Skip to main content

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 1999))

Abstract

Tissue dysoxia, overt or covert, may complicate many types of critical illness [1, 2]. For this reason critical care physicians place great emphasis on delivering adequate oxygen to all tissue beds [3]. Particular attention is paid to optimizing hemoglobin concentrations, maintaining arterial oxygenation and manipulating cardiac preload, contractility and afterload. However, it is less common for consideration to be given to hemoglobin-oxygen affinity, and the impact in critical illness of changes in hemoglobin-oxygen affinity is poorly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeBacker D, Creteur J, Noordally O, Smail N, Gulbis B, Vincent JL (1998) Does hepato-splanchnic VO2/DO2 dependency exist in critically ill septic patients? Am J Respir Crit Care Med 157:1219–1225.

    CAS  Google Scholar 

  2. Maynard N, Bihari D, Beale R, et al (1993) Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA 270:1203–1210.

    Article  PubMed  CAS  Google Scholar 

  3. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high risk surgical patients. Chest 94:1176–1186.

    Article  PubMed  CAS  Google Scholar 

  4. Perutz MF (1970) Stereochemistry of cooperative effects in hemoglobin. Nature 228:726–739.

    Article  PubMed  CAS  Google Scholar 

  5. Arnone A (1972) X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhemoglobin. Nature 237:146–149.

    Article  PubMed  CAS  Google Scholar 

  6. Benesch R, Benesch RE, Yu CI (1968) Reciprocal binding of oxygen and diphosphoglycerate by human hemoglobin. Proc Natl Acad Sci USA 59:526–532.

    Article  PubMed  CAS  Google Scholar 

  7. Benesch R, Benesch RE (1969) The effect of organic phosphates as regulators of oxygen release by hemoglobin. Nature 221:618–622.

    Article  PubMed  CAS  Google Scholar 

  8. Harken AH (1977) The surgical significance of the oxyhemoglobin dissociation curve. Surg Gynecol Obstet 144:935–955.

    PubMed  CAS  Google Scholar 

  9. Bellingham AJ, Grimes AJ (1973) Red cell 2,3-diphosphoglycerate. Br J Hematol 25:555–562.

    Article  CAS  Google Scholar 

  10. Nikinmaa M (1992) Membrane transport and control of hemoglobin-oxygen affinity in nucleated erythrocytes. Physiol Rev 72:301–321.

    PubMed  CAS  Google Scholar 

  11. Bellingham AJ, Detter JC, Lenfant C (1971) Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis. J Clin Invest 50:700–706.

    Article  PubMed  CAS  Google Scholar 

  12. Nunn JF (1993) Oxygen. In: Nunn JF (ed) Nunn’s Applied Respiratory Physiology. 4th edn. Butterworth-Heineman Ltd, Oxford, pp 254–305.

    Google Scholar 

  13. Neraa N, Petersen E, Boye E, Severinghaus JW (1966) pH and molecular CO2 components of the Bohr effect in human blood. Scand J Clin Lab Invest 18:96–102.

    Article  Google Scholar 

  14. Schmidt-Neilsen K, Larimer JL (1958) Oxygen dissociation curves of mammalian blood in relation to body size. Am J Physiol 195:424–428.

    PubMed  CAS  Google Scholar 

  15. Leon-Velarde F, de Muizon C, Palacios JA, Clark D, Monge C (1996) Hemoglobin affinity and structure in high-altitude and sea-level carnivores from Peru. Comp Biochem Physiol 113:407–411.

    Article  CAS  Google Scholar 

  16. Hill AV (1910) The possible effects of the aggregation of the molecule on its oxygen dissociation curve. J Physiol 40:4.

    Google Scholar 

  17. Severinghaus JW (1979) Simple, accurate equations for human blood O2 dissociation computations. J Appl Physiol 46:599–602.

    PubMed  CAS  Google Scholar 

  18. Aberman A, Cavanilles MH, Weil MH, Shubin H (1975) Blood P50 calculated from a single measurement of pH, PO2, and SO2. J Appl Physiol 38:171–176.

    PubMed  CAS  Google Scholar 

  19. Siggaard-Andersen O, Wimberley PD, Fogh-Andersen N, Gothgen IH (1988) Measured and derived quantities with modern pH and blood gas equipment: calculation algorithms with 54 equations. Scand J Clin Lab Invest Suppl 189:7–15.

    Google Scholar 

  20. Siggaard-Andersen 0, Siggaard-Andersen M (1990) The oxygen status algorithm: a computer program for calculating and displaying pH and blood gas data. Scand J Clin Lab Invest Suppl 203:29–45.

    Article  PubMed  CAS  Google Scholar 

  21. Morgan TJ, Endre ZH, Kanowski DM, Worthley LIG, Jones RDM (1995) Siggaard-Andersen algorithm-derived P50 parameters — Perturbation by abnormal hemoglobin-oxygen affinity and acid-base disturbances. J Lab Clin Med 126:365–372.

    PubMed  CAS  Google Scholar 

  22. Ganong WF (1977) Circulation through special regions. In: Ganong WF (ed) Review of Medical Physiology. 18th edn. Appleton and Lange, Stamford, pp 567–585.

    Google Scholar 

  23. Berne RM, Levy MN (1997) Coronary circulation. In: Berne RM, Levy MN (eds) Cardiovascular Physiology 7th edn. Mosby-Year Book Inc, St Louis, pp 223–237.

    Google Scholar 

  24. Saltin B (1985) Hemodynamic adaptations to exercise. Am J Cardiol 55:42D–47D.

    Article  PubMed  CAS  Google Scholar 

  25. Kessler M, Hoper J, Krumme BA (1976) Monitoring of tissue perfusion and cellular function. Anesthesiology 45:184–197.

    Article  PubMed  CAS  Google Scholar 

  26. Lundgren O, Haglund U (1978) The pathophysiology of the intestinal countercurrent exchanger. Life Sci 23:1411–1422.

    Article  PubMed  CAS  Google Scholar 

  27. Leichtweiss HP, Lubbers DW, Weiss CH, Baumgartl H, Reschke W (1969) The oxygen supply of the rat kidney: measurements of intrarenal PO2. Pflugers Arch 309:328–349.

    Article  PubMed  CAS  Google Scholar 

  28. Dill DB, Edwards HT, Consolio WV (1937) Blood as a physicochemical system. J Biol Chem 118:635–666.

    CAS  Google Scholar 

  29. Rahn H, Fenn WO (1955) A graphical analysis of the respiratory gas exchange. The O2-CO2 diagram. Am Physiol Soc, Washington.

    Google Scholar 

  30. Schlichtig R, Bowles SA (1994) Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol 76:2443–2451.

    PubMed  CAS  Google Scholar 

  31. Stainsby WN, Eitzman PD (1988) Roles of CO2, O2, and acid in arteriovenous [H+] difference during mucsle contractions. J Appl Physiol 65:1803–1810.

    PubMed  CAS  Google Scholar 

  32. Monge C, Leon-Velarde F (1991) Physiological adaptation to high altitude: oxygen transport in mammals and birds. Physiol Rev 71:1135–1172.

    PubMed  CAS  Google Scholar 

  33. Winslow RM, Monge CC, Statham NJ, et al (1981) Variability of oxygen affinity of blood: human subjects native to high altitude. J Appl Physiol 51:1411–1416.

    PubMed  CAS  Google Scholar 

  34. Hebbel RP, Eaton JW, Kronenberg ED, Zanjani LG, Moore LG, Berger EM (1978) Human llamas: adaptation to altitude in subjects with high hemoglobin-oxygen affinity. J Clin Invest 62:593–600.

    Article  PubMed  CAS  Google Scholar 

  35. Rossoff L, Zeldin R, Hew E, Aberman A (1980) Changes in blood P50: Effects on oxygen delivery when arterial hypoxemia is due to shunting. Chest 77:142–146.

    Article  PubMed  CAS  Google Scholar 

  36. Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 16:372–377.

    Article  PubMed  CAS  Google Scholar 

  37. Joyce CJ, Hickling KG (1996) Permissive hypercapnia and gas exchange in lungs with high Qs/Qt: a mathematical model. Br J Anesthesiol 77:678–683.

    Article  CAS  Google Scholar 

  38. Brackett NC jr, Wingo CF, Muren O, Solano JT (1969) Acid-base response to chronic hypercapnia in man. N Engl J Med 280:124–130.

    Article  PubMed  Google Scholar 

  39. Oski F, Gottlieb AJ, Delivoria-Papadopoulos M, Miller WW (1969) Red cell 2,3-diphosphoglycerate levels in subjects with chronic hypoxemia. N Engl J Med 280:1165–1166.

    Article  PubMed  CAS  Google Scholar 

  40. Lenfant C, Ways P, Augutt C, Cruz J (1969) Effect of chronic hypoxic hypoxia on the O2-Hb dissociation curve and respiratory gas transport in man. Respir Physiol 7:7–29.

    Article  PubMed  CAS  Google Scholar 

  41. Litwin SB, Skogen WF, Laver MB (1977) Effect of sodium ortho-iodobenzoate on oxygen transport and erythropoiesis in hypoxemic dogs with a right-to-left cardiac shunt. Surgery 81:633–639.

    PubMed  CAS  Google Scholar 

  42. Curtis SE, Walker TA, Bradley WE, Cain SM (1997) Raising P50 increases tissue PO2 in canine skeletal muscle but does not affect critical O2 extraction ratio. J Appl Physiol 83:1681–1689.

    PubMed  CAS  Google Scholar 

  43. Woodson RD (1979) Physiological significance of oxygen dissociation curve shifts. Crit Care Med 7:368–373.

    Article  PubMed  CAS  Google Scholar 

  44. Marik PE, Sibbald WJ (1993) Effect of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA 269:3024–3029.

    Article  PubMed  CAS  Google Scholar 

  45. Rude RE, Tumas J, Gunst M, Kloner RA, DeBoer LWV, Maroko PR (1983) Effects of ortho-iodo sodium benzoate on acute myocardial ischemia, hemodynamic function, and infarct size after coronary artery occlusion in dogs. Am J Cardiol 51:1421–1427.

    Article  Google Scholar 

  46. Pantely GA, Oyama AA, Metcalfe J, Lawson MS, Welch JE (1981) Improvement in the relationship between flow to ischemic myocardium and the extent of necrosis with glycolytic intermediates that decrease blood oxygen affinity in dogs. Circ Res 49:395–404.

    Article  PubMed  CAS  Google Scholar 

  47. Cornum RL, Martin RR, Bandy WC (1998) Transfusion of phosphoenolpyruvate-treated blood increases oxygen consumption in acute hemorrhage. Am J Surg 175:469–471.

    Article  PubMed  CAS  Google Scholar 

  48. Pagel PS, Hettrick DA, Montgomery MW, Kersten JR, Steffen RP, Warltier DC (1998) RSR 13, a synthetic modifier of hemoglobin-oxygen affinity, enhances the recovery of stunned myocardium in anesthetized dogs. J Pharmacol Exp Ther 285:1–8.

    PubMed  CAS  Google Scholar 

  49. Richardson RS, Tagore K, Haseler LJ, Jordan M, Wagner PD (1998) Increased VO2 max with right-shifted Hb-O2 dissociation curve at a constant O2 delivery in dog muscle in situ. J Appl Physiol 84:995–1002.

    PubMed  CAS  Google Scholar 

  50. Doppenberg EM, Watson JC, Bullock R, Gerber MJ, Zauner A, Abraham DJ (1997) The rationale for, and effects of oxygen delivery enhancement to ischemic brain in a feline model of human stroke. Ann NY Acad Sci 825:241–257.

    Article  PubMed  CAS  Google Scholar 

  51. Myburgh JA, Webb RK, Worthley LIG (1991) The P50 is reduced in critically ill patients. Intensive Care Med 17:355–358.

    Article  PubMed  CAS  Google Scholar 

  52. Huang W, Cade JF, Pain MC (1992) Oxygen dissociation curve in the adult respiratory distress syndrome. Anesth Intensive Care 20:456–459.

    CAS  Google Scholar 

  53. Clerbaux Th, Detry B, Reynert M, Frans A (1997) Right shift of the oxyhemoglobin dissociation curve in acute respiratory distress syndrome. Path Biol 45:269–273.

    CAS  Google Scholar 

  54. Koch D, Morgan TJ, Clague A, Morris D (1998) 2,3-diphosphoglycerate concentrations in ICU patients. Proceedings of The 23rd Australian and New Zealand Annual Scientific Meeting in Intensive Care, p 226.

    Google Scholar 

  55. Dantzker DR, Brook CK, Dehart P, Lynch JP, Weg JG (1979) Ventilation perfusion distributions in the adult respiratory distress syndrome. Am Rev Respir Dis 120:1039–1052.

    PubMed  CAS  Google Scholar 

  56. Staub NC (1974) Pulmonary oedema. Physiol Rev 54:678–811.

    Article  PubMed  CAS  Google Scholar 

  57. Light RB, Mink SN, Wood LDH (1981) Pathophysiology of gas exchange and pulmonary perfusion in pneumococcal pneumonia in dogs. J Appl Physiol 50:524–530.

    PubMed  CAS  Google Scholar 

  58. D’Alonzo GE, Bower JS, DeHart P, Dantzker DR (1983) The mechanisms of abnormal gas exchange in acute massive pulmonary embolism. Am Rev Respir Dis 128:170–172.

    PubMed  Google Scholar 

  59. Dantzker DR, Cowenhaven WM, Willoughby WJ, Kirsh MM, Bower JS (1982) Gas exchange alterations associated with weaning from mechanical ventilation following coronary artery bypass grafting. Chest 82:674–677.

    Article  PubMed  CAS  Google Scholar 

  60. Marshall JC, Christou NV, Meakins JL (1993) The gastrointestinal tract: the undrained abscess of multiple organ failure? Ann Surg 218:111–119.

    Article  PubMed  CAS  Google Scholar 

  61. Khandelwal SR, Randad RS, Lin PS, et al (1993) Enhanced oxygenation in vivo by allosteric inhibitors of hemoglobin saturation. Am J Physiol 34:H1450–H1453.

    Google Scholar 

  62. Wei EP, Randad RS, Levasseur JE, Abraham DJ, Kontos HA (1993) Effect of local change in O2 saturation of hemoglobin on cerebral vasodilatation from hypoxia and hypotension. Am J Physiol 265:H1439–H1443.

    PubMed  CAS  Google Scholar 

  63. Mouneimne Y, Barhoumi R, Myers T, Slogoff S, Nicolau C (1990) Stable rightward shifts of the oxyhemoglobin dissociation curve induced by encapsulation of inositol hexaphosphate in red cells using electroporation. FEBS Lett 275:117–120.

    Article  PubMed  CAS  Google Scholar 

  64. Bruggeman U, Roux EC, Hannig J, Nicolau C (1995) Low oxygen-affinity red cells produced in a large-volume, continuous-flow electroporation system. Transfusion 35:478–486.

    Article  Google Scholar 

  65. Chatterjee R, Welty EV, Walder RY, Pruitt SL, Rogers PH, Arnone A (1986) Isolation and characterisation of a new hemoglobin derivative cross-linked between the alpha chains (lysine 99 alpha 1-lysine 99 alpha 2). J Biol Chem 261:9929–9937.

    PubMed  CAS  Google Scholar 

  66. Fischer SR, Bone HG, Traber DL (1997) Effects of hemoglobin in sepsis. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer-Verlag, Heidelberg, pp 424–441.

    Google Scholar 

  67. Liard JF, Kunert MP (1993) Hemodynamic changes induced by low blood oxygen affinity in dogs. Am J Physiol 264:R396–R401.

    PubMed  CAS  Google Scholar 

  68. Kunert MP, Liard JF, Abraham DJ (1996) RSR-13, an allosteric effector of hemoglobin, increases systemic and iliac vascular resistance in rats. Am J Physiol 271:H602–H613.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morgan, T.J. (1999). The Significance of the P50. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1999. Yearbook of Intensive Care and Emergency Medicine, vol 1999. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13453-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13453-5_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65288-5

  • Online ISBN: 978-3-662-13453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics