Skip to main content

Calmodulin and Calmodulin-Binding Proteins in the Cell Nucleus

  • Chapter
Book cover Calcium and Calmodulin Function in the Cell Nucleus

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 120 Accesses

Abstract

calmodulin (CaM) is the major calcium-binding protein in all the eukaryotic cells with the exception of skeletal and cardiac muscle. CaM has a Mr around 16 kDa and in higher eukaryotic cells it is encoded by three different genes (CaMI, CaMII and CaMIII) which in spite of displaying different structure and nucleotide sequence, specially in the 5′ and 3′ terminal sequences, all of them encode for exactly the same protein. In yeast and other fungi, only one gene encoding for CaM has been identified. The amino acid sequence of CaM from all the mammalian cells is exactly the same and the homology with CaM from the other eukaryotic species is also very high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. James P, Vorherr T, Carafoli E. Calmodulin-binding domains: just two faced or multi-faceted? TI BS 1995; 20: 38–42.

    CAS  Google Scholar 

  2. Colomer J, Agell N, Engel P, Alberola-Ila J, Bachs O. Calmodulin expression during proliferative activation of human T-lymphocytes. Cell Calcium 1993; 14: 611–621.

    Article  Google Scholar 

  3. Serratosa J, Pujol MJ, Bachs O, Carafoli E. Rearrangement of nuclear calmodulin during proliferative liver cell activation. Biochem Biophys Res Commun 1988; 150: 1162–1169.

    Article  PubMed  CAS  Google Scholar 

  4. Vendrell M, Aligué R, Bachs O, Serratosa J. Presence of calmodulinbinding proteins in the nuclei of brain cells. J Neurochem 1991; 57: 622–628.

    Article  PubMed  CAS  Google Scholar 

  5. Hiraga K, Suzuki K, Tsuchiya E, Miyakawa T. Identification and characterization of nuclear calmodulin-binding proteins of Saccharomyces cerevisiae. Biochem Biophys Acta 1993; 1177: 25–30.

    Article  PubMed  CAS  Google Scholar 

  6. Kaufmann SH, Shaper JH. A subset of non-histone nuclear proteins reversibly stabilized by the sulphydryl cross-linking reagent tetrathionate. Exp Cell Res 1984; 155: 477–495.

    Article  PubMed  CAS  Google Scholar 

  7. Berezney R, Coffey DS. The nuclear protein matrix: isolation, structure and functions. Adv Enzyme Regul 1976; 14: 63–100.

    Article  PubMed  CAS  Google Scholar 

  8. Pardoll DM, Vogelstein B, Coffey DS. A fixed site of DNA replication in eukaryotic cells. Cell 1980; 19: 527–536.

    Article  PubMed  CAS  Google Scholar 

  9. Tubo RA, Berezney R. Pre-replicative association of multiple replicative enzyme activities with the nuclear matrix during rat liver regeneration. J Biol Chem 1987; 262: 1148–1154.

    PubMed  CAS  Google Scholar 

  10. Portoles M, Faura M, Renau-Piqueras J, Iborra FJ, Saez R, Guerri C, Serratosa J, Rius E, Bachs O. Nuclear calmodulin/62 kDa calmodulin-binding protein complexes in interphasic and mitotic cells. J Cell Sci 1994; 107: 3601–3614.

    PubMed  CAS  Google Scholar 

  11. Wong ECC, Saffitz JE, McDonald JM. Association of calmodulin with isolated nuclei from rat hepatocytes. Biochem Biophys Res Commun 1991; 181: 1548–1556.

    Article  PubMed  CAS  Google Scholar 

  12. Bosser R, Faura M, Serratosa J, Renau-Piqueras J, Pruschy M, Bachs O. Phosphorylation of rat liver heterogeneous nuclear ribonucleoproteins A2 and C can be modulated by calmodulin. Mol Cell Biol 1995; 15: 661–670.

    PubMed  CAS  Google Scholar 

  13. Moriya M, Katagiri C, Yagi K. Immuno-electron microscopic localization of calmodulin and calmodulin-binding proteins in the mouse germ cells during spermatogenesis and maduration. Cell Tissue Res 1993; 271: 441–451.

    Article  PubMed  CAS  Google Scholar 

  14. Subramanyam C, Honn SC, Reed WC, Reddy GPV. Nuclear localization of 68 kDa calmodulin-binding protein is associated with the onset of DNA replication. J Cell Physiol 1990; 144: 423–428.

    Article  PubMed  CAS  Google Scholar 

  15. Pruschy M, Ju Y, Spitz L, Carafoli E, Goldfarb DS. Facilitated nuclear transport of calmodulin in tissue culture cells. J Cell Biol 1994; 127: 1527–1536.

    Article  PubMed  CAS  Google Scholar 

  16. Bosch M, López-Girona A, Bachs O, Agell N. protein kinase C regulates calmodulin expression in NRK cells activated to proliferate from quiescence. Cell Calcium 1994; 16: 446–454.

    Article  PubMed  CAS  Google Scholar 

  17. Agell N, Pujol MJ, López-Girona A, Bosch M, Rosa JL, Bachs O. Calmodulin expression during rat liver regeneration. Hepatology 1994; 20: 1002–1008.

    Article  PubMed  CAS  Google Scholar 

  18. Colomer J, Agell N, Engel P, Bachs O. Expression of calmodulin and calmodulin-binding proteins in lymphoblastoid cells. J Cell Physiol 1994; 159: 542–550.

    Article  PubMed  CAS  Google Scholar 

  19. Pujol MJ, Soriano M, Aligué R, Carafoli E, Bachs O. Effect of aadrenergic blockers on calmodulin association with nuclear matrix of rat liver cells during proliferative activation. J Biol Chem 1989; 264: 18863–18865.

    PubMed  CAS  Google Scholar 

  20. Agell N, Pujol MJ, Rius E, Bachs O. Regulation of DNA polymerase a by the ai-adrenergic receptors in proliferatively activated rat liver cells. Biochem Biophys Res Commun 1991; 3: 973–978.

    Article  Google Scholar 

  21. Harper JF, Cheung WY, Wallace RW, Huang HL, Levine SN, Steiner AL. Localization of calmodulin in rat tissues. Proc Natl Acad Sci USA 1980; 77: 366–370.

    Article  PubMed  CAS  Google Scholar 

  22. Simmen RCM, Dunbar BS, Guerreiro V, Chafouleas JG, Clark JH, Means AR. Estrogen stimulates the transient association of calmodulin and myosin light chain kinase with the chicken liver nuclear matrix. J Cell Biol 1984; 99: 588–593.

    Article  PubMed  CAS  Google Scholar 

  23. Vendrell M, Pujol MJ, Tusell JM, Serratosa J. Effect of different convulsants on calmodulin levels and proto-oncogen c-fos expression in the central nervous system. Mol Brain Res 1992; 14: 285–292.

    Article  PubMed  CAS  Google Scholar 

  24. De Boni U. The interphase nucleus as a dynamic structure. Int Rev Cytol 1994; 150: 149–171.

    Article  PubMed  Google Scholar 

  25. Bremer JW, Busch H, Yeoman LC. Evidence for a species of nuclear actin distinct from cytoplasmic and muscle actins. Biochemistry 1981; 20: 2013–2017.

    Article  PubMed  CAS  Google Scholar 

  26. Kumar A, Raziuddin, Finlay TH, Thomas JO, Szer W. Isolation of a minor species of actin from the nuclei of Acanthamoeba castellanii. Biochemistry 1984; 23: 6753–6757.

    Article  PubMed  CAS  Google Scholar 

  27. Amankwah KS, De Boni U. Ultrastructural localization of filamentous actin within neuronal interphase nuclei in situ Exp Cell Res 1994; 210: 315–325.

    CAS  Google Scholar 

  28. Rimm DL, Pollard TD. Purification and characterization of an Acanthamoeba nuclear actin-binding protein. J Cell Biol 1989; 109: 585–591.

    Article  PubMed  CAS  Google Scholar 

  29. Bachs O, Lanini L, Serratosa J, Coll MJ, Bastos R, Aligué R, Rius E, Carafoli E. Calmodulin-binding proteins in the nuclei of quiescent and proliferatively activated rat liver cells. J Biol Chem 1990; 265: 18595–8600.

    PubMed  CAS  Google Scholar 

  30. Pujol MJ, Bosser R, Vendrell M, Serratosa J, Bachs O. Nuclear calmodulin-binding proteins in rat neurons. J Neurochem 1993; 60: 1422–1428.

    Article  PubMed  CAS  Google Scholar 

  31. Fowler VM, Adams EJH. Spectrin redistributes to the cytosol and is phosphorylated during mitosis in cultured cells. J Cell Biol 1992; 119: 1559–1572.

    Article  PubMed  CAS  Google Scholar 

  32. Harris AS, Morrow JS. Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin. Proc Natl Acad Sci USA 1990; 87: 3009–3013.

    Article  PubMed  CAS  Google Scholar 

  33. Burridge K, Kelly T, Mangeat P. Nonerythrocyte spectrins: Actinmembrane attachment proteins occurring in many cell types. J Cell Biol 1982; 95: 478–486.

    Article  PubMed  CAS  Google Scholar 

  34. Goodman SR, Krebs KE, Whitfield CF, Riederer BM, Zagon IS. Spectrin and related molecules. Crit Rev Biochem 1988; 23: 171–243.

    Article  CAS  Google Scholar 

  35. Clark TG, Rosenbaum JL. An actin filament matrix in hand-isolated nuclei of X. laevis oocytes. Cell 1979; 18: 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  36. Charlton CA, Volkman LE. Sequential rearrangement and nuclear polymerization of actin in baculovirus infected Spodoptera frugiperda cells. J Virol 1991; 65: 1219–1227.

    PubMed  CAS  Google Scholar 

  37. Scheer U, Hinssen H, Franke WW, Jockusch BM. Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell 1984; 39: 111–122.

    Article  PubMed  CAS  Google Scholar 

  38. Schindler M, Jiang LW. A dynamic analysis of the nuclear pore complex-The intelligent tunnel. In Biochemical and structural dynamics of the cell nucleus ( Wang, E., Wang, J.L., Chien, S., Cheung W.Y., and Wu C.W., eds.), 1990; pp. 249–263, Academic Press, San Diego.

    Chapter  Google Scholar 

  39. Schindler M, Jiang LW. Nuclear actin and myosin as control elements in nucleocytoplasmic transport. J Cell Biol 1986; 102: 859–862.

    Article  PubMed  CAS  Google Scholar 

  40. Egly JM, Miyamoto NG, Monocollin V, Chambon P. Is actin a transcription initiation factor for RNA polymerase B? EMBO J 1984; 3: 2363–2371.

    PubMed  CAS  Google Scholar 

  41. Sahlas DJ, Milankov K, Park PC, De Boni U. Distribution of snRNPs, splicing factor SC-35 and actin in interphase nuclei: immunocytochemical evidence for differential distribution during changes in functional states. J Cell Sci 1993; 105: 347–357.

    PubMed  CAS  Google Scholar 

  42. Billia F, De Boni U. Localization of centromeric satellite and telomeric DNA sequences in dorsal root ganglion neurons, in vitro. J Cell Sci 1991; 100: 219–226.

    PubMed  CAS  Google Scholar 

  43. Rostas JAP, Dunkley PR. Multiple forms and distribution of calcium/calmodulin-stimulated protein kinase II in brain. J Neurochem 1992; 59: 1191–1202.

    Article  PubMed  CAS  Google Scholar 

  44. Bennet MK, Kennedy MB. Deduced primary structure of the ß subunit of brain type II Ca2Vcalmodulin-dependent protein kinase determined by molecular cloning. Proc Natl Acad Sci USA 1987; 84: 1794–1798.

    Article  Google Scholar 

  45. Benson DL, Isackson PJ, Gall CM, Jones EG. Differential effects of monocular deprivation on glutamic acid decarboxylase and type II calcium-calmodulin dependent protein kinase gene expression in the adult monkey visual cortex. J Neurosci 1991; 11: 31–47.

    PubMed  CAS  Google Scholar 

  46. Edman CF, Schulman H. Identification and characterization of S subB-CaM kinase and S subC-CaM kinase from rat heart, two new multifunctional Ca2Vcalmodulin-dependent protein kinase isoforms. Biochim Biophys Acta 1994; 1221: 89–101.

    Article  PubMed  CAS  Google Scholar 

  47. Mayer P, Mohlig M, Schatz H, Pfeiffer A. New isoforms of multifunctional calcium/calmodulin-dependent protein kinase II. FEBS Lett 1993; 333: 315–318.

    Article  PubMed  CAS  Google Scholar 

  48. Nghiem P, Saati SM, Martens CL, Gardner P, Schulman H. Cloning and analysis of two new isoforms of multifunctional Ca2+/ calmodulin-dependent protein kinase. Expression in multiple human tissues. J Biol Chem 1993; 268: 5471–5479.

    PubMed  CAS  Google Scholar 

  49. Kanaseki T, Ikeuchi Y, Sugiura H, Yamauchi T. Structural features of Ca2Vcalmodulin-dependent protein kinase II revealed by electron microscopy. J Cell Biol 1991; 115: 1049–1060.

    Article  PubMed  CAS  Google Scholar 

  50. Sahyoun N, LeVine III H, Bronson D, Cuatrecasas P. Ca2’/ Calmodulin-dependent protein kinase in neuronal nuclei. J Biol Chem 1984; 259: 9341–9344.

    PubMed  CAS  Google Scholar 

  51. Sahyoun N, LeVine III H, Cuatrecasas P. Ca2Vcalmodulin-dependent protein kinases from the neuronal nuclear matrix and post-synaptic density are structurally related. Proc Natl Acad Sci USA 1984; 81: 311–4315.

    Article  Google Scholar 

  52. Ohta Y, Ohba T, Miyamoto E. Cat’/calmodulin dependent protein kinase II: localization in the interphase nucleus and the mitotic apparatus of mammalian cells. Proc Natl Acad Sci USA 1990; 87: 5341–5345.

    Article  PubMed  CAS  Google Scholar 

  53. Yano S, Fukunaga K, Ushio Y, Miyamoto E. Activation of Cat+/ calmodulin-dependent protein kinase II and phosphorylation of intermediate filament proteins by stimulation of glutamate receptors in cultured rat cortical astrocytes. J Biol Chem 1994; 269: 5428–5439.

    PubMed  CAS  Google Scholar 

  54. Wakim BT, Picken MM, DeLange RJ. Identification and partial purification of a chromatin bound calmodulin activated histone 3 kinase from calf thymus. Biochem Biophys Res Commun 1990; 171: 84–90.

    Article  PubMed  CAS  Google Scholar 

  55. Sikorska M, MacManus JP, Walker PR, Whitfield JF. The protein kinases of rat liver nuclei. Biochem Biophys Res Commun 1980; 93: 1196–1203.

    Article  PubMed  CAS  Google Scholar 

  56. Sikorska M, Whitfield JF, Rixon RH. The effects of thyroparathyroidectomy and 1,25-dihydroxyvitamin D3 on changes in the activities of some cytoplasmatic and nuclear protein kinases during liver regeneration. J Cell Physiol 1983; 115: 297–304.

    Article  PubMed  CAS  Google Scholar 

  57. Chelsky D, Ralph R, Jonak G. Sequence requirements for synthetic peptide-mediated translocation to the nucleus. Mol Cell Biol 1989; 9: 2487–2492.

    PubMed  CAS  Google Scholar 

  58. Srinivasan M, Edman CF, Schulman H. Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus. J Cell Biol 1994; 126: 839–852

    Article  PubMed  CAS  Google Scholar 

  59. Rihs HP, Jans DA, Fan H, Peters R. The rate of nuclear cytoplasmic protein transport is determined by the casein kinase II site flanking the nuclear localization sequence of the SV40 T-antigen. EMBO J 1991; 10: 633–639.

    PubMed  CAS  Google Scholar 

  60. Ochiishi T, Terashima T, Yamauchi T. Specific distribution of Cat./ calmodulin-dependent protein kinase II a and ß isoforms in some structures of the rat forebrain. Brain Res 1994; 659: 179–193.

    Article  PubMed  CAS  Google Scholar 

  61. Ohmstede CA, Jensen KF, Sahyoun N. Cat./calmodulin-dependent protein kinase enriched in cerebellar granule cells. Identification of a novel neuronal calmodulin-dependent protein kinase. J Biol Chem 1989; 264: 5866–5875.

    PubMed  CAS  Google Scholar 

  62. Means AR, Cruzalegui F, LeMaqueresse B, Needleman DS, Slaughter GR, Ono T. A novel Cat+/calmodulin-dependent protein kinase and a male germ cell-specific calmodulin-binding protein are derived from the same gene. Mol Cell Biol 1991; 11: 3960–3971.

    PubMed  CAS  Google Scholar 

  63. Jones DA, Glod J, Wilson-Shaw D, Hahn WE, Sikela JM. cDNA sequence and differential expression of the mouse Cat+/ calmodulin-dependent protein kinase IV gene. FEBS Lett 1991; 289: 105–109.

    Article  PubMed  CAS  Google Scholar 

  64. Earnshaw WC. Anionic regions in nuclear proteins. J Cell Biol 1987; 105: 1479–1482.

    Article  PubMed  CAS  Google Scholar 

  65. Cruzalegui FH, Means AR. Biochemical characterization of the multifunctional Ca?’/CaM-dependent protein kinase type IV expressed in insect cells. J Biol Chem 1993; 268: 26171–26178.

    PubMed  CAS  Google Scholar 

  66. Miyano O, Kameshita I, Fujisawa H. Purification and characterization of a brain-specific multifunctional calmodulin-dependent protein kinase from rat cerebellum. J Biol Chem 1992; 267: 1198–1203.

    PubMed  CAS  Google Scholar 

  67. Sahyoun N, McDonald OB, Farrell F, Lapetina EG. Phosphorylation of a ras-related GTP-binding protein, rap-b1, by a neuronal Ca2+/calmodulin-dependent protein kinase, CaM kinase Gr. Proc Natl Acad Sci USA 1991; 88: 2643–2647.

    Article  PubMed  CAS  Google Scholar 

  68. Jensen KF, Ohmstede CA, Fisher RS, Sahyoun N. Nuclear and axonal localization of Ca2+/calmodulin-dependent protein kinase type Gr in rat cerebellar cortex. Proc Natl Acad Sci USA 1991; 88: 2850–2853.

    Article  PubMed  CAS  Google Scholar 

  69. Wakim BT, Aswad GD. Ca2+-calmodulin-dependent phosphorylation of arginine in histone 3 by a nuclear kinase from mouse leukemia cells. J Biol Chem 1994; 269: 2722–2727.

    PubMed  CAS  Google Scholar 

  70. Wakim BT, Picken MM, DeLange RJ. Identification and partial purification of a chromatin bound calmodulin activated histone 3 kinase from calf thymus. Biochem Biophys Res Commun 1990; 171: 84–90.

    Article  PubMed  CAS  Google Scholar 

  71. Klee CB, Draetta GF, Hubbard MJ. Calcineurin. Adv Enzymol 1988; 61: 149–200.

    CAS  Google Scholar 

  72. Bosser R, Aligué R, Guerini D, Agell N, Carafoli E, Bachs O. Calmodulin can modulate the phosphorylation of nuclear proteins. J Biol Chem 1993; 268: 15477–15483.

    PubMed  CAS  Google Scholar 

  73. Cabtree GR, Clipstone NA. Signal transmission between the plasma membrane and nucleus of T lymphocytes. Annu Rev Biochem 1994; 63: 1045–1083.

    Article  Google Scholar 

  74. Cyert MS, Thorner J. Regulatory subunit (CNB1 gene product) of yeast Cat+/calmodulin-dependent phosphoprotein phosphatases is required for adaptation to pheromone. Mol Cell Biol 1992; 12: 3460–3469.

    PubMed  CAS  Google Scholar 

  75. Rasmussen C, Garen C, Brining S, Kincaid RL, Means RL, Means AR. The calmodulin-dependent protein phosphatase catalytic subunit (calcineurin A) is an essential gene in Aspergillus nidulans. EMBO J 1994; 13: 3917–3924.

    PubMed  CAS  Google Scholar 

  76. Corneliussen B, Holm M, Waltersson Y, Onions J, Hallberg B, Thornell A, Grundström T. Calcium/calmodulin inhibition of basic-helix-loop-helix transcription factor domains. Nature 1994; 368: 760–764.

    Article  PubMed  CAS  Google Scholar 

  77. Schmid SR, Linder P. D-E-A-D protein family of putative RNA helicases. Mol Microbiol 1992; 6: 283–292.

    Article  PubMed  CAS  Google Scholar 

  78. Ford MJ, Anton IA, Lane DP. Nuclear protein with sequence homology to translation initiation factor eIF-4A. Nature 1988; 332: 736–738.

    Article  PubMed  CAS  Google Scholar 

  79. Lane DP, Hoeffler WK. SV40 large T shares an antigenic determinant with a cellular protein of molecular weight 68,000. Nature 1980; 288: 167–170.

    Article  PubMed  CAS  Google Scholar 

  80. Iggo RD, Jamieson DJ, MacNeill SA, Southgate J, McPheat J, Lane DP. p68 RNA helicase: identification of a nucleolar form and cloning of related genes containing a conserved intron in yeasts. Mol Cell Biol 1991; 11: 1326–1333.

    PubMed  CAS  Google Scholar 

  81. Hirling H, Scheffner M, Restle T, Stahl H. RNA helicase activity associated with the human p68 protein. Nature 1989; 339: 562–564.

    Article  PubMed  CAS  Google Scholar 

  82. Buelt MK, Gliddden BJ, Storm DR. Regulation of p68 RNA helicase by calmodulin and protein kinase C. J Biol Chem 1994; 269: 29367–29370.

    PubMed  CAS  Google Scholar 

  83. Pause A, Methot N, Sonenberg N. The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol Cell Biol 1993; 13: 6789–6798.

    PubMed  CAS  Google Scholar 

  84. Dreyfuss G, Matunis MJ, Pinol-Roma S, Burd C. hnRNP proteins and the biogenesis of RNA. Annu Rev Biochem 1993; 62: 289–321.

    Article  PubMed  CAS  Google Scholar 

  85. Portman DS, Dreyfuss G. RNA annealing activities in HeLa nuclei. EMBO J 1994; 13: 213–221.

    PubMed  CAS  Google Scholar 

  86. Pifiol-Roma S, Dreyfuss G. Transcription-dependent and transcription-independent nuclear transport of hnRNP proteins. Science 1991; 253: 312–314.

    Article  Google Scholar 

  87. Leser GP, Matrin TE. Changes in heterogeneous nuclear RNP core polypeptide complements during the cell cycle. J Cell Biol 1987; 105: 2083–2094.

    Article  PubMed  CAS  Google Scholar 

  88. Pinol-Roma S, Dreyfuss G. Cell cycle-regulated phosphorylation of the pre-mRNA-binding (heterogenous nuclear ribonucleoprotein) C proteins. Mol Cell Biol 1993; 13: 5762–5770.

    PubMed  CAS  Google Scholar 

  89. Mayrand SH, Dwen P, Pederson T. Serine/threonine phosphorylation regulates binding of C hnRNP proteins to pre-mRNA. Proc Natl Acad Sci USA 1993; 90: 7764–7768.

    Article  PubMed  CAS  Google Scholar 

  90. Bosser R, Roig J, Itarte E. Bachs, O. Casein kinase 2 and their substrates are differentially released from rat liver cells nuclei by DNase or RNase digestion. Biochem Biophys Res Commun 1994; 202: 984–991.

    Article  PubMed  CAS  Google Scholar 

  91. Meggio F, Brunati AM, Pinna LA. Polycation-dependent, Cat’-antagonized phosphorylation of calmodulin by casein kinase-2 and a spleen tyrosine protein kinase. FEBS Lett 1987; 215: 241–246.

    Article  PubMed  CAS  Google Scholar 

  92. Topfer F, Gordon T, Mccluskey J. Characterization of the mouse autoantigen La (SS-B). J Immunol 1993; 150: 3091–3100.

    PubMed  CAS  Google Scholar 

  93. Stefano J. Purified lupus antigen recognizes an oligouridylate strech common to the 3’ termini of RNA polymerase III transcripts. Cell 1984; 36: 145–154.

    Article  PubMed  CAS  Google Scholar 

  94. McNeilage L, Whittingham JS, Jack I, Mackay IR. Molecular analysis of the RNA and protein components recognized by antiLa(SS-B) autoantibodies. Clin Exp Immunol 1985; 62: 683–695.

    Google Scholar 

  95. Gottleib E, Steitz J. Function of mammalian La protein: evidence for its action in transcription termination by RNA polymerase III. EMBO J 1989; 8: 851–861.

    Google Scholar 

  96. Bachmann M, Pfiefer K, Schroder HC, Muller WEG. Characterization of the autoantigen La as a nucleic acid-dependent ATPase/dATPase with melting properties. Cell 1990; 60: 85–93.

    Article  PubMed  CAS  Google Scholar 

  97. Maraia RJ, Kenan DJ, Keene JD. Eukaryotic transcription termination factor La mediates transcript release and facilitates reinitiation by RNA polymerase III. Mol Cell Biol 1994; 14: 2147–2158.

    PubMed  CAS  Google Scholar 

  98. Reddy GPV, Reed WC, Deacon DH, Quesenberry PJ. Growth factor modulated calmodulin-binding protein stimulates nuclear DNA synthesis in hemopoietic progenitor cells. Biochemistry 1994; 33: 6605–6610.

    Article  PubMed  CAS  Google Scholar 

  99. Cao QP, McGrath CA, Baril EF, Quesenberry PJ, Reddy GPV. The 68-kDa calmodulin-binding protein is tightly associated with the multiprotein DNA polymerase a-primase complex in HeLa cells. Biochemistry 1995; 34: 3878–3883.

    Article  PubMed  CAS  Google Scholar 

  100. Hammond RA, Foster KA, Berchthold MW, Gassmann M, Holmes AM, Hübscher U, Brown NC. Calcium-dependent calmodulin-binding proteins associated with mammalian DNA polymerases a. Biochem Biophys Acta 1988; 951: 315–321.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bachs, O., Agell, N. (1995). Calmodulin and Calmodulin-Binding Proteins in the Cell Nucleus. In: Calcium and Calmodulin Function in the Cell Nucleus. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21686-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21686-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21688-0

  • Online ISBN: 978-3-662-21686-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics