preservation of Foods. New York: Cambridge University Press 1952.

    Google Scholar 

  • Beevers, H.: The oxidation of reduced diphospho-pyridine nucleotide by an ascorbate system from cucumber. Plant Physiol. 29, 265–269 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Bernthsen, A.: Über das Juglon. Ber. dtsch. chem. Ges. 17, 1945 (1884).

    Article  Google Scholar 

  • Bertrand, D.: Bull. Soc. Chim. biol. (Paris) 26, 40 (1944). Zit. nach Dawson u. Tarpley 1951.

    CAS  Google Scholar 

  • Oxydation von Cystein durch Laccase. C. R. Acad. Sci. (Paris) 224, 605-607 (1947).

    Google Scholar 

  • Chem. Zbl. 118, 879 (1947).

    Google Scholar 

  • Birch, A. J.: Biosynthetic relations of some natural phenolic and enolic compounds. Fortschr. Chem. organ. Naturstoffe 14, 186–216 (1957).

    CAS  Google Scholar 

  • Birch, A. J., and F. W. Donovan: Studies in relation to biosynthesis. Aust. J. Chem. 6, 360–378 (1953).

    Article  CAS  Google Scholar 

  • Bohlmann, F., u. H. J. Mannhardt: Acetylenverbindungen im Pflanzenreich. Fortschr. Chem. organ. Naturstoffe 14, 1–70 (1957).

    CAS  Google Scholar 

  • Bonner, J., and A. W. Galston: Toxic substances from the culture media of guayule which may inhibit growth. Bot. Gaz. 106, 185–198 (1944).

    Article  CAS  Google Scholar 

  • Bonner, J., and S. G. Wildman: Enzymatic mechanisms 1 Ein gewisser positiver Selektionswert liegt, wie neuerdings von Rudorf und Schwarze beobachtet wurde, insofern vor, als auf dem Feld cumarinarme Pflanzen von Hasen eindeutig stärker befressen werden als Pflanzen mit normalem Cumaringehalt. in the respiration of spinach leaves. Arch. Biochem. 10, 497–518 (1946).

    PubMed  CAS  Google Scholar 

  • Boswell, J. G., and G. C. Whiting: A study of the polyphenoloxidase systems in potato tubers. Ann. Botany N. S. 2, 847–863 (1938).

    CAS  Google Scholar 

  • Bourton et Robiquet: Sur la semence de moutarde. J. Pharmacie (II) 17, 279–308 (1831).

    Google Scholar 

  • Branch, G. E. K., and M. Calvin: The Theory of Organic Chemistry. New York: Prentice-Hall 1941.

    Google Scholar 

  • Brockmann, H.: Photodynamisch wirksame Pflanzenfarbstoffe. Fortschr. Chem. organ. Naturstoffe 14, 141–185 (1957).

    CAS  Google Scholar 

  • Brown, St. A., and A. C. Neish: Shikimic acid as a precursor in lignin biosynthesis. Nature (Lond.) 175, 688–689 (1955).

    Article  CAS  Google Scholar 

  • Studies of lignin biosynthesis using isotopic carbon. IV. Formation from some aromatic monomers. Canad. J. Biochem. 33, 948-962 (1955).

    Google Scholar 

  • Studies of lignin biosynthesis using isotopic carbon. V. Comparative studies on different plant species. Canad. J. Biochem. 34, 769-778 (1956).

    Google Scholar 

  • Bu’Lock, J. D.: Acetylenic compounds as natural products. Quart. Rev. chem. Soc. 10, 371 (1956).

    Article  CAS  Google Scholar 

  • Christiansen-Weniger, E.: Versuche zur stoffwechselphysiologischen Beeinflussung der Reaktion der Kartoffelknolle auf Phytophthora infestans de By. Phytopath. Z. 25, 153–180 (1956).

    Google Scholar 

  • Daglish, C: The isolation and identification of a hydrojuglone glycoside occurring in the walnut. Biochem. J. 47, 452–457 (1950).

    PubMed  CAS  Google Scholar 

  • The determination and occurrence of a hydrojuglone glucoside in the walnut. Biochem. J. 47, 458-462 (1950).

    Google Scholar 

  • Dalgliesh, C. E.: Non specific formation of hydroxylated metabolites of the aromatic amino acids. Arch. Biochem. 58, 214–226 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Danner, H.: Zur Physiologie des Arbutins. Bot. Archiv 41, 168–202 (1940).

    CAS  Google Scholar 

  • Daube, F. W.: Ber. dtsch. chem. Ges. 3, 609 (1870). Zit. nach Skinner 1955.

    Article  Google Scholar 

  • Davis, B. D.: Intermediates in amino-acid-biosynthesis. Advanc. Enzymol. 16, 247–312 (1955).

    CAS  Google Scholar 

  • Dawson, C. R., and N. B. Tarpley: Copper oxidases. In: J. B. Sumner and K. Myrbäck, The Enzymes, vol. II, p. 454–498. New York: Academic Press 1951.

    Google Scholar 

  • DeSaint-Rat, L., H. R. Oliver et J. Chouteau: Bull. Acad. Méd. (Paris) 130, 57 (1946). Zit. nach Skinner 1955.

    CAS  Google Scholar 

  • Dulong d’Astafort: J. pharm. Sci. access. Paris 14, 441 (1829). Zit. nach Skinner 1955.

    Google Scholar 

  • Eberhardt, F.: Über die Beziehungen zwischen Atmung und Anthocyansynthese. Planta (Berl.) 43, 253–287 (1954).

    Article  CAS  Google Scholar 

  • Über fluoreszierende Verbindungen in der Wurzel des Hafers. Z. Bot. 43, 405-422 (1955).

    Google Scholar 

  • Eichbaum, F. W.: Biological properties of ana-cardic acid (o-pentadecadienyl-salicylic acid) and related compounds. Mem. Inst. Butanan 19, 71–133 (1946). Ref. Biol. Abstr. 21, Nr. 25364 (1947).

    CAS  Google Scholar 

  • Eiger, I. Z., and C. R. Dawson: Sweet potato phenolase. Preparation, properties and determination of protein content. Arch. Biochem. 21, 194–209 (1949).

    PubMed  CAS  Google Scholar 

  • Erdtman, H.: Die phenolischen Inhaltsstoffe des Kiefernkernholzes, ihre physiologische Bedeutung und hemmende Einwirkung auf die normale Aufschließung des Kiefernkernholzes nach dem Sulfitverfahren. Liebigs Ann. 539, 116–127 (1939).

    Article  CAS  Google Scholar 

  • Natural Tropolones. In: Moderne Methoden der Pflanzenanalyse, Bd. III, S. 351-358. Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  • Evans, M. G., J. Gergely and J. de Heer: Trans. Faraday Soc. 45, 312 (1949). Zit. nach Mason

    Article  CAS  Google Scholar 

  • Evans, M. G., and J. de Heer: Quart. Rev. 4, 94 (1950). Zit. nach Mason 1955.

    Article  CAS  Google Scholar 

  • Fawcett, C. H., J. M. A. Ingram and R. L. Wain: β-Oxidation of ω-phenoxyalkyl-carboxylic acids in the flax plant. Nature (Lond.) 170, 887–888 (1952).

    Article  CAS  Google Scholar 

  • Friedrich, H.: Hydrojuglon und Vitamin C in der Walnuß (Juglans regia). Pharmazie 8, 90–94 (1953).

    PubMed  CAS  Google Scholar 

  • Untersuchungen über den Gerbstoff von Bergenia-Arten und seine Beziehungen zum Arbutin. Pharmazie 9, 138-155, 240-251 (1954).

    Google Scholar 

  • Untersuchungen über phenolische Inhaltsstoffe von Pyrus communis L. 1. Mitt.: Zusammenstellung der bisherigen Veröffentlichungen. Pharmazie 12, 691–693 (1957).

    Google Scholar 

  • Untersuchungen über die phenolischen Inhaltsstoffe von Pyrus communis L. 2. Mitt.: Der Arbutingehalt der Birnenblätter. Pharmazie 12, 831–834 (1957).

    Google Scholar 

  • Fuchs, W. H.: Ein Beitrag zur pathologischen Physiologie. Angew. Bot. 30, 141–146 (1956).

    Google Scholar 

  • Geissman, T. A.: The flavonoid constituents of normal and virus-infected peach and cherry leaves. Arch. Biochem. 60, 21–26 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Geissman, T. A., and D. K. Fukushima: J. Amer. chem. Soc. 70, 1686 (1948). Zit. nach Underhill, Watkin u. Neish 1957b.

    Article  CAS  Google Scholar 

  • Geissman, T. A., and J. B. Harborne: The chemistry of flower pigmentation in Antirrhinum majus. IV. The albino (-mm-nn) form. Arch. Biochem. 55, 447–454 (1955).

    Article  CAS  Google Scholar 

  • Geissman, T. A., and E. Hinreiner: Theories of the biogenesis of flavonoid compounds. Bot. Rev. 18, 77–244 (1952).

    Article  CAS  Google Scholar 

  • Geissman, T. A., and T. Swain: Biosynthesis of flavonoid compounds in higher plants. Chem. and Ind. 1957, 984.

    Google Scholar 

  • Gildemeister, E., u. F. Hoffmann: Die ätherischen Öle, 3. Aufl. Leipzig: Schimmel & Co. 1928-1931. 3 Bände.

    Google Scholar 

  • Gilman, H., P. R. van Ess and R. R. Burtner: The constitution of carlinaoxide. J. Amer. chem. Soc. 55, 3461 (1933). Zit. nach Bohlmann u. Mannhardt 1957.

    Article  CAS  Google Scholar 

  • Goris, A., et M. Mascré: Sur l’existence, dans le Primula officinalis Jacq., de deux nouveaux glucosides dédoublables par un ferment. C. R. Acad. Sci. (Paris) 149, 947–950 (1910).

    CAS  Google Scholar 

  • Grahle, A.: Untersuchungen zur Gewinnung einheimischer Arzneipfanzen. I. Der Anthraglykosidgehalt der Kreuzdornbeeren und seine Veränderungen während der Fruchtreife und bei der Ernte. Süddtsch. Apoth.-Ztg. 86, 51–56 (1946).

    Google Scholar 

  • Griffiths, A. B.: Chem. News 49, 90 (1884).

    Google Scholar 

  • Nach F. Czapek, Biochemie der Pflanzen, Bd. III, S. 449. Jena: Gustav Fischer 1925.

    Google Scholar 

  • Grimal, E.: Sur l’essence de bois de Thuja articulata d’Algérie. C. R. Acad. Sci. (Paris) 139, 927 (1904).

    CAS  Google Scholar 

  • Grisebach, H.: Zur Biogenese des Cyanidins. I. Mitt. Z. Naturforsch. 12b, 227–231 (1957).

    CAS  Google Scholar 

  • Grundon, M.F., and F.E. King: Chlorophorin, a constituent of Iroko, the timber of Chlorophora excelsa. Nature (Lond.) 163, 564–565 (1949).

    Article  CAS  Google Scholar 

  • Hasegawa, M., S. Yoshida and T. Nakagawa: Shikimic acid in plant leaves. Kakagu Science 24, 421–422 (1954).

    CAS  Google Scholar 

  • Hérissey, H., u. J. Cheymol: Gewinnung und Eigenschaften des Geins, des Eugenol liefernden Glucosids in Gewm urbanum L. C. R. Acad. Sci. (Paris) 180, 384, 386 (1925). Ref. Chem. Zbl. 1925 I, 1749.

    Google Scholar 

  • Hérissey, M., et H. J. Laforest: Sur un hétéroside extrait du Laurier du Portugal, Cerasus lusitanica. C. R. Acad. Sci. (Paris) 194, 1095–1097 (1932).

    Google Scholar 

  • Herrmann, K.: Über Kaffeesäure und Chloro-gensäure. Pharmazie 11, 433–449 (1956).

    PubMed  CAS  Google Scholar 

  • Hesse, O.: Pharm. J. 1, 325 (1895). Zit. nach Skinner 1955.

    Google Scholar 

  • Hewitt, L. F.: Oxidation-Reduction Potentials in Bacteriology and Biochemistry. Edinburgh: Livingstone 1950.

    Google Scholar 

  • Hieke, K.: Der Anthrachinonstoff-wechsel in Polygonaceen. Bot. Archiv 41, 113–158 (1940).

    CAS  Google Scholar 

  • Hoffmann-Ostenhof, O.: Vorkommen und biochemisches Verhalten der Chinone. Fortschr. Chem. organ. Naturstoffe 6, 154–241 (1950).

    CAS  Google Scholar 

  • Ein-und zweikernige Chinone. In: Moderne Methoden der Pflanzenanalyse, Bd. III, S. 359-391. Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  • Hooker, S. C.: The constitution of “lapachic acid” (lapachol) and its derivatives. J. chem. Soc. 61, 611 (1892).

    Article  CAS  Google Scholar 

  • The constitution of lapachol and its derivatives. J. chem. Soc. 69, 1355 (1896).

    Google Scholar 

  • Imai, K.: Studies on the essential oil of Artemisia capillaris Thunb. III. Antifungal activity of the essential oil. Structure of antifungal principle capillin. J. pharmaceut. Soc. Jap. 76, 405 (1956). Zit. nach Bohlmann u. Mannhardt.

    CAS  Google Scholar 

  • Iwanof-Gajewsky: Ber. dtsch. chem. Ges. 3, 624 (1870). Zit. nach Skinner 1955.

    Google Scholar 

  • James, W. O.: Plant Respiration. Oxford: Clarendon Press 1953.

    Google Scholar 

  • James, W. O.: The terminal oxidase in the respiration of the embryos and young roots of barley. Proc. roy. Soc. B 141, 289–299 (1953).

    Article  CAS  Google Scholar 

  • James, W. O., E. A. H. Roberts, H. Beevers and P. C. de Kock: The secondary oxidation of amino acids by the catechol oxidase of belladonna. Biochem. J. 43, 626–636 (1948).

    PubMed  CAS  Google Scholar 

  • Johnson, G., and L. A. Schaal: Relation of chlorogenic acid to scab resistance in potatoes. Science 115, 627–629 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Accumulation of phenolic substances and ascorbic acid in potato tuber tissue upon injury and their possible role in disease resistance. Amer. Potato J. 34, 200-209 (1957).

    Google Scholar 

  • Joslyn, M. A., and J. D. Ponting: Enzymes catalyzed oxidative browning of fruit products. Advanc. Food Res. 3, III (1951).

    Article  Google Scholar 

  • Karrer, W.: Über das Vorkommen von 2,6-Dimethoxychinon in Adonis vernalis. Helv. chim. Acta 93, 1424 (1930).

    Article  Google Scholar 

  • Keilin, D., and T. Mann: Nature (Lond.) 145, 304 (1940).

    Article  CAS  Google Scholar 

  • Kenkare, U. W., and K. Sohonie: The “phenolase” from brinjal (Solanum melongena). Current Sci. 20, 268–269 (1951).

    CAS  Google Scholar 

  • Kjaer, A.: Secondary organic sulfur compounds of plants. In: Handbuch der Pflanzenphysiologie, Bd. IX, S. 64–88. Berlin-Göttingen-Heidelberg: Springer 1958.

    Google Scholar 

  • Klein, G., E. Siersch u. H. Linser: Zum mikrochemischen Nachweis freier Phenole in der Pflanze. Ost. bot. Z. 80, 223–249 (1931).

    Article  Google Scholar 

  • Kötter, Cl.: Das Auftreten sekundärer Pflanzenstoffe im Verlauf der Wundperidermbildung bei Kartoffeln. Diss. Göttingen 1957.

    Google Scholar 

  • Koninck, L. de: Über das Phloridzin (Phlorrhizin). Liebigs Ann. 15, 75–77 (1835).

    Google Scholar 

  • Weitere Notiz über das Phloridzin. Liebigs Ann. 15, 258-263 (1835).

    Google Scholar 

  • Kubowitz, F.: Über die chemische Zusammensetzung der Kartoffeloxydase. Biochem. Z. 292, 221–229 (1937).

    CAS  Google Scholar 

  • Spaltung und Resynthese der Polyphenoloxydase und des Hämocyanins. Biochem. Z. 299, 32-57 (1938).

    Google Scholar 

  • Kuc, J., R. E. Menze, A. J. Ullstrup and F. W. Quackenbush: Chlorogenic and caff eic acids as f ungistatic agents produced by potatoes in response to inoculation with Helminthosporium carbonum. J. Amer. chem. Soc. 78, 3123 (1956).

    Article  CAS  Google Scholar 

  • Kursanow, A. L.: Synthese und Umwandlung der Gerbstoffe in der Teepflanze. Berlin: Verlag Volk u. Gesundheit 1954.

    Google Scholar 

  • Die Gerbstoffe der Teepflanze. In: Die Kulturpflanze, Beih. 1, S. 29-48. Berlin: Akademie-Verlag 1955.

    Google Scholar 

  • Lampe, V.: Ber. dtsch. chem. Ges. 51, 1347 (1918). Zit. nach Skinner 1955.

    Article  CAS  Google Scholar 

  • Lang, W.: Zur Physiologie der Naphthochinone und Gerbstoffe in Pflanzen. Pharm. Zentralh. 80, 713–716 (1939).

    CAS  Google Scholar 

  • Lardy, H.A. (Ed.): Respiratory Enzymes. Minneapolis: Burgess 1949.

    Google Scholar 

  • Lerner, N. H.: Polyphenoloxidase and the respiration of ivy leaves. J. exp. Bot. 5, 79–90 (1954).

    Article  CAS  Google Scholar 

  • Levy, H., and A. Schade: Terminal oxidase system of potato tuber respiration. Arch. Biochem. 19, 273–286 (1948).

    PubMed  CAS  Google Scholar 

  • Lindstedt, G., and A. Misiorny: Constituents of pine heartwood. XXV. Investigation of forty-eight Pinus species by paper partition chromatography. Acta chem. scand. 5, 121 (1951).

    Article  CAS  Google Scholar 

  • Constituents of pine heart-wood. XXVIII. Investigation of four additioned Pinus species by paper partition chromatography. Acta chem. scand. 6, 744-746 (1952).

    Google Scholar 

  • Link, G. K. K., and R. M. Klein: Studies on the metabolism of plant neoplasms. II. The terminal oxidase patterns of crown-gall and auxin tumors of tomato. Bot. Gaz. 113, 190–195 (1951).

    Article  CAS  Google Scholar 

  • Link, K. P., H. R. Angell and J. C. Walker: The isolation of protocatechuic acid from pigmented onion scales and its significance in relation to disease resistance in onions. J. biol. Chem. 81, 369–375 (1929).

    CAS  Google Scholar 

  • Link, K. P., and J. C. Walker: The isolation of catechol from pigmented onion scales and its significance in relation to disease resistance in onions. J. biol. Chem. 100, 379–383 (1933).

    CAS  Google Scholar 

  • Little, J. E., T. J. Sproston and M. W. Foote: Isolation and antifungal action of naturally occurring 2-methoxy-l,4-naphthoquinone. J. biol. Chem. 174, 335–342 (1948).

    PubMed  CAS  Google Scholar 

  • Mason, H. S.: Comparative biochemistry of the phenolase complex. Advanc. Enzymol. 16, 105–184 (1955).

    CAS  Google Scholar 

  • Mason, H. S., J. Onopryrenko and D. Buhler: Hydroxylation: the activation of oxygen by peroxidase. Biochim. biophys. Acta 24, 225–226 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Merz, K. W., u. R. Preuss: Konstitution und Synthese von Taxicatin. Arch. Pharm. (Weinheim) 279, 134–148 (1941).

    Article  CAS  Google Scholar 

  • Mitoma, C., and L. C. Leeper: Enzymatic conversion of phenylalanin to tyrosine. Fed. Proc. 13, 266 (1954).

    Google Scholar 

  • Mitoma, C, H. S. Posner, H. C. Reitz and S. Udenfriend: Enzymatic hydroxylation of aromatic compounds. Arch. Bio-chem. 61, 431–441 (1956).

    Article  CAS  Google Scholar 

  • Mothes, K., u. H. Kala: Die Wurzel als Bildungsstätte für Cumarine. Naturwissenschaften 42, 159 (1955).

    Article  CAS  Google Scholar 

  • Naghski, J., M.J. Copley and J.F. Couch: The antibacterial action of flavonols. J. Bact. 54, 34 (1947).

    PubMed  CAS  Google Scholar 

  • Effect of flavonols on the bacteriostatic action of dicoumarol. Science 105, 125-126 (1947).

    Google Scholar 

  • Newton, R., and J. A. Anderson: Studies on the nature of rust resistance in wheat. IV. Phenolic compounds of the wheat plant. Canad. J. Res. 1, 86–99 (1929).

    Article  CAS  Google Scholar 

  • Niethammer, A.: Mikroskopie und Mikrochemie bekannter heimischer Früchte. Planta (Berl.) 12, 399–413 (1931).

    Article  Google Scholar 

  • Nozoe, T.: Natural tropolones and some related troponoids. Fortschr. Chem. organ. Naturstoffe 13, 222–301 (1956).

    Google Scholar 

  • Onslow, M. W.: Principles of Plant Biochemistry, S. 130. Cambridge: University Press 1931.

    Google Scholar 

  • Oppenheimer, C., and K. G. Stern: Biological Oxidation. New York: Nordemann 1939.

    Google Scholar 

  • Paech, K.: Biochemie und Physiologie der sekundären Pflanzenstoffe. Berlin-Göttingen-Heidelberg: Springer 1950.

    Book  Google Scholar 

  • Stoffwechsel organischer Verbindungen. II. Fortschr. Bot. 17, 578-620 (1954).

    Google Scholar 

  • Paech, K., u. F. Eberhardt: Untersuchungen zur Biosynthese der Anthocyane. Z. Naturforsch. 7b, 669–670 (1952).

    Google Scholar 

  • Perkin, A. G., and J. J. Hummel: J. chem. Soc. Trans. 69, 1295 (1896).

    Article  CAS  Google Scholar 

  • Proc. chem. Soc. 12, 144 (1896). Zit. nach Skinner 1955.

    Google Scholar 

  • Picard, P.: Le violutoside, nouveau glucoside à salicylate de méthyle, retiré du Viola cornuta. C. R. Acad. Sci. (Paris) 182, 1167–1169 (1926).

    CAS  Google Scholar 

  • Pisek, A.: Chemie des Zellsaftes. In: Handbuch der Pflanzenphysiologie, Bd. I, S. 614–626. Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  • Politis, J.: Cytological researches on the mode of formation of chlorogenic acid. Rev. Cytol. Cytophysiol. vég. 10, 229–235 (1948).

    CAS  Google Scholar 

  • Price, J. R., and R. Robinson: A new natural pigment of the naphthalene series. Nature (Lond.) 142, 147 (1938).

    Article  CAS  Google Scholar 

  • Preisler, P. W.: Cold Spr. Harb. Symp. quant. Biol. 7, 94 (1939).

    Article  CAS  Google Scholar 

  • Raper, H. S.: Note on the oxidation of tyrosine, tyramine, and phenylalanine with hydrogen peroxide. Biochem. J. 26, 2000–2004 (1932).

    PubMed  CAS  Google Scholar 

  • Rennie, E.H.: Glycyphyllin, the sweet principle of Smilax glycyphylla. J. chem. Soc. 49, 857–865 (1886).

    Article  CAS  Google Scholar 

  • Robbins, W. J., F. Kavanagh and J. D. Thayer: Antibiotic activity of Cassia reticulata Willd. Bull. Torrey Bot. Club 74, 287–292 (1947).

    Article  CAS  Google Scholar 

  • Roberts, E. A. H., and D. J. Wood: The separation of polyphenols in tea leaf by paper chromatography with water as a mobile solvent. Biochem. J. 49 (Proc.), XXXIII (1951).

    PubMed  CAS  Google Scholar 

  • A study of polyphenols in tea leaf by paper chromatography. Biochem. J. 49, 414-422 (1951).

    Google Scholar 

  • Roberts, R. B., P. H. Abelson, D. B. Cowie, E. T. Bolton and R.J. Britten: Carnegie Inst. Wash. Publ. 607, 406 (1955). Zit. nach Underhill, Watkin u. Neish 1957b.

    Google Scholar 

  • Robinson, E. S., and J. M. Nelson: The tyrosine-tyrosinase reaction and aerobic plant respiration. Arch. Biochem. 4, 111–117 (1944).

    CAS  Google Scholar 

  • Rubin, B. A., u. E. W. Arzichowskaja: Biochemische Charakteristik der Widerstandsfähigkeit der Pflanzen gegenüber Mikroorganismen. Berlin: Akademie-Verlag 1953.

    Google Scholar 

  • Ruckenbrod, H.: Untersuchungen über den Umsatz der Chlorogensäure in höheren Pflanzen. Planta (Berl.) 46, 19–45 (1955).

    Article  Google Scholar 

  • Rudorf, W., u. P. Schwarze: Beiträge zur Züchtung eines cumarinfreien Steinklees und Untersuchungen über Cumarin und verwandte Verbindungen. Z. Pflanzenzüchtung 39, 245–274 (1958).

    Google Scholar 

  • Ruelius, H. W., u. A. Gauhe: Isolierung und Konstitution eines Hydrojuglonglucosids aus den grünen Schalen der Walnuß. Liebigs Ann. 571, 69–75 (1951).

    Article  CAS  Google Scholar 

  • Ruhemann, S., u. S. Skinner: Ber. dtsch. chem. Ges. 20, 1861 (1867). Zit. nach Skinner 1955.

    Article  Google Scholar 

  • Schade, A., and H. Levy: Changes in the terminal oxidase pattern of potato tissue associates with time of suspension in water. Arch. Biochem. 20, 211–219 (1949).

    PubMed  CAS  Google Scholar 

  • Scheibe, A., u. G. Hülsmann: Über das Auftreten bitterstoffarmer Pflanzen von Melilotus albus in der C2-Generation nach Behandlung mit mutagenen Chemikalien. Naturwissenschaften 44, 17–18 (1957).

    Article  Google Scholar 

  • Schmid, H.: Natürlich vorkommende Chromone. Fortschr. Chem. organ. Naturstoffe 11, 124–179 (1954).

    CAS  Google Scholar 

  • Schmid, H., u. Th. M. Meijer: Über die Konstitution des Eugenons. Helv. chim. Acta 31, 748–752 (1948).

    Article  PubMed  CAS  Google Scholar 

  • Schmid, W.: Anthraglykoside und Dianthrone. In: Moderne Methoden der Pflanzenanalyse, Bd. III, S. 549–564. Berlin-Göttingen-Heidelberg: Springer 1955.

    Chapter  Google Scholar 

  • Schratz, E.: Pharmakognostische Untersuchungen am Medizinal-Rhabarber (Rheum palmatum L.). Pharmazie 11, 138–150 (1956).

    CAS  Google Scholar 

  • Schraufstätter, E., and H. Bernt: Antibacterial action of curcumin and related compounds. Nature (Lond.) 164, 456–457 (1949).

    Article  Google Scholar 

  • Schwarze, P.: Beobachtungen über Bildung und Abbau des Sinapins im Raps. Unveröffentlicht.

    Google Scholar 

  • Über das freie und gebundene Cumarin des Steinklees. Unveröffentlicht.

    Google Scholar 

  • Semmler, F. W.: Zusammensetzung des ätherischen Öles der Eberwurzel (Carlina acaulis L.). Ber. dtsch. chem. Ges. 39, 726 (1906).

    Article  CAS  Google Scholar 

  • Shimokoriyama, M., and S. Hattori: J. Amer. chem. Soc. 75, 2277 (1953). Zit. nach Underhill, Watkin u. Neish 1957b.

    Article  CAS  Google Scholar 

  • Shiroya, M., and S. Hattori: Studies on the browning and blackening of plant tissues. III. Occurrence in the leaves of Dahlia and several other plants of chlorogenic acid as the principal browning agent. Physiol. Plantarum (Cph.) 8, 358–369 (1953).

    Article  Google Scholar 

  • Shiroya, M., T. Shiroya and S. Hattori: Studies on the browning and blackening of plant tissues. IV. Chlorogenic acid in the leaves of Nicotiana tabacum. Physiol. Plantarum (Cph.) 8, 594–605 (1955).

    Article  CAS  Google Scholar 

  • Siebs, E.: Untersuchungen über die Schorfresistenz von Birnen. III. Stofflicher Hinweis auf die Grundlagen der Blattschorfresistenz. Phytopath. Z. 23, 37–48 (1955).

    Google Scholar 

  • Singer, T. P., and E. B. Kearney: In: Neurath u. Bailey, The proteins, vol. II, A, p. 123. New York: Academic Press 1954.

    Chapter  Google Scholar 

  • Skinner, P.A.: Antibiotics. In: Moderne Methoden der Pflanzenanalyse, Bd. III, S. 626–725. Berlin-Göttingen-Heidelberg: Springer 1955.

    Chapter  Google Scholar 

  • Smith, W. K.: Transfer from Melilotus dentata to M. alba of the genes for reduction in coumarin content. Genetics 33, 124–125 (1948).

    PubMed  CAS  Google Scholar 

  • Sörensen, J. S., and N. A. Sörensen: Studies related to naturally occurring acetylene compounds. XVII. Four new polyacetylenes from garden varieties of Coreopsis. Acta chem. scand. 8, 1741 (1954).

    Article  Google Scholar 

  • Sörensen, N. A.: Acetylenic compounds from plants of the compositae family. Chem. and Ind. 1953, 240.

    Google Scholar 

  • Stadelmann, R., et A. Mirimanoff: Contribution à la phytochimie du péricarpe de Juglans regia. Phyton 2, 1–7 (1950).

    Google Scholar 

  • Städeler, G.: Chem. Gaz. 6, 29, 58 (1848). Zit. nach Skinner 1955.

    Google Scholar 

  • Stevens, G. de, and F. F. Nord: Natural phenyl-propane derivatives. In: Moderne Methoden der Pflanzenanalyse, Bd. III, S. 392–427. Berlin-Göttingen-Heidelberg: Springer 1955.

    Chapter  Google Scholar 

  • Stoll, A., B. Becker u. W. Kussmaul: Die Isolierung der Anthraglykoside aus Sennadrogen. Helv. chim. Acta 32, 1892–1903 (1949).

    Article  CAS  Google Scholar 

  • Stoll, A., u. E. Jucker: Heteroside. Aufbau und Vorkommen. In: Handbuch der Pflanzenphysiologie, Bd. VI, S. 534–779. Berlin-Göttingen-Heidelberg: Springer 1958.

    Google Scholar 

  • Thies, W., u. C. Wehmer: Systematische Verbreitung und Vorkommen der ätherischen Öle und ihrer Bestandteile. In: Handbuch der Pflanzenanalyse, Bd. III/2, S. 571–666. Wien: Springer 1932.

    Google Scholar 

  • Thimann, K. V., C. S. Yocum and D. P. Hackett: Terminal oxidases and growth in plant tissues. III. Terminal oxidation in potato tuber tissue. Arch. Biochem. 53, 239–257 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Thomas, H. K.: Ätherische Öle. In: Handbuch der Pflanzenanalyse, Bd. II/1, S. 453–570. Wien: Springer 1932.

    Google Scholar 

  • Tissières, A.: Localization of polyphenoloxidase in the chloroplasts of Beta vulgaris. Nature (Lond.) 162, 340–342 (1948).

    Article  Google Scholar 

  • Tutin, F., and H. W. B. Clewer: J. chem. Soc. 99, 946 (1911). Zit. nach Skinner 1955.

    Article  CAS  Google Scholar 

  • Tyron, K.: Scopoletin in differentiating and non differentiating cultured tobacco tissue. Science 123, 590 (1956).

    Article  Google Scholar 

  • Udenfriend, S., C. T. Clarke, J. Axelrod and B. B. Brodie: Ascorbic acid in aromatic hydroxylation. I. A model system for aromatic hydroxylation. J. biol. Chem. 208, 731–739 (1954).

    PubMed  CAS  Google Scholar 

  • Underhill, E. W., J. E. Watkin and A. C. Neish: Biosynthesis of quercetin in buckwheat. Part. I. Canad. J. Biochem. 35, 219–228 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Uritani, J., and J. Hoshiya: Coumarin substances from sweet potato and their physiology. J. agric. chem. Soc. Jap. 27, 161–174 (1953).

    CAS  Google Scholar 

  • Virtanen, A. I., P. K. Hietala and Ö. Wahlroos: Antimicrobial substances in cereals and fodder plants. Arch. Biochem. 69, 486–500 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Waage, Th.: Über das Vorkommen und die Rolle des Phloroglucins in der Pflanze. Ber. dtsch. bot. Ges. 8, 250–292 (1890).

    Google Scholar 

  • Wailes, P.C.: The occurrence of acetylenic compounds in nature. Rev. Pure Appl. Chem. 6, 61 (1956).

    CAS  Google Scholar 

  • Walker, J. C., and M. A. Stahmann: Chemical nature of disease resistance in plants. Ann. Rev. Plant Physiol. 6, 351–366 (1955).

    Article  CAS  Google Scholar 

  • Watkin, J. E., E. W. Underhill and A. C. Neish: Biosynthesis of quercetin in buckwheat. Part II. Canad. J. Biochem. 35, 229–237 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Webster, G. C.: The effect of carbon monoxide on respiration in higher plants. Plant Physiol. 29, 399–400 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Weevers, Th.: Die physiologische Bedeutung einiger Glykoside. Rec. Trav. bot. néerl. 7, 1–54 (1910).

    Google Scholar 

  • Wehmer, C., W. Thies u. M. Hadders: Vorkommen und systematische Verbreitung der Phenole und Chinone. In: Handbuch der Pflanzenanalyse, Bd. H/1, S. 345–362. Wien: Springer 1932.

    Google Scholar 

  • Wood, J. G., and D. H. Cruickshank: Changes in amounts of some amino-acids during starvation of grass leaves, and their bearing on the nature of the relationship between proteins and amino acids. Aust. J. exp. Biol. med. Sci. 22, 111–123 (1944). Zit. J. Bonner, Plant Biochemistry. New York: Academic Press 1950.

    Article  CAS  Google Scholar 

  • Wosilait, W. D., and A. Nason: Pyridine nucleotide-quinone reductase. I. Purification and properties of the enzyme from pea seeds. J. biol. Chem. 206, 255–270 (1954).

    PubMed  CAS  Google Scholar 

  • Wosilait, W. D., A. Nason and A. J. Terrell: Pyridine nucleotide-quinone reductase. II. Role in electron transport. J. biol. Chem. 206, 271–282 (1954).

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Evans, C., Schwarze, P. (1958). Phenole, Chinone und die biogene Bildung von Benzolkernen. In: Der Stoffwechsel Sekundärer Pflanzenstoffe / The Metabolism of Secondary Plant Products. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-26784-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-26784-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-26786-8

  • Online ISBN: 978-3-662-26784-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics