Skip to main content

Mitochondrial ATP Synthase: Structure, Biogenesis and Pathology

  • Chapter
Book cover Organellar Proton-ATPases

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 61 Accesses

Abstract

Mitochondrial ATP synthase catalyses probably the most crucial enzymatic reaction for aerobic, eukaryotic cells, namely oxidative phosphorylation, driven by the proton gradient created by the mitochondrial electron transfer chain. The enzyme is also capable, under defined physiological circumstances, of catalyzing the reverse reaction, namely the energization of the inner mitochondrial membrane at the expense of ATP. For this reason, and because ATP hydrolysis is usually much easier to assay than proton-driven ATP synthesis, the enzyme is often referred to as the mitochondrial ATPase or H+-ATPase, or as the F1F0 ATPase, after the names given to the two major sectors of the enzyme complex: the hydrophilic F1 sector, with intrinsic ATPase activity, and the hydrophobic F0 sector, which constitutes the proton channel through the inner mitochondrial membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walker JE, Lutter R, Dupuis A et al. (1991) Identification of the sub-units of F1F0-ATPase from bovine heart mitochondria. Biochemistry 30, 5369–5378.

    PubMed  CAS  Google Scholar 

  2. Glaser E, Norling B (1991) Chloroplast and plant mitochondrial ATP synthases. Curr Topics Bioenerget 16, 223–263

    CAS  Google Scholar 

  3. Hamasur B, Glaser E (1992) Plant mitochondrial F0F1 ATP synthase. Identification of the individual subunits and properties of the purified spinach leaf mitochondrial ATP synthase. Eur J Biochem 205, 409–416.

    PubMed  CAS  Google Scholar 

  4. Walker JE, Saraste M, Gay NT (1984) The unc operon: nucleotide sequence, regulation and structure of ATP synthase. Biochim Biophys Acta 768, 164–200.

    PubMed  CAS  Google Scholar 

  5. Hoppe J, Sebald W (1984) The proton-conducting F0 part of bacterial ATP synthases. Biochim Biophys Acta 768, 1–27

    PubMed  CAS  Google Scholar 

  6. Nagley P (1988) Eukaryotic membrane genetics: The F0 sector of mitochondrial ATP synthase. Trends in Genet 4, 46–52.

    CAS  Google Scholar 

  7. Penefsky HS, Cross RL (1991) Structure and mechanism of F0F1-type ATP synthases and ATPases. Adv Enzymol 64, 183–214.

    Google Scholar 

  8. Cox GB, Devenish RJ, Gibson F et al. (1992) The structure and assembly of ATP synthase. In Molecular Mechanisms in Bioenergetics (Ernster L, ed.), Elsevier, Amsterdam, pp. 283–315.

    Google Scholar 

  9. Senior AE (1988) ATP synthesis by oxidative phosphorylation. Physiol Rev 68, 177–231

    PubMed  CAS  Google Scholar 

  10. Yoshihara Y, Nagase H, Yamame T et al. (1991) H+-ATP synthase from rat liver mitochondria. A simple, rapid purification method of the functional complex and its characterization. Biochemistry 30, 6854–6860.

    PubMed  CAS  Google Scholar 

  11. Lutter R, Saraste M, van Walraven HS et al. (1993) F1F0-ATP synthase from bovine heart mitochondria: development of the purification of a monodisperse oligomycin-sensitive ATPase. Biochem J 295, 799–806.

    PubMed  CAS  Google Scholar 

  12. Walker JE, Fearnley IM, Gay NT et al. (1985) Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. J Mol Biol 184, 677–701.

    PubMed  CAS  Google Scholar 

  13. Papa S, Guerrieri F, Zanotti Z et al. (1992) F0 and F1 subunits involved in the gate and coupling function of mitochondrial H+ ATP synthase. Ann New York Acad Sci 671, 345–358.

    CAS  Google Scholar 

  14. Kagawa Y, Nikiwa N (1981) Conversion of stable ATPase to labile ATPase by acetylation, and the αβ and αγ subunit complexes during its re-constitution. Biochem Biophys Res Commun 100, 1370–1376.

    PubMed  CAS  Google Scholar 

  15. Harris DA, Boork J, Baltscheffsky M (1985) Hydrolysis of adenosine 5’-triphosphate by the isolated catalytic subunit of the coupling ATPase from Rhodospirillum rubrum. Biochemistry 24, 3876–3883.

    CAS  Google Scholar 

  16. Frasch WD, Green J, Cagniat J et al. (1989) ATP hydrolysis catalysed by a β-subunit preparation purified from the chloroplast energy transducing complex CF0CF1. J Biol Chem 264, 5065–5069.

    Google Scholar 

  17. Cross RL, Nalin CM (1982) Adenine nucleotide binding-sites on beef heart F1-ATPase. Evidence for 3 exchangeable sites that are distinct from 3 non-catalytic sites. J Biol Chem 257, 2874–2881.

    PubMed  CAS  Google Scholar 

  18. Wise JG, Duncan TM, Latchney LR et al. (1983) The properties of F1 ATPase from the uncD412 mutant of Escherichia coli. Biochem J 215, 343–350.

    PubMed  CAS  Google Scholar 

  19. Kayalar KC, Rosing J, Boyer PD (1977) An alternative site sequence for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction inhibitions. J Biol Chem 252, 2486–2491.

    PubMed  CAS  Google Scholar 

  20. Garin J, Boulay F, Issartel JP et al. (1986) Identification of amino acid residues photolabeled with 2-azido[α32P] adenosine diphosphate in the β-subunit of beef heart F1-ATPase. Biochemistry 25, 4431–4437.

    PubMed  CAS  Google Scholar 

  21. Cross RL, Cunningham D, Miller CG et al. (1987) Adenine nucleotide binding sites on beef heart F1-ATPase. Photoaffinity labeling of β-subunit Tyr-368 at a noncatalytic site and β-Tyr-345 at a catalytic site. Proc Natl Acad Sci USA 84, 5715–5719.

    PubMed  CAS  Google Scholar 

  22. Esch FS, Allison WS (1978) Identification of a tyrosine residue at a nucleotide binding site in the β subunit of the mitochondrial ATPase with p-fluorosulfonyl[14C]-benzoyl-5’-adenosine. J Biol Chem 253, 6100–6106.

    PubMed  CAS  Google Scholar 

  23. Bullough DA, Allison WS (1986) Inactivation of the bovine heart mitochondrial F1ATPase by 5’-para-fluorosulfonylbenzoyl[3H]inosine is accompanied by modification of Tyrosine-345 in a single β-subunit. J Biol Chem 261, 4171–4177.

    Google Scholar 

  24. chondrial F1-ATPase. J Biol Chem 266, 6101-6105.

    Google Scholar 

  25. Duncan TM, Parsonage D, Senior AE (1986) Structure of the nucleotide binding site in the β-subunit of Escherichia coli F1-ATPase. FEBS Lett 208, 1–6.

    PubMed  CAS  Google Scholar 

  26. Fry DC, Kuby SA, Mildvan AS (1986) ATP binding site of adenylate kinase. Mechanistic implications of its homology with ras-encoded p21, F1-AT Pase and other nucleotide-binding proteins. Proc Natl Acad Sci USA 83, 907–911.

    PubMed  CAS  Google Scholar 

  27. Thomas PJ, Garboczi DN, Pedersen PL (1992) Mutational analysis of the consensus nucleotide binding sequences in the rat liver mitochondrial ATP synthase β-subunit. J Biol Chem 267, 20331–20338.

    PubMed  CAS  Google Scholar 

  28. Thomas PJ, Garboczi, Pedersen PL (1992) Mitochondrial F-type ATPases: the glycine-rich loop of the β-subunit is a pyrophosphate binding domain. Acta Physiol Scand 146, 23–29.

    CAS  Google Scholar 

  29. Milgrom YM, Cross RL (1993) Nucleotide binding sites on beef heart mitochondrial F1-ATPase. Co-operative interaction between sites and specificity of noncatalytic sites. J Biol Chem 268, 23179–23185.

    PubMed  CAS  Google Scholar 

  30. Divita G, Goody RS, Gautheron DC et al. (1993) Structural mapping of catalytic site with respect to α subunit and noncatalytic site in yeast mitochondrial F1-ATPase using fluorescence resonance energy transfer. J Biol Chem 268, 13178–13186.

    PubMed  CAS  Google Scholar 

  31. Zhuo S, Garrod S, Miller P et al. (1992) Irradiation of the bovine mitochondrial F1-ATPase previously inactivated with 5’-p-fluorosulfonylbenzoyl-8-azido[3H]adenosine cross-links His-β4277 to Tyr-β345 within the same β subunit. J Biol Chem 267, 12916–12927

    PubMed  CAS  Google Scholar 

  32. Falson P, Maffey L, Conrath K et al. (1991) α subunit of mitochondrial F1-ATPase from the fission yeast. J Biol Chem 266, 287–293

    PubMed  CAS  Google Scholar 

  33. Falson P, Leterme S, Capiau C et al. (1991) β subunit of mitochondrial F1-ATPase from the fission yeast. Deduced sequence of the wild type prorein and identification of a mutation that increases nucleotide binding. Eur J Biochem 200, 61–67.

    PubMed  CAS  Google Scholar 

  34. Yuan HB, Douglas MG (1992) The mitochondrial F1-ATPase α subunit is necessary for efficient import of mitochondrial protein precursors. J Biol Chem 267, 14697–14702.

    PubMed  CAS  Google Scholar 

  35. Neupert W (1993) Mitochondrial protein import: specific recognition and membrane translocation of preproteins. J Membrane Biol 135, 191–207.

    Google Scholar 

  36. Luis AM, Alconada A, Cuezva JM (1990) The α regulatory subunit of the mitochondrial F1-ATPase is a heat-shock protein. J Biol Chem 265, 7713–7716.

    PubMed  CAS  Google Scholar 

  37. Franzén L-G, Falk G (1992) Nucleotide sequence of cDNA clones encoding the β subunit of mitochondrial ATP synthase from the green alga Chlamydomonas reinhardtii: the precursor protein encoded by the cDNA contains both an N-terminal presequence and a C-terminal extension. Plant Mol Biol 19, 771–780.

    PubMed  Google Scholar 

  38. Bianchet M, Ysern X, Hullihen J et al. (1991) Mitochondrial ATP synthase. Quaternary structure of the F1 moiety at 3.6 Å determined by X-ray diffraction analysis. J Biol Chem 266, 21197–21201.

    PubMed  CAS  Google Scholar 

  39. Zanotti F, Guerrieri F, Capozza G et al. (1992) Role of F0 and F1 sub-units in the gating and coupling function of mitochondrial H+-ATP synthase. Eur J Biochem 208, 9–16.

    PubMed  CAS  Google Scholar 

  40. Morikami A, Aiso K, Asahi T et al. (1992) The δ’ subunit of higher plant 6-subunit mitochondrial F1-ATPase is homologous to the δ subunit of animal mitochondrial F1-ATPase. J Biol Chem 267, 72–76.

    PubMed  CAS  Google Scholar 

  41. Arselin G, Gandar J-C, Guérin G et al. (1991) Isolation and complete amino acid sequence of the mitochondrial ATP synthase ε-subunit of the yeast Saccharomyces cerevisiae. J Biol Chem 266, 723–727.

    PubMed  CAS  Google Scholar 

  42. Kimura T, Nakamura K, Koyiura H et al. (1989) Correspondence of minor subunits of plant mitochondrial F1-ATPase to the F1F0-ATPase subunits of other organisms. J Biol Chem 264, 3183–3186.

    PubMed  CAS  Google Scholar 

  43. Morikami A, Ehara G, Yuuki K et al. (1993) Molecular cloning and characterization of cDNAs for the γ-and ε-subunits of mitochondrial F1F0 ATP synthase from the sweet potato. J Biol Chem 268, 17205–17210.

    PubMed  CAS  Google Scholar 

  44. Solaini G, Baracca A, Castelli GP et al. (1993) Tryptophan phosphorescence as a structural probe of mitochondrial F1-ATPase ε-subunit. Eur J Biochem 214, 729–734.

    PubMed  CAS  Google Scholar 

  45. Amzel LM, Pedersen PL (1978) Adenosine triphosphatase from rat liver mitochondria. Crystallization and X-ray diffraction studies of the F1-component of the enzyme. J Biol Chem 253, 2067–2069.

    PubMed  CAS  Google Scholar 

  46. Abrahams JP, Lutter R, Todd RJ et al. (1993) Inherent asymmetry of the structure of F1-ATPase from bovine heart mitochondria at 6.5 Å resolution. EMBO J 12, 1775–178

    PubMed  CAS  Google Scholar 

  47. Uh M, Jones D, Mueller DM (1990) The gene coding for the yeast oligomycin sensitivity-conferring protein. J Biol Chem 265, 19047–19052.

    PubMed  CAS  Google Scholar 

  48. Ovchinnikov YA, Modyanov NN, Grinkevich VA et al. (1984) Oligomycin sensitivity-conferring protein (OSCP) of beef heart mitochondria. Internal sequence homology and structural relationship with other proteins. FEBS Lett 250, 625–628.

    Google Scholar 

  49. Senior AE (1971) Bioenergetics 2, 141–150

    CAS  Google Scholar 

  50. Joshi S, Huang Y (1991) ATP synthase complex from bovine heart mitochondria: the oligomycin sensitivity conferring protein is essential for dicyclohexylcarbodiimide-sensitive ATPase. Biochim Biophys Acta 1067, 255–258.

    PubMed  CAS  Google Scholar 

  51. Joshi S, Javed AA, Gibbs LC (1992) Oligomycin sensitivity-conferring protein (OSCP) of mitochondrial ATP synthase. J Biol Chem 267, 12860–12867.

    PubMed  CAS  Google Scholar 

  52. Engelbrecht S, Reed J, Penin F et al. (1991) Subunit δ of chloroplast F0 F1-ATPase and OSCP of mitochondrial F0 F1-ATPase: a comparison by CD-spectroscopy. Z Naturforsch 46c, 759–764.

    Google Scholar 

  53. Hekman C, Tomich JM, Hatefi Y (1991) Mitochondrial ATP synthase complex, membrane topography and stoichiometry of the F0 subunits. J Biol Chem 266, 13564–13571.

    PubMed  CAS  Google Scholar 

  54. Norling B, Tourikas C, Hamasur B et al. (1990) On the subunit composition of plant mitochondrial ATP synthase. Biochim Biophys Acta 1015, 49–52.

    CAS  Google Scholar 

  55. Horak A, Horak H, Dunbar B et al. (1989) Plant mitochondrial F1-ATPase. The presence of the oligomycin sensitivity-conferring protein (OSCP). Biochem J 263, 301–304.

    PubMed  CAS  Google Scholar 

  56. Kimura T, Takeda S, Asahi T et al. (1990) The primary structure of a precursor for the δ-subunit of sweet potato mitochondrial F1-ATPase deduced from full-length cDNA. J Biol Chem 265, 16079–6085.

    Google Scholar 

  57. Harris DA, Das AM (1991) Control of mitochondrial ATP synthase in the heart. Biochem J 280, 561–573.

    PubMed  CAS  Google Scholar 

  58. Higuti T, Kuroiwa K, Kawamura Y et al. (1993) Molecular cloning and sequencing of cDNAs for the import precursors of oligomycin sensitivity conferring protein, ATPase inhibitor protein, and subunit c of H+-ATP synthase in rat mitochondria. Biochim Biophys Acta 1172, 311–314.

    PubMed  CAS  Google Scholar 

  59. Lebowitz MS, Pedersen PL (1993) Regulation of the mitochondrial ATP synthase/ATPase complex: cDNA cloning, sequence, overexpression and secondary structural characterization of a functional protein inhibitor. Arch Biochem Biophys 301, 64–70.

    PubMed  CAS  Google Scholar 

  60. Yamada EW, Huzel NJ (1992) Distribution of the ATPase inhibitor proteins of mitochondria in mammalian tissues including fibroblasts from a patient with Luft’s disease. Biochim Biophys Acta 1139, 143–147.

    PubMed  CAS  Google Scholar 

  61. Gomez-Fernandez JC, Harris DA (1978) Thermodynamic analysis of the interaction between the coupling ATPase from ox heart mitochondria and its naturally occurring inhibitor protein. Biochem J 176, 967–975.

    PubMed  CAS  Google Scholar 

  62. Kimura H, Hashimoto T, Yoshida Y et al. (1993) Binding of an intrinsic ATPase inhibitor to the interface between α-and β-subunits of F1F0ATPase upon de-energization of mitochondria. J Biochem 113, 350–354.

    Google Scholar 

  63. Van Heeke G, Deforce L, Schnizer RA et al. (1993) Recombinant bovine heart mitochondrial F1-ATPase inhibitor protein: overproduction in Escherichia coli, purification and structural studies. Biochemistry 32, 10140–10149.

    PubMed  Google Scholar 

  64. Rouslin W, Broge CW, Chernyak BV (1993) Effects of Zn2+ on the activity and binding of the mitochondrial ATPase inhibitor protein, IF1. J Bioenerget Biomembranes 25, 297–306.

    CAS  Google Scholar 

  65. Lopez-Media Villa C, Vigny H, Godinot C (1993) Docking the mitochondrial inhibitor protein IF1 to a membrane receptor different from the F1-ATPase β subunit. Eur J Biochem 215, 487–496.

    Google Scholar 

  66. Schnizer R, Shaw R, Couton J et al. (1993) Identification of critical amino acid residues of the bovine mitochondrial F1-ATPase inhibitor protein by alanine-scanning mutagenesis. Protein Engineering 6, 49.

    Google Scholar 

  67. Stout JS, Partridge BE, Dibbern DA et al. (1993) Peptide analogs of the beef heart mitochondrial F1-ATPase inhibitor protein. Biochemistry 32, 7496–7502.

    PubMed  CAS  Google Scholar 

  68. Jackson PJ, Harris DA (1988) The mitochondrial ATP synthase inhibitor protein binds near the C-terminus of the F1 β-subunit. FEBS Lett 229, 224–228.

    PubMed  CAS  Google Scholar 

  69. Milgrom YM (1991) When beef heart mitochondrial F1-ATPase is inhibited by inhibitor protein a nucleotide is trapped in one of the catalytic sites. Eur J Biochem 200, 789–795.

    PubMed  CAS  Google Scholar 

  70. Fang J, Jacobs JW, Kanner BI et al. (1984) Amino acid sequence of bovine heart coupling factor 6. Proc Natl Acad Sci USA 81, 6603–6607.

    PubMed  CAS  Google Scholar 

  71. Michon T, Galante M, Velours J (1988) NH2-terminal sequence of the isolated yeast ATP synthase subunit 6 reveals post-translational cleavage. Eur J Biochem 172, 621–625.

    PubMed  CAS  Google Scholar 

  72. Mullen JA, Pring DR, Kempken F et al. (1992) Sorghum mitochondrial atp6: divergent amino extensions to a conserved core polypeptide. Plant Mol Biol 20, 71–79.

    PubMed  CAS  Google Scholar 

  73. Sebald W, Graf T, Lukins HB (1979) The dicyclohexylcarbodiimide-binding protein of the mitochondrial ATPase complex from Neurospora crassa and Saccharomyces cervisiae. Identification and isolation. Eur J Biochem 93, 587–599.

    PubMed  CAS  Google Scholar 

  74. Medd SM, Walker JE, Jolly RD (1993) Characterization of the expressed genes for subunit c of mitochondrial ATP synthase in sheep with ceroid lipofuscinosis. Biochem J 293, 65–73

    PubMed  CAS  Google Scholar 

  75. Sebald W, Hoppe J (1981) On the structure and genetics of the proteolipid subunit of the ATP synthase complex. Curr Topics Bioenerget 12, 2–64.

    Google Scholar 

  76. Hadikusomo RG, Meltzer S, Choo WM et al. (1988) The definition of mitochondrial H+-ATPase assembly defects in mit mutants of Saccharomyces cerevisiae with a monoclonal antibody to the enzyme complex as an assembly probe. Biochim Biophys Acta 933, 212–222.

    Google Scholar 

  77. Velours J, Durrens P, Aigle M et al. (1988) ATP4, the structural gene for yeast F0F1-ATPase subunit 4. Eur J Biochem 170, 634–642.

    Google Scholar 

  78. Paul MF, Velours J, de Chateau Bodeau GA et al. (1989) The role of subunit 4, a nuclear-encoded protein of the F0 sector of yeast mitochondrial ATP synthase in the assembly of the whole complex. Eur J Biochem 185, 163–171.

    PubMed  CAS  Google Scholar 

  79. Walker JE, Runswick MJ, Poulter I (1987) ATP synthase from bovine mitochondria. The characterization and sequence analysis of 2 membrane associated subunits and of the corresponding cDNAs. J Mol Biol 197, 89–100.

    PubMed  CAS  Google Scholar 

  80. Paul M-F, Guerin B, Velours J (1992) The C-terminal region of subunit 4 (subunit b) is essential for assembly of the F0 portion of yeast mitochondrial ATP synthase. Eur J Biochem 205, 163–172.

    PubMed  CAS  Google Scholar 

  81. Guerrieri F, Zanotti F, Capozza G, Colaianni G, Ronchi S, Papa S (1991) Structural and functional characterization of subunits of the F0 sector of the mitochondrial F0F1-ATP synthase. Biochim Biophys Acta 1059, 348–354.

    PubMed  CAS  Google Scholar 

  82. Hoppe J, Brunner J, Jorgensen BB (1984) Structure of the membrane-embedded F0 part of F0FF1-ATP synthase from Escherichia coli as inferred from labeling with 3-(trifluoromethyl)-3-(M-[125I]iodophenyl)diazirine. Biochemistry 23, 5610–5616.

    PubMed  CAS  Google Scholar 

  83. Houstek J, Kopecky J, Zanotti F et al. (1988) Topological and functional characterization of the F0I subunit of the membrane moiety of the mitochondrial H+-ATP synthase. Eur J Biochem 173, 1–8.

    PubMed  CAS  Google Scholar 

  84. Zanotti F, Guerrieri F, Capozza G et al. (1988) Identification of nucleus-encoded F0I protein of bovine heart mitochondrial H+-ATPase as a functional part of the F0 moiety. FEBS Lett 237, 9–14.

    PubMed  CAS  Google Scholar 

  85. Norais N, Promé D, Velours J (1991) ATP synthase of yeast mitochondria. Characterization of subunit d and sequence analysis of the structural gene ATP7. J Biol Chem 266, 16541–16549.

    PubMed  CAS  Google Scholar 

  86. Higuti T, Kuroiwa K, Kawamura Y et al. (1992) Complete amino acid sequence of subunit e of rat liver H+-ATP synthase. Biochemistry 31, 12451–12454.

    PubMed  CAS  Google Scholar 

  87. Clary DO, Wolstenholme D (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization and genetic code. J Mol Evol 22, 116–125.

    Google Scholar 

  88. Jacobs HT (1991) Structural similarities between a mitochondrially encoded polypeptide and a family of prokaryotic respiratory proteins involved in plasmid maintenance suggest a novel mechanism for the evolutionary maintenance of mitochondrial DNA. J. Mol. Evol. 32, 333–339

    PubMed  CAS  Google Scholar 

  89. Devenish RJ, Papakonstantinou T, Galanis M et al. (1992) Structure/ function analysis of yeast mitochondrial ATP synthase subunit 8. Ann New York Acad Sci 671, 403–414.

    CAS  Google Scholar 

  90. Nagley P, Devenish RJ (1989) Leading organellar proteins along new pathways: the relocation of mitochondrial and chloroplast genes to the nucleus. Trends in Biochem Sci 14, 31–35.

    CAS  Google Scholar 

  91. Jacobs HT (1991) Phylogenetic implications of the plasmid-like features of mitochondrial DNA. In: The Unity of Evolutionary Biology (E C Dudley, ed.), Dioscorides Press, Portland, Oregon. pp. 838–851.

    Google Scholar 

  92. Okimoto R, Macfarlane JL, Clary DO et al. (1992) The mitochondrial genome of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130, 471–498.

    PubMed  CAS  Google Scholar 

  93. Howe CJ (1992) Plastid origin of an extrachromosomal DNA molecule from Plasmodium, the causative agent of malaria. J Theor Biol 158, 199–205.

    PubMed  CAS  Google Scholar 

  94. Hensgens LAM, Grivell LA, Borst P et al. (1979) Nucleotide sequence of the mitochondrial structural gene for subunit 9 of yeast ATPase complex. Proc Natl Acad Sci USA 76, 1663–1667.

    PubMed  CAS  Google Scholar 

  95. Viebrock A, Perz A, Sebald W (1982) The imported preprotein of the proteolipid subunit of the mitochondrial ATP synthase from Neurospora crassa. Molecular cloning and sequence of the messenger RNA. EMBO J 5, 565–571.

    Google Scholar 

  96. Ward M, Turner G (1986) The ATP synthase subunit 9 gene of Aspergillus nidulans: sequence and transcription. Mol Gen Genet 295, 331–338.

    Google Scholar 

  97. Van den Boogaart P, Samallo J, Agsteribbe E (1982) Similar genes for a mitochondrial ATPase subunit in the nuclear and mitochondrial genomes of Neurospora crassa. Nature 298, 187–189.

    PubMed  Google Scholar 

  98. Brown TA, Ray JA, Waring RB et al. (1984) A mitochondrial reading frame which may code for a second form of ATPase subunit 9 in Aspergillus nidulans. Curr Genet 8, 489–492.

    CAS  Google Scholar 

  99. Ridder R, Künkele K-P, Osiewacz HD (1991) Sequence of the nuclear ATP synthase subunit 9 gene of Podospora anserina: lack of similarity to the mitochondrial genome. Curr Genet 20, 349–351.

    PubMed  CAS  Google Scholar 

  100. Bowman EJ, Knock TE (1992) Structure of the genes encoding the α and β subunits of the Neurospora crassa mitochondrial ATP. synthase. Gene 114, 157–163.

    PubMed  CAS  Google Scholar 

  101. Breen GAM (1988) Bovine liver cDNA clones encoding a precursor of the subunit of the mitochondrial ATP synthase complex. Biochem Biophys Res Commun 152, 264–269.

    PubMed  CAS  Google Scholar 

  102. Walker JE, Powell SJ, Vinas O et al. (1989) ATP synthase from bovine mitochondria. A complementary DNA sequence of the import precursor of a heart isoform of the α subunit. Biochemistry 28, 4702–4708

    PubMed  CAS  Google Scholar 

  103. De Paepe R, Forchioni A, Chétrit P et al. (1993) Specific mitochondrial proteins in pollen: presence of an additional ATP synthase β subunit. Proc Natl Acad Sci USA 90, 5934–5938.

    PubMed  Google Scholar 

  104. Lomax MI, Grossman LI (1989) Tissue-specific genes for respiratory proteins. Trends in Biochem Sci 14, 501–503.

    CAS  Google Scholar 

  105. Gay NT, Walker JE (1985) Two genes encoding the bovine mitochondrial ATP synthase proteolipid specify precursors with different import sequences and are expressed in a tissue-specific manner. EMBO J 4, 3519–3524.

    PubMed  CAS  Google Scholar 

  106. Dyer MR, Walker JE (1993) Sequences of members of the human gene family for the c subunit of mitochondrial ATP synthase. Biochem J 293, 51–64.

    PubMed  CAS  Google Scholar 

  107. Jordan EM, Breen GAM (1992) Molecular cloning of an import precursor of the β-subunit of the human mitochondrial ATP synthase complex. Biochim Biophys Acta 1130, 123–126.

    PubMed  CAS  Google Scholar 

  108. Runswick MJ, Medd SM, Walker JE (1990) The δ-subunit of ATP synthase from bovine mitochondria. Biochem J 266, 421–426.

    PubMed  CAS  Google Scholar 

  109. Chanut FA, Grabau EA, Gesteland RF (1991) Complex organization of the soybean mitochondrial genome: recombination repeats and multiple transcripts at the atpA loci. Curr Genet 23, 234–247.

    Google Scholar 

  110. Dell’Orto P, Moenne A, Graves PV, Jordana X (1993) The potato mitochondrial ATP synthase subunit 9: gene structure, RNA editing and partial protein sequence. Plant Sci 88, 45–53.

    CAS  Google Scholar 

  111. Jacobs HT, Elliott DJ, Math VB et al. (1988) Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol 202, 185–2177.

    PubMed  CAS  Google Scholar 

  112. Dewey RE, Levings CS III, Timothy DH (1985) Nucleotide sequence of ATPase subunit 6 gene of maize mitochondria. Plant Physiol 79, 914–919.

    PubMed  CAS  Google Scholar 

  113. Stuart K (1991) RNA editing in mitochondrial mRNA of trypanosomes. Trends in Biochem Sci 16, 68–72.

    Google Scholar 

  114. Bhat GJ, Koslowsky DJ, Feagin JE et al. (1990) An extensively edited mitochondrial transcript in kinetoplastids encodes a protein homologous to ATPase subunit 6. Cell 61, 885–894.

    PubMed  CAS  Google Scholar 

  115. Crozier RH, Crozier YC (1992) The cytochrome b and ATPase genes of honeybee mitochondrial DNA. Mol Biol Evol 9, 474–482.

    PubMed  CAS  Google Scholar 

  116. Kaneko M, Satta Y, Matsuura ET et al. (1993) Evolution of the mitochondrial ATPase 6 gene in Drosophila: unusually high level of polymorphism in D. melanogaster. Genet Res 61, 195–204.

    PubMed  CAS  Google Scholar 

  117. Black-Schaefer CL, McCourt JD, Poyton RO et al. (1991) Mitochondrial gene expression in Saccharomyces cerevisiae. Proteolysis of nascent chains in isolated mitochondria optimized for protein synthesis. Biochem J 274, 199–205.

    PubMed  CAS  Google Scholar 

  118. Williams RS (1986) Mitochondrial gene expression in mammalian striated muscle. Evidence that variation in gene dosage is the major regulatory event. J Biol Chem 261, 2345–2349.

    Google Scholar 

  119. Robin ED, Wong R (1989) Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol 136, 507–513.

    Google Scholar 

  120. Madsen CS, Givizzani SC, Hauswirth WW (1993) Protein binding to a single termination-associated sequence of the mitochondrial DNA D-loop region. Mol Cell Biol 13, 2162–2171.

    PubMed  CAS  Google Scholar 

  121. Roberti M, Mustich A, Gadaleta MN et al. (1991) Identification of two homologous mitochondrial DNA sequences which bind strongly and specifically to a mitochondrial protein of Paracentrotus lividus. Nucl Acids Res 19, 6249–6254.

    PubMed  CAS  Google Scholar 

  122. Qureshi SA, Jacobs HT (1993) Characterization of a high-affinity binding site for a DNA-binding protein from sea urchin embryo mitochondria. Nucl Acids Res 21, 811–816.

    PubMed  CAS  Google Scholar 

  123. Qureshi SA, Jacobs HT (1993) Two distinct, sequence-specific DNA binding proteins interact independently with the major replication pause region of sea urchin mitochondrial DNA. Nucl Acids Res 21, 2801–2808.

    PubMed  CAS  Google Scholar 

  124. Rapp WD, Stern DB (1992) A conserved 11 nucleotide sequence contains an essential promoter element of the maize mitochondrial atp 1 gene. EMBO J 11, 1065–1073.

    PubMed  CAS  Google Scholar 

  125. Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290, 470–474.

    PubMed  CAS  Google Scholar 

  126. Attardi G (1985) Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol 93, 93–145.

    PubMed  CAS  Google Scholar 

  127. Cantatore P, Roberti M, Rainaldi G et al. (1988) Clustering of tRNA genes in Paracentrotus lividus mitochondrial DNA. Curr Genet 13, 91–96.

    PubMed  CAS  Google Scholar 

  128. Butow RA, Zhu H, Perlman P et al. (1989) The role of a conserved dodecamer sequence in yeast mitochondrial gene expression. Genome 31, 757–760.

    PubMed  CAS  Google Scholar 

  129. Pelissier PP, Camougrand NM, Manon ST et al. (1992) Regulation by nuclear genes of the mitochondrial synthesis of subunits 6 and 8 of the ATP synthase of Saccharomyces cerevisiae. J Biol Chem 267, 24467–24473.

    Google Scholar 

  130. Groudinsky O, Bousquet I, Wallis MG et al. (1993) The NAM1/MTF2 nuclear gene product is selectively required for the stability and/or processing of mitochondrial transcripts of the atp6 and of the mosaic, coxl and cytb genes in Saccharomyces cerevisiae. Mol Gen Genet 240, 419–427.

    PubMed  CAS  Google Scholar 

  131. Ziaja K, Michaelis G, Lisowsky T (1993) Nuclear control of the messenger RNA expression for mitochondrial ATPase subunit 9 in a new yeast mutant. J Mol Biol 229, 909–916.

    PubMed  CAS  Google Scholar 

  132. Hernould M, Mouras A, Litvak S et al. (1992) RNA editing of the mitochondrial atp9 transcript from tobacco. Nucl Acids Res 20, 1809.

    PubMed  CAS  Google Scholar 

  133. Bégu D, Graves P-V, Domec C, Arselin G et al. (1990) RNA editing of wheat mitochondrial ATP synthase subunit 9: direct protein and cDNA sequencing. The Plant Cell 2, 1283–1290.

    PubMed  Google Scholar 

  134. Schuster W, Brennicke A (1991) RNA editing in ATPase subunit 6 mRNAs in Oenothera mitochondria, a new termination codon shortens the reading frame by 35 amino acids. FEBS Lett 295, 97–101.

    PubMed  CAS  Google Scholar 

  135. Salazar RA, Pring DR, Kempken F (1991) Editing of mitochondrial atp9 transcripts from two sorghum lines. Curr Genet 20, 483–486.

    PubMed  CAS  Google Scholar 

  136. Kempken F, Mullen JA, Pring DR et al. (1991) RNA editing of sorghum mitochondrial atp6 transcripts changes 15 amino acids and generates a carboxy-terminus identical to yeast. Curr Genet 20, 417–422.

    PubMed  CAS  Google Scholar 

  137. Wintz H, Hanson MR (1991) A termination codon is created by RNA editing in the petunia mitochondrial atp9 gene transcript. Curr Genet 19, 61–64.

    PubMed  CAS  Google Scholar 

  138. Wissinger B (1992) Regenerating good sense: RNA editing and trans-splicing in plant mitochondria. Trends in Genet 8, 322–328.

    CAS  Google Scholar 

  139. Araya A, Domec C, Begu D et al. (1992) An in vitro system for the editing of ATP synthase subunit 9 mRNA using wheat mitochondrial extracts. Proc Natl Acad Sci USA 89, 1040–1044.

    PubMed  CAS  Google Scholar 

  140. Fox TD, Costanzo MC, Strick CA et al. (1988) Translational regulation of mitochondrial gene expression by nuclear genes of Saccharomyces cerevisiae. Phil Trans Roy Soc Lond B 319, 97–105.

    CAS  Google Scholar 

  141. Ackerman SH, Gatti DL, Gellefors P et al. (1991) ATP13, a nuclear gene of Saccharomyces cerevisiae essential for the expression of subunit 9 of the mitochondrial ATPase. FEBS Lett 278, 234–238.

    PubMed  CAS  Google Scholar 

  142. Payne MJ, Schweizer E, Lukins HB (1991) Properties of two nuclear pet mutants affecting expression of the mitochondrial oli 1 gene of Saccharomyces cerevisiae. Curr Genet 19, 343–351.

    PubMed  CAS  Google Scholar 

  143. Finnegan PM, Payne MJ, Keramidaris E et al. (1991) Characterization of a yeast nuclear gene, AEP2, required for accumulation of mitochondrial mRNA encoding subunit 9 of the ATP synthase. Curr Genet 20, 53–61.

    PubMed  CAS  Google Scholar 

  144. Denslow ND, Michaels GS, Montoya J et al. (1989) Mechanism of messenger RNA binding to bovine mitochondrial ribosomes. J Biol Chem 264, 8328–8338.

    PubMed  CAS  Google Scholar 

  145. Verner K (1993) Co-translational protein import into mitochondria: an alternative view. Trends in Biochem Sci 18, 366–371.

    CAS  Google Scholar 

  146. Sanatarén JF, Aleonada A, Cuezva JM (1993) Examination of processing of the rat liver mitochondrial F1-ATPase β subunit precursor protein by high resolution 2D-gel electrophoresis. J Biochem 113, 129–131.

    Google Scholar 

  147. Bruch MD, Hoyt DW (1992) Conformational analysis of a mitochondrial presequence derived from the F1-ATPase β-subunit by CD and NMR spectroscopy. Biochim Biophys Acta 1159, 81–93.

    PubMed  CAS  Google Scholar 

  148. Ackerman SH, Tzagoloff A (1990) Identification of 2 nuclear genes (ATP11, ATP12) required for the assembly of the yeast F1-ATPase. Proc Natl Acad Sci USA 87, 4986–4990.

    PubMed  CAS  Google Scholar 

  149. Ackerman SH, Martin J, Tzagoloff A (1992) Characterization of ATP11 and detection of the encoded protein in mitochondria of Saccharomyces cerevisiae. J Biol Chem 267, 7386–7394

    PubMed  CAS  Google Scholar 

  150. Bowman S, Ackerman SH, Griffiths DE et al. (1991) Characterization of ATP12, a yeast nuclear gene required for the assembly of the mitochondrial F1 ATPase. J Biol Chem 266, 7517–7523.

    PubMed  CAS  Google Scholar 

  151. Nolan DP, Voorheis P (1992) The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase. Eur J Biochem 209, 207–216.

    PubMed  CAS  Google Scholar 

  152. Williams N, Choi SY-W, Ruyechan WT et al. (1991) The mitochondrial ATP synthase of Trypanosoma brucei: developmental regulation throughout the life cycle. Arch Biochem Biophys 288, 509–515.

    PubMed  CAS  Google Scholar 

  153. Wibom R, Hultman E, Johansson M et al. (1992) Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining. J Appl Physiol 73, 2004–2010.

    PubMed  CAS  Google Scholar 

  154. Valcarce C, Navarreta P, Encabo E et al. (1988) Postnatal development of rat liver mitochondrial functions. The roles of protein synthesis and of adenine nucleotides. J Biol Chem 263, 7767–7775

    PubMed  CAS  Google Scholar 

  155. Das AM, Harris DA (1991) Control of mitochondrial ATP synthase in rat cardiomyocytes: effects of thyroid hormone. Biochim Biophys Acta 1096, 284–290.

    PubMed  CAS  Google Scholar 

  156. Devlin RB (1982) Biogenesis of the mitochondrial ATPase from sea urchin embryos. J Biol Chem 257, 9711–9716.

    PubMed  CAS  Google Scholar 

  157. Lallier R (1975) Animalization and vegetalization. In: Czihak G, ed. The Sea Urchin Embryo. Berlin: Springer-Verlag, pp. 473–509.

    Google Scholar 

  158. Hörstadius, S (1973) Experimental Embryology of Echinoderms. Oxford: Clarendon Press.

    Google Scholar 

  159. Weeks DL, Melton DA (1987) A maternal messenger RNA localized to the animal pole of Xenopus eggs encodes a subunit of mitochondrial ATPase. Proc Natl Acad Sci USA 84, 2798–2802.

    PubMed  CAS  Google Scholar 

  160. Pierce DJ, Jordan EM, Breen GAM (1992) Structural organization of a nuclear gene for the α subunit of the bovine mitochondrial ATP synthase complex. Biochim Biophys Acta 1132, 265–275.

    PubMed  CAS  Google Scholar 

  161. Suzuki H, Hosokawa Y, Nishikimi M et al. (1991) Existence of common homologous elements in the transcriptional regulatory regions of human nuclear genes and mitochondrial gene for the oxidative phosphorylation system. J Biol Chem 266, 2333–2338.

    PubMed  CAS  Google Scholar 

  162. Virbasius JV, Virbasius CMA, Scarpulla RC (1993) Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral proteins. Genes & Development 7, 380–392.

    CAS  Google Scholar 

  163. Jordan EM, Breen GAM (1993) Upstream region of a nuclear gene encoding the α subunit of the human mitochondrial F0F1 ATP synthase. Biochim Biophys Acta 1173, 115–117.

    PubMed  CAS  Google Scholar 

  164. Tomura H, Endo H, Kagawa Y et al. (1990) Novel regulatory enhancer in the nuclear gene of the human mitochondrial ATP synthase β subunit. J Biol Chem 265, 6525–6527.

    PubMed  CAS  Google Scholar 

  165. Evans MJ, Scarpulla RC (1990) NRF-1, a transactivator of nuclear-coded respiratory genes in animal cells. Genes & Development 4, 1023–1034.

    CAS  Google Scholar 

  166. Chau CMS, Evans MJ, Scarpulla RC (1992) Nuclear respiratory factor 1 activation in genes encoding the γ subunit of ATP synthase, eukaryotic initiation factor 2α, and tyrosine aminotransferase. Specific interaction of purified NRF-1 with multiple target genes. J Biol Chem 267, 6999–7006.

    PubMed  CAS  Google Scholar 

  167. Parikh VS, Morgan MM, Scott R et al. (1987) The mitochondrial genotype can influence nuclear gene expression in yeast. Science 235, 576–580.

    PubMed  CAS  Google Scholar 

  168. Marczynski GT, Schultz, PW, Jaehning JA (1989) Use of yeast nuclear DNA sequences to define the mitochondrial RNA polymerase promoter in vitro. Mol Cell Biol 9, 3193–3202.

    PubMed  CAS  Google Scholar 

  169. Sewards R, Wiseman B, Jacobs HT (1994) Apparent functional independence of the nuclear and mitochondrial transcription systems in mammalian cells. Mol Gen Genet (in press).

    Google Scholar 

  170. Chung AG, Stepien G, Haraguchi Y et al. (1992) Transcriptional control of nuclear genes for the mitochondrial muscle ADP/ATP translocator and the ATP synthase β subunit. J Biol Chem 267, 21154–21161.

    PubMed  CAS  Google Scholar 

  171. Li K, Hodge JA, Wallace DC (1990) OXBOX, a positive transcriptional regulator of the heart-skeletal muscle ADP/ATP translocator gene. J Biol Chem 265, 20585–20588.

    PubMed  CAS  Google Scholar 

  172. Nelson BD, Mutvei A, Joste V (1984) Regulation of biosynthesis of the rat liver inner mitochondrial membrane by thyroid hormone. Arch Biochem Biophys 228, 41–48.

    PubMed  CAS  Google Scholar 

  173. Joste V, Goitom Z, Nelson BD (1989) Thyroid hormone regulation of nuclear-coded mitochondrial inner membrane polypeptides of the liver. Eur J Biochem 184, 255–260.

    PubMed  CAS  Google Scholar 

  174. Izquierdo JM, Cuezva JM (1993) Thyroid hormones promote transcriptional activation of the nuclear gene coding for mitochondrial β-F1ATPase in rat liver. FEBS Lett 323, 109–112.

    PubMed  CAS  Google Scholar 

  175. Matsuda C, Endo H, Hirata H et al. (1993) Tissue-specific isoforms of the bovine mitochondrial γ-subunit. FEBS Lett 325, 281–284.

    PubMed  CAS  Google Scholar 

  176. Tvrdík P, Kuzela S, Houstek J (1992) Low translational efficiency of the F1-ATPase β subunit mRNA largely accounts for the decreased ATPase content in brown adipose tissue mitochondria. FEBS Lett 313, 23–26.

    PubMed  Google Scholar 

  177. Luis AM, Izquierdo JM, Ostronoff LK et al. (1993) Translational regulation of mitochondrial differentiation in neonatal rat liver. Specific increase in the translational efficiency of the nuclear-encoded mitochondrial β-F1-ATPase messenger RNA. J Biol Chem 268, 1868–1875.

    PubMed  CAS  Google Scholar 

  178. Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284, 1–13.

    PubMed  CAS  Google Scholar 

  179. Nicholls DG, Locke RM (1984) Thermogenic mechanisms in brown fat. Physiol Rev 64, 1–64

    PubMed  CAS  Google Scholar 

  180. Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol 17, 65–134.

    CAS  Google Scholar 

  181. Tager JM, Wanders AJA, Groen AK et al. (1983) Control of mitochondrial respiration FEBS Lett 151, 1–9.

    PubMed  CAS  Google Scholar 

  182. Groen AK, Wanders RJA, Westerhoff HG et al. (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257, 27544–2757.

    Google Scholar 

  183. Katz LA, Swain JA, Portman MA et al. (1989) Relation between phosphate metabolites and oxygen consumption of heart. Am J Physiol 255, H189–H19.

    Google Scholar 

  184. From AHL, Petein MA, Michurski SP et al. (1986) 31P-N.M.R. studies of respiratory regulation in the intact myocardium. FEBS Lett 206, 257–261.

    PubMed  CAS  Google Scholar 

  185. LaNoue KF, Jeffries FMH, Radda GK (1985) Kinetic control of mitochondrial ATP synthesis. Biochemistry 25, 7667–7675.

    Google Scholar 

  186. Unitt JF McCormack JG, Reid D et al. (1989) Direct evidence for a role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in the stimulated rat heart. Studies using 31P-N.M.R. and ruthenium red. Biochem J 262, 393–401.

    Google Scholar 

  187. Matthews PM, Bland JL, Gadian DG et al. (1981) The steady-state rate of ATP synthesis in the perfused rat heart measured by 31P-N.M.R. saturation transfer. Biochem Biophys Res Commun 103, 1052–1059.

    PubMed  CAS  Google Scholar 

  188. Kauppinen R (1983) Proton electrochemical potential of the inner mitochondrial membrane in isolated perfused rat hearts as measured by exogenous probes. Biochim Biophys Acta 725, 131–137.

    PubMed  CAS  Google Scholar 

  189. Rouslin W (1983) Protonic inhibition of the mitochondrial oligomycin-sensitive adenosine 5’-triphosphatase in ischemic and autolyzing cardiac muscle. Possible mechanisms for the mitigation of ATP hydrolysis under nonenergizing conditions. J Biol Chem 258, 9657–9661.

    PubMed  CAS  Google Scholar 

  190. Rouslin W (1987) Persistence of mitochondrial competence during myocardial autolysis. Am J Physiol 252, H633–H627.

    Google Scholar 

  191. Das AM, Harris DA (1989) Reversible modulation of the mitochondrial ATP synthase with energy demand in cultured rat cardiomyocytes. FEBS Lett 256, 97–100.

    PubMed  CAS  Google Scholar 

  192. Das AM, Harris DA (1990) Control of mitochondrial ATP synthase in heart cells. Inactive to active transitions caused by beating or positive inotropic agents. Cardiovasc Res 24, 411–417.

    PubMed  CAS  Google Scholar 

  193. Adolfsen R, McClung JA, Moudrianakis EN (1975) Electrophoretic microheterogeneity and subunit composition of the 13S coupling factors of oxidative and photosynthetic phosphorylation. Biochemistry 14, 1727–1735.

    PubMed  CAS  Google Scholar 

  194. Noll T, Koop A, Piper HM (1992) Mitochondrial ATP synthase activity in cardiomycetes after aerobic-anaerobic metabolic transition. Am J Physiol 262, C1297–C1303.

    PubMed  CAS  Google Scholar 

  195. Jennings RB, Reimer KA, Steenbergen C (1991) Effects of inhibition of the mitochondrial ATPase on net myocardial ATP in total ischemia. J Mol Cell Cardiol 23, 1383–1395.

    PubMed  CAS  Google Scholar 

  196. Crompton M, Costi A (1990) A heart mitochondrial Ca2+-dependent pore of possible relevance to re-perfusion-induced injury. Evidence that ADP facilitates pore inter-conversion between the closed and open states. Biochem J 266, 33–39.

    PubMed  CAS  Google Scholar 

  197. Mills JD, Mitchell P (1982) Modulation of coupling factor ATPase activity in intact chloroplasts. Reversal of thiol modulation in the dark. Biochim Biophys Acta 679, 75–83.

    CAS  Google Scholar 

  198. Junesch U, Graber P (1987) Influence of the redox state and the activation of the chloroplast ATP synthase on proton transport-coupled ATP synthesis and hydrolysis. Biochim Biophys Acta 893, 275–288.

    CAS  Google Scholar 

  199. Yamada EW, Huzel NJ (1988) The calcium-binding ATPase inhibitor protein from bovine heart mitochondria. Purification and properties. J Biol Chem 263, 11498–11503.

    PubMed  CAS  Google Scholar 

  200. Yamada EW, Huzel NJ, Dickison JC (1981) Reversal, by uncouples of oxidative phosphorylation and by Ca2+, of the inhibition of mitochondrial ATPase by the ATPase inhibitor protein of rat skeletal muscle. J Biol Chem 256, 10203–10207.

    PubMed  CAS  Google Scholar 

  201. Yamada EW, Huzel NJ, Bose R et al. (1992) ATPase inhibitor proteins of brown-adipose-tissue mitochondria from warm-and cold-acclimated rats. Biochem J 287, 151–157.

    PubMed  CAS  Google Scholar 

  202. Valerio M, Haraux F, Gardeström P et al. (1993) Tissue specificity of the regulation of ATP hydrolysis by isolated plant mitochondria. FEBS Lett 318, 113–117.

    PubMed  CAS  Google Scholar 

  203. Grubmeyer G, Spencer M (1980) ATPase activity of pea cotyledon sub-mitochondrial particles. Plant Physiol 65, 281–285.

    PubMed  CAS  Google Scholar 

  204. Jung DW, Laties GG (1976) Trypsin-induced ATPase activity in potato mitochondria. Plant Phsyiol 57, 583–588.

    CAS  Google Scholar 

  205. Ligeti E, Brandolin G, Dupont Y et al. (1985) Substrate-induced modifications of the intrinsic fluorescence of the isolated adenine nucleotide carrier protein. Demonstration of distinct conformational states. Biochemistry 24, 4423–4428.

    PubMed  CAS  Google Scholar 

  206. Vignais PV (1976) Molecular and physiological aspects of adenine nucleotide transport in mitochondria. Biochim Biophys Acta 456, 1–38.

    PubMed  CAS  Google Scholar 

  207. Nair CKK (1993) Mitochondrial genome organization and cytoplasmic male sterility in plants. J Biosciences 18, 407–422.

    Google Scholar 

  208. Huang J, Lee SH, Lin C et al. (1990) Expression in yeast of the T-urf13 protein from Texas male-sterile maize mitochondria confers sensitivity to methomyl and to Texas-cytoplasm-specific fungal toxins. EMBO J 9, 339–347.

    PubMed  CAS  Google Scholar 

  209. Young EG, Hanson MR (1987) A fused mitochondrial gene associated with cytoplasmic male-sterility is developmentally regulated. Cell 50, 41–49.

    PubMed  CAS  Google Scholar 

  210. Handa H, Nakajima K (1992) Different organization and altered transcription of the mitochondrial atp6 gene in the male sterile cytoplasm of rapeseed (Brassica napus L.) Curr Genet 21, 153–159.

    PubMed  CAS  Google Scholar 

  211. Siculella L, Palmer JD (1988) Physical and gene organization of mitochondrial DNA in fertile and male-sterile sunflower. CMS-associated alterations in structure and transcription of the atpA gene. Nucl Acids Res 16, 3787–3799.

    PubMed  CAS  Google Scholar 

  212. Sena M, Mikami T, Kinoshita T (1993) The sugar beet mitochondrial gene for the ATPase alpha-subunit: sequence, transcription and rearrangements in cytoplasmic male-sterile plants. Curr Genet 24, 164–170.

    Google Scholar 

  213. Iwabuchi M, Kyozuka J, Shimamoto K (1993) Processing followed by complete editing of an altered mitochondrial atp6 RNA restores fertility of cytoplasmic male sterile rice. EMBO J 12, 1437–1446.

    PubMed  CAS  Google Scholar 

  214. Hernould M, Suharsono S, Litvak S et al. (1993) Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proc Natl Acad Sci USA 90, 2370–2374.

    PubMed  CAS  Google Scholar 

  215. Schotland DL, DiMauro S, Bonilla E et al. (1976) Neuromuscular disorder associated with a defect in mitochondrial energy supply. Arch Neurol 33, 475–479.

    PubMed  CAS  Google Scholar 

  216. Holme E, Greter J, Jacobson C-E, Larsson N-G et al. (1992) Mitochondrial ATP-synthase deficiency in a child with 3-methylglutaconic aciduria. Pediatr Res 32, 731–735.

    PubMed  CAS  Google Scholar 

  217. Holt IJ, Harding AE, Petty RKH et al. (1990) A new mitochondrial disease asssociated with mtDNA heteroplasmy. Am J Hum Genet 46, 428–433.

    PubMed  CAS  Google Scholar 

  218. Tatuch Y, Chistodoulou J, Feigenbaum A et al. (1992) Heteroplasmic mt DNA mutation 8993 (T→ G) can cause Leigh disease when the percentage of abnormal mtDNA is high. Am J Hum Genet 50, 852–858.

    PubMed  CAS  Google Scholar 

  219. Santorelli FM, Shanske S, Macaya A et al.(1993) The mutation at nt-8993 is a common cause of Leigh syndrome. Ann Neurol 34, 827–834.

    PubMed  CAS  Google Scholar 

  220. de Vries D, van Engelen BGM, Gabreëls FJM et al. (1993) A second missense mutation in the mitochondrial ATPase 6 gene in Leigh’s Syndrome. Ann Neurol 34, 410–412.

    PubMed  Google Scholar 

  221. Tatuch Y, Robinson BH (1993) The mitochondrial DNA mutation at 8993 associated with NARP slows the rate of ATP synthesis in isolated lymphoblast mitochondria. Biochem Biophys Res Commun 192, 124–128.

    PubMed  CAS  Google Scholar 

  222. Trounce I, Neil S, Wallace DC (1993) Cytoplasmic transfer of the mitochondrial DNA 8993 T→G (ATP6) point mutation associated with Leigh’s disease into mtDNA-less cells shows co-segregation of ATP synthase defect. Am J Hum Genet 53, 157.

    Google Scholar 

  223. Hartzog PE, Cain BD (1993) The aleu207 → arg mutation in F1F0-ATP synthase from Escherichia coli. A model for human mitochondrial disease. J Biol Chem 268, 12250–12252.

    PubMed  CAS  Google Scholar 

  224. Wallace DC (1992) Diseases of the mitochondrial DNA. Ann Rev Biochem 61, 1175–1212.

    PubMed  CAS  Google Scholar 

  225. Poulton J, Deadman ME, Bindoff L et al. (1993) Families of mtDNA rearrangements can be detected in patients with mtDNA deletions: duplications may be a transient intermediate form. Human Molecular Genetics 2, 23–30.

    PubMed  CAS  Google Scholar 

  226. Heddi A, Lestienne P, Wallace DC et al. (1993) Mitochondrial DNA expression in mitochondrial myopathies and coordinated expression of nuclear genes involved in ATP production. J Biol Chem 268, 12156–12163.

    PubMed  CAS  Google Scholar 

  227. Kelley RI, Cheatham JP, Clark BJ et al. (1991) X-linked dilated cardiomyopathy with neutropenia, growth retardation and 3-methyl-glutaconic aciduria. J Pediatr 119, 738–747.

    PubMed  CAS  Google Scholar 

  228. Bolhuis PA, Hensels GW, Hulsebos TJM et al. (1991) Mapping of the locus for X-linked cardioskeletal myopathy with neutropenia and abnormal mitochondria (Barth syndrome) to Xq28. Am J Hum Gent 48, 481–485.

    CAS  Google Scholar 

  229. Barth PG, Scholte HR, Berden JA et al. (1983) An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci 62, 327–355.

    PubMed  CAS  Google Scholar 

  230. DiMauro S, Bonilla E, Zeviani M et al. (1987) Mitochondrial myopathies. J Inh Metab Dis 10, Suppl 1, 113–128.

    Google Scholar 

  231. Luft R, Ikkos D, Palmieri G et al. (1962) A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical and morpho-logical study. J Clin Invest 41, 1776–1804.

    PubMed  CAS  Google Scholar 

  232. DiMauro S, Bonilla E, Lee CP et al (1976) Luft’s disease. Further biochemical and ultrastructural studies of skeletal muscle in a second case. J Neurol Sci 27, 217–232.

    PubMed  CAS  Google Scholar 

  233. Lake BD (1992) Lysosomal and peroxisomal disorders. In: Hume-Adams J, Duchen LW, eds. Greenfield’s Neuropathology. 5th ed. London: Edward Arnold, pp. 709–810.

    Google Scholar 

  234. Rider AJ, Rider DL (1985) Batten’s disease: neuronal ceroid lipofuscinosis. Arch Biol 96, 369–370.

    Google Scholar 

  235. Berkovic SF, Carpenter S, Anderman F et al. (1988) Kufs’ disease: a critical reappraisal. Brain 111, 27–62.

    PubMed  Google Scholar 

  236. Palmer DN, Martinus RD, Cooper SM et al. (1989) Ovine ceroid lipofuscinosis. The major lipopigment protein and the lipid-binding sub-unit of mitochondrial ATP synthase have the same NH2-terminal sequence. J Biol Chem 264, 5736–5740.

    PubMed  CAS  Google Scholar 

  237. Fearnley IM, Walker JE, Martinus RD et al. (1990) The sequence of the major protein stored in ovine ceroid lipofuscinosis is identical with that of the dicyclohexylcarbodiimide-binding proteoplipid of mitochondrial ATP synthase. Biochem J 268, 751–758.

    PubMed  CAS  Google Scholar 

  238. Hall NA, Lake BD, Dewji NN et al. (1991) Lysosomal storage of sub-unit c of mitochondrial ATP synthase in Batten’s disease (ceroidlipofuscinosis). Biochem J 275, 269–272.

    PubMed  CAS  Google Scholar 

  239. Kominami E, Ezaki J, Muno D et al. (1992) Specific storage of subunit c of mitochondrial ATP synthase in lysosomes of neuronal ceroid lipofuscinosis (Batten’s disease). J Biochem 111, 278–282.

    PubMed  CAS  Google Scholar 

  240. Das AM, Harris DA (1990) Defects in regulation of mitochondrial ATP synthase in cardiomyocytes from spontaneously hypertensive rats. Am J Physiol 259, H1264–H1269.

    PubMed  CAS  Google Scholar 

  241. Coleman WB, Spach P, Cunningham C (1991) Effect of chronic ethanol consumption on the subunit structure of the mitochondrial ATP synthase. FASEB J, 5, A845.

    Google Scholar 

  242. Das AM, Harris DA (1993) Regulation of the mitochondrial ATP synthase is defective in rat heart during alcohol-induced cardiomyopathy. Biochim Biophys Acta 1181, 295–299.

    PubMed  CAS  Google Scholar 

  243. Guerrieri F, Capozza G, Kalous M et al. (1992) Age-related changes of mitochondrial F1F0 ATP synthase. Ann New York Acad Sci 671, 395–402.

    CAS  Google Scholar 

  244. Miquel J (1992) An update on the mitochondrial DNA mutation hypothesis of cell aging. Mutation Res 275, 209–216.

    PubMed  CAS  Google Scholar 

  245. Malis CD, Bonventre JV (1986) Mechanism of potentiation of oxygen free-radical injury to renal mitochondria. A model for post-ischemic and toxic mitochondrial damage. J Biol Chem 261, 4201–4208.

    Google Scholar 

  246. Das AM, Harris DA (1990) Regulation of the mitochondrial ATP synthase in intact rat cardiomyocytes. Biochem J 266, 355–361.

    PubMed  CAS  Google Scholar 

  247. Lippe G, Comelli M, Mazzilis D et al. (1991) The inactivation of mitochondrial F1 ATPase by H2O2 is mediated by iron ions not tightly bound in the protein. Biochem Biophys Res Commun 181, 764–770.

    PubMed  CAS  Google Scholar 

  248. Miller SG (1987) Association of a sperm-specific protein with the F1F0 ATPase in Heliothis. Implications of sterility in Heliothis virescens x Heliothis subflexa backcross hybrids. Insect Biochem 17, 417.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jacobs, H.T. (1995). Mitochondrial ATP Synthase: Structure, Biogenesis and Pathology. In: Organellar Proton-ATPases. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22265-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22265-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22267-6

  • Online ISBN: 978-3-662-22265-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics