Skip to main content

The Genera Thiobacillus and Thiomicrospira

  • Chapter
The Prokaryotes

Abstract

A common feature of the members of the genera Thiobacillus and Thiomicrospira is their ability to oxidize inorganic sulfur compounds for the generation of energy. Almost all can grow autotrophically, many can develop under organotrophic growth conditions, and some can couple the oxidation of sulfur compounds to the reduction of nitrate and nitrite. In addition, some organisms can use ferrous iron as an energy source, and evidence has been presented that a few can also oxidize other reduced metal ions such as cuprous copper. The ability to utilize organic compounds as carbon and/or energy source is variable. Many organisms among the chemolithotrophs known to date are highly specialized: the obligate chemolitho(auto)trophs use reduced sulfur compounds as the only energy source and assimilate carbon dioxide as the major carbon source under all growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literature Cited

  • Agate, A. D., Vishniac, W. V. 1973. Characterization of Thio-bacillusspecies by gas-liquid chromatography of cellular fatty acids. Archiv für Mikrobiologie 89:257–267.

    Article  CAS  Google Scholar 

  • Borichewski, R. M. 1967. Keto acids as growth-limiting factors in autotrophic growth of Thiobacillus oxidans. Journal of Bacteriology 93:597–599.

    PubMed  CAS  Google Scholar 

  • Borichewski, R. M., Umbreit, W. W. 1966. Growth of Thiobacillus thiooxidanson glucose. Archives of Biochemistry and Biophysics 116:97–102.

    Article  PubMed  CAS  Google Scholar 

  • Brierley, J. A., Lockwood, S. J. 1977. The occurrence of thermophilic iron-oxidizing bacteria in a copper leaching system. FEMS Microbiology Letters 2:163–165.

    Article  CAS  Google Scholar 

  • Brierley, J. A., Norris, P. R., Kelly, D. P., Le Roux, N. W. 1978. Characteristics of a moderately thermophilic and acidophilic iron-oxidizing Thiobacillus. European Journal of Applied Microbiology and Biotechnology, 5:291–299.

    Article  CAS  Google Scholar 

  • Brock, T. D., Brock, K. M., Belly, R. T., Weiss, R. L. 1972. Sulfolobus: A new genus of sulfur oxidizing bacterial living at low pH, and high temperature. Archiv für Mikrobiologie 84:54–68.

    Article  CAS  Google Scholar 

  • Cohen, Y., Kuenen, J. G. 1976. Growth yields and excretion products of Thiobacillus neapolitanusgrown in a chemostat. Abstracts of the Annual Meeting of the American Society of Microbiology 1976:120.

    Google Scholar 

  • Egorova, A. A., Deryugina, Z. P. 1963. The spore forming thermophilic thiobacterium Thiobacillus thermophilica Imschenetskiino v. sp. [In Russian, with English summary.] Mikrobiologiya 32:439–446.

    Google Scholar 

  • Guay, R., Silver, M. 1975. Thiobacillus acidophilussp. nov.; isolation and some physiological characteristics. Canadian Journal of Microbiology 21:281–288.

    Article  PubMed  CAS  Google Scholar 

  • Guitonneau, G., Keiling, J. 1932. L’évolution et la solubilisation du soufre élémentaire dans la terre arable. Annales Agronomiques N. S. 2:690–725.

    Google Scholar 

  • Hutchinson, M., Johnstone, K. I., White, I. 1965. The taxonomy of certain thiobacilli. Journal of General Microbiology 41:357–366.

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, M., Johnstone, K. I., White, I. 1966. Taxonomy of anaerobic thiobacilli. Journal of General Microbiology 44:373–381.

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, M., Johnstone, K. I., White, I. 1967. Taxonomy of anaerobic thiobacilli. Journal of General Microbiology 47:17–23.

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, M., Johnstone, K. I., White, I. 1969. Taxonomy of the genus Thiobacillus: The outcome of numerical taxonomy applied to the group as a whole. Journal of General Microbiology 57:397–410.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, J. F, Moriarty, D. J. W., Nicholas, D. J. D. 1968. Deoxyribonucleic acid base composition and taxonomy of the thiobacilli and some nitrifying bacteria. Journal of General Microbiology 53:53–60.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, D. P. 1969. Regulation of chemoautotrophic metabolism. I. Toxicity of phenylalanine to thiobacilli. Archiv für Mikrobiologie 69:330–342.

    Article  CAS  Google Scholar 

  • Kelly, D. P. 1972. Transformations of sulphur and its compounds in soils. International Symposium on Sulphur in Agriculture (1970). Annales Agronomiques, Numéro hors série 217–232.

    Google Scholar 

  • Kuenen, J. G. 1975. Colourless sulfur bacteria and their role in the sulfur cycle. Plant and Soil 43:49–76.

    Article  CAS  Google Scholar 

  • Kuenen, J. G., Veldkamp, H. 1972. Thiomicrospira pelophila, nov. gen., nov. sp., a new obligately chemolithotrophic colourless sulfur bacterium. Antonie van Leeuwenhoek Journal of Microbiology and Serology 38:241–256.

    Article  CAS  Google Scholar 

  • Kuenen, J. G., Veldkamp, H. 1973. Effects of organic compounds on growth of chemostat cultures of Thiomicrospira pelophila, Thiobacillus thioparusand Thiobacillus neapolitanus. Archiv für Mikrobiologie 94:173–190.

    Article  CAS  Google Scholar 

  • LéJohn, H. B., Van Caeseele, L., Lees, H. 1967. Catabolite repression in the facultative chemoautotroph Thiobacillus novellus. Journal of Bacteriology 94:1484–1491.

    PubMed  Google Scholar 

  • Le Roux, N. W., Wakerley, D. S., Hunt, S. D. 1977. Thermophilic thiobacillus-type bacteria from Icelandic thermal areas. Journal of General Microbiology 100:197–201.

    Article  Google Scholar 

  • London, J. 1963. Thiobacillus intermediusnov. sp. A novel type of facultative autotroph. Archiv für Mikrobiologie 46:329–337.

    Article  Google Scholar 

  • London, J., Rittenberg, S. C. 1966. Effect of organic matter on the growth of Thiobacillus intermedius. Journal of Bacteriology 91:1062–1069.

    PubMed  CAS  Google Scholar 

  • London, J., Rittenberg, S. C. 1967. Thiobacillus perometabolisnov. sp., a non autotrophic Thiobacillus. Archiv für Mikrobiologie 59:218–225.

    Article  CAS  Google Scholar 

  • Lu, M. C., Matin, A., Rittenberg, S. C. 1971. Inhibition of growth of obligately chemolithotrophic thiobacilli by amino acids. Archiv für Mikrobiologie 79:354–366.

    Article  CAS  Google Scholar 

  • Mckintosh, M. E. 1978. Nitrogen fixation by Thiobacillus ferro-oxidans. Journal of General Microbiology 105:215–218.

    Article  Google Scholar 

  • Markosyan, G. E. 1973. A new mixotrophic sulfur bacterium developing in acid media, Thiobacillus organoparussp.n. Doklady Akademii Nauk SSSR 211:1205–1208.

    Google Scholar 

  • Matin, A. 1977. Mixotrophic growth of Thiobacillus novellusin batch and continuous cultures. Abstracts of the Annual Meeting of the American Society of Microbiology 1977:155.

    Google Scholar 

  • Matin, A., Kahan, F. J., Leefeldt, R. H. 1979. Growth factor requirement of Thiobacillus novellus. Archives of Microbiology 124:91–95.

    Article  Google Scholar 

  • Matin, A., Rittenberg, S. C. 1970. Utilization of glucose in heterotrophic media by Thiobacillus intermedius. Journal of Bacteriology 104:234–238.

    PubMed  CAS  Google Scholar 

  • Matin, A., Rittenberg, S. C. 1971. Enzymes of carbohydrate metabolism in Thiobacillusspecies. Journal of Bacteriology 107:179–186.

    PubMed  CAS  Google Scholar 

  • Mizoguchi, T., Sato, T., Okabe, T. 1976. New sulphur-oxidizing bacteria capable of growing heterotrophically, Thiobacillus rubellusnov. sp. and Thiobacillus delicatusnov. sp. Journal of Fermentation Technology 54:181–191.

    CAS  Google Scholar 

  • Mouraret, M., Baldensperger, J. 1977. Use of membrane filters for the enumeration of autotrophic thiobacilli. Microbial Ecology 3:345–355.

    Article  CAS  Google Scholar 

  • Pan, P. C., Umbreit, W. W. 1972. Growth of obligate autotrophic bacteria on glucose in a continuous flow-through apparatus. Journal of Bacteriology 109:1149–1155.

    PubMed  CAS  Google Scholar 

  • Parker, C.D., Prisk, J. 1953. The oxidation of inorganic compounds of sulphur by various sulphur bacteria. Journal of General Microbiology 8:344–364.

    Article  PubMed  CAS  Google Scholar 

  • Rittenberg, S. C. 1969. The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria, pp. 159–196. In: Rose, A. H., Wilkinson, J. F. (eds.), Advances in microbial physiology, vol. 3. London, New York: Academic Press.

    Google Scholar 

  • Roy, A. B., Trudinger, P. A. 1970. The biochemistry of inorganic compounds of sulphur. London, New York: Cambridge University Press.

    Google Scholar 

  • Schnaitman, K., Lundgren, D, G. 1965. Organic compounds in the spent medium of Ferrobacillus ferrooxidans. Canadian Journal of Microbiology 11:23–27.

    Article  PubMed  CAS  Google Scholar 

  • Shafia, F., Brinson, K. R., Heinzman, M. W., Brody, J. M. 1972. Transition of chemolithotroph Thiobacillus ferrooxidansto obligate organotrophy and metabolic capabilities of glucose-grown cells. Journal of Bacteriology 111:56–65.

    PubMed  CAS  Google Scholar 

  • Shafia, E, Wilkinson, R. F 1969. Growth of Ferrobacillus ferrooxidanson organic matter. Journal of Bacteriology 97:256–260.

    PubMed  CAS  Google Scholar 

  • Silverman, M.P., Lundgren, D. G. 1959. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. Journal of Bacteriology 77:642–647.

    PubMed  CAS  Google Scholar 

  • Smith, D. W., Rittenberg, S. C. 1974. On the sulfur requirement for growth of Thiobacillus intermedius. Archives of Microbiology 100:65–71.

    Article  PubMed  CAS  Google Scholar 

  • Sokolova, G. A., Karavaiko, G. I. 1968. Physiology and geo-chemical activity of thiobacilli. Translated from Russian (1964), E. Rabinovitz (ed.). Jerusalem: Israel Programme for Scientific Translations Ltd.

    Google Scholar 

  • Starkey, R. L. 1935. Isolation of some bacteria which oxidize thiosulfate. Soil Science 39:197–219.

    Article  CAS  Google Scholar 

  • Swaby, R. J. 1975. Biosuper—biological superphosphate, pp. 213–220. In: McLachlan, K. D. (ed.), Sulphur in Australasian agriculture. Sydney: Sydney University Press.

    Google Scholar 

  • Tabita, R., Lundgren, D. G. 1971. Utilization of glucose and the effect of organic compounds on the chemolithotroph Thiobacillus ferrooxidans. Journal of Bacteriology 108:328–333.

    PubMed  CAS  Google Scholar 

  • Taylor, B. E, Hoare, D. S. 1969. A new facultative Thiobacillusand a réévaluation of the heterotrophic potential of Thiobacillus novellus. Journal of Bacteriology 100:487–497.

    PubMed  CAS  Google Scholar 

  • Taylor, B. F., Hoare, D. S. 1971. Thiobacillus denitrificansas an obligate chemolithotroph. II. Cell suspension and enzymic studies. Archiv für Mikrobiologie 80:262–276.

    Article  CAS  Google Scholar 

  • Taylor, B. F., Hoare, D. S., Hoare, S. L. 1971. Thiobacillus denitrificansas an obligate chemolithotroph. Isolation and growth studies. Archiv für Mikrobiologie 78:193–204.

    Article  CAS  Google Scholar 

  • Temple, K. L., Colmer, A. R. 1951. The autotrophic oxidation of iron by a new bacterium Thiobacillus ferrooxidans. Journal of Bacteriology 62:605–611.

    PubMed  CAS  Google Scholar 

  • Timmer-ten Hoor, A. 1975. A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira deni-trificanssp. no v. Netherlands Journal of Sea Research 9:343–351.

    Google Scholar 

  • Timmer-ten Hoor, A. 1977. Denitrificerende kleurloze zwavel-bacteriën. Dissertation. University of Groningen.

    Google Scholar 

  • Trudinger, P. A. 1967. Metabolism of thiosulfate and tetrathio-nate by heterotrophic bacteria from soil. Journal of Bacteriology 93:550–559.

    PubMed  CAS  Google Scholar 

  • Tuovinen, O. H., Kelly, D. P. 1972. Biology of Thiobacillus ferrooxidansin relation to the microbiological leaching of sulphide ores. Zeitschrift für Allgemeine Mikrobiologie 12:311–346.

    Article  CAS  Google Scholar 

  • Tuovinen, O. H., Kelly, D. P. 1973. Studies on the growth of Thiobacillus ferrooxidans. I. Use of membrane filters and ferrous iron agar to determine viable numbers and comparison with 14CO2-fixation and iron oxidation as measures of growth. Archiv für Mikrobiologie 88:285–298.

    Article  CAS  Google Scholar 

  • Tuovinen, O. H., Kelly, D. P., Dow, C. S., Eccleston, M. 1978. Metabolic transitions in cultures of acidophilic thiobacilli, pp. 61–81. In: Murr, L. E., Torma, A. E., Brierley, J. A., eds.), Metallurgical applications of bacterial leaching and related microbiological phenomena. New York: Academic Press.

    Chapter  Google Scholar 

  • Turtle, J. H., Holmes, P. E., Jannasch, H. W. 1974. Growth rate stimulation of marine pseudomonads by thiosulfate. Archiv für Mikrobiologie 99:1–14.

    Google Scholar 

  • Tuttle, J. H., Jannasch, H. W.: 1972. Occurrence and types of Thiobacillus-likebacteria in the sea. Limnology and Oceanography 17:532–543.

    Article  CAS  Google Scholar 

  • Tuttle, J. H., Jannasch, H. W. 1973. Sulfide and thiosulfate-oxidizing bacteria in anoxic marine basins. Marine Biology 20:64–70.

    Article  CAS  Google Scholar 

  • Vishniac, W. V. 1974. The genus Thiobacillus, pp. 456–461. In: Buchanan, R. E., Gibbons, N. E. (eds.), Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Vishniac, W., Santer, M. 1957. The thiobacilli. Bacteriological Reviews 21:195–213.

    PubMed  CAS  Google Scholar 

  • Vitolins, M. I., Swaby, R. J. 1969. Activity of sulphur oxidizing micro-organisms in some Australian soils. Australian Journal of Soil Research 7:171–183.

    Article  CAS  Google Scholar 

  • Waksman, S.A., Joffe, J. S. 1922. Microorganisms concerned in the oxidation of sulfur in the soil. II. Thiobacillus thio-oxidans, a new sulfur-oxidizing organism isolated from the soil. Journal of Bacteriology 7:239–256.

    PubMed  CAS  Google Scholar 

  • Wieringa, K. T. 1966. Solid media with elemental sulphur for detection of sulphur-oxidizing microbes. Antonie van Leeuwenhoek Journal of Microbiology and Serology 32:183–186.

    Article  CAS  Google Scholar 

  • Williams, R. A. D., Hoare, D. S. 1972. Physiology of a new facultatively autotrophic thermophilic Thiobacillus. Journal of General Microbiology 70:555–566.

    Article  PubMed  CAS  Google Scholar 

  • Woolley, D., Jones, G. L., Happold, F. C. 1962. Some metabolic differences between Thiobacillus thioparus, T denitrificansand T. thiocyanooxidans. Journal of General Microbiology 29:311–316.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuenen, J.G., Tuovinen, O.H. (1981). The Genera Thiobacillus and Thiomicrospira . In: Starr, M.P., Stolp, H., Trüper, H.G., Balows, A., Schlegel, H.G. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13187-9_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13187-9_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13189-3

  • Online ISBN: 978-3-662-13187-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics