Skip to main content

The Dissimilatory Sulfate-Reducing Bacteria

  • Chapter
The Prokaryotes

Abstract

Dissimilatory sulfate-reducing bacteria are probably one of the oldest forms of bacterial life on earth. Their activities have been traced back more than 3 billion years by sulfur isotope fractionation in minerals and rocks (Peck, 1966).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Abd-el-Malek, Y., Rizk, S. G. 1960. Culture of Desulphovibrio desulphuricans. Nature 185:635–636.

    Article  PubMed  CAS  Google Scholar 

  • Abd-el-Malek, Y, Rizk, S. G. 1963. Bacterial sulphate reduction and the development of alkalinity. III. Experiments under natural conditions. Journal of Applied Bacteriology 26:20–26.

    Article  CAS  Google Scholar 

  • Abram, J. W., Nedwell, D. B. 1978a. Inhibition of methano-genesis by sulphate-reducing bacteria competing for transferred hydrogen. Archives of Microbiology 117:89–92.

    Article  PubMed  CAS  Google Scholar 

  • Abram, J. W., Nedwell, D. B. 1978b. Hydrogen as a substrate for methanogenesis and sulphate reduction in anaerobic salt-marsh sediment. Archives of Microbiology 117:93–97.

    Article  PubMed  CAS  Google Scholar 

  • Alico, R. K., Liegey, F. W. 1966. Growth of Desulfovibrio desulfuricans under heterotrophic and anaerobic conditions. Journal of Bacteriology 91:1112–1114.

    PubMed  CAS  Google Scholar 

  • Baars, E. K. 1930. Over Sulfaatruductie door Bakterien. Doctoral Thesis. University of Delft. Delft, Holland: W. D. Meinema

    Google Scholar 

  • N. V. Baas Becking, L. G. M., Wood, E. J. F. 1955. Biological processes in the estuarine environment. I. Ecology of the sulphur cycle. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschapen (Amsterdam) 58:160–181.

    Google Scholar 

  • Badziong, W., Thauer, R. K. 1978. Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources. Archives of Microbiology 117:209–214.

    Article  PubMed  CAS  Google Scholar 

  • Badziong, W., Thauer, R. K., Zeikus, J. G. 1978. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Archives of Microbiology 116:41–49.

    Article  PubMed  CAS  Google Scholar 

  • Beerens, H., Romond, H. 1977. Sulfate-reducing anaerobic bacteria in human feces. American Journal of Clinical Nutrition 30:1770–1776.

    PubMed  CAS  Google Scholar 

  • Beijerinck, W. M. 1895. #x00DC;ber Spirillum desulfuricans als Ursache von Sulfatreduktion. Centralblatt fĂ¼r Bakteriologie und Parasitenkunde, Abt. 2 1:1–9, 49–50, 104–114.

    Google Scholar 

  • Biebl, H., Pfennig, N. 1977. Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Archives of Microbiology 112:115–117.

    Article  PubMed  CAS  Google Scholar 

  • Bryant, M. P. 1973. Nutritional requirements of the predominant rumen cellulolytic bacteria. Federation Proceedings of the Federation of the American Societies for Experimental Biology 32:1809–1813.

    CAS  Google Scholar 

  • Bryant, M. P., Campbell, L. L., Reddy, C. A., Crabill, M. R. 1977. Growth of De sulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Applied and Environmental Microbiology 33: 1162–1169.

    PubMed  CAS  Google Scholar 

  • Campbell, L. L. 1974. Genus Desulfotomaculum, pp. 572–573. In: Buchanan, R. E., Gibbons, N. E. (eds.), Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Campbell, L. L., Frank, H. A., Hall, E. R. 1957. Studies on thermophilic sulfate-reducing bacteria. I. Identification of Sporovibrio desulfuricans as Clostridium nigrificans. Journal of Bacteriology 73:516–521.

    PubMed  CAS  Google Scholar 

  • Campbell, L. L., Postgate, J. R. 1965. Classification of the spore-forming sulfate-reducing bacteria. Bacteriological Reviews 29:359–363.

    PubMed  CAS  Google Scholar 

  • Claypool, G. E., Kaplan, I. R. 1974. The origin and distribution of methane in marine sediments, pp. 99–139. In: Kaplan, I. R. (ed.), Natural gases in marine sediments. New York: Plenum Press.

    Chapter  Google Scholar 

  • Coleman, G. S. 1960. A sulphate-reducing bacterium from the sheep rumen. Journal of General Microbiology 22:423–436.

    Article  PubMed  CAS  Google Scholar 

  • Huising, J., McNeill, J. J., Matrone, G. 1974. Sulfate reduction by a Desulfovibrio species isolated from sheep rumen. Applied Microbiology 28:489–497.

    Google Scholar 

  • Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes, pp. 117–132. In: Norris, J. R., Ribbons, D. W. (eds.), Methods in microbiology, vol. 3B. London, New York: Academic Press.

    Google Scholar 

  • Jacq, V., Dommergues, Y. 1971. Sulfato-rĂ©duction spermato-sphĂ©rique. Annales de l’Institut Pasteur 121:199–206.

    PubMed  CAS  Google Scholar 

  • Jorgensen, B. B., Fenchel, T. 1974. The sulfur cycle of a marine sediment model system. Marine Biology 24:189–201.

    Article  CAS  Google Scholar 

  • Kimata, M., Kadota, H., HĂ¢ta, Y, Tajima, T. 1955. Studies on the marine sulfate-reducing bacteria. II. Influences of various environmental factors upon the sulfate-reducing activity of marine sulfate-reducing bacteria. Bulletin of the Japanese Society of Scientific Fisheries 21:109–112.

    Article  CAS  Google Scholar 

  • Kluyver, A. J., van Niel, C. B. 1936. Prospects for a natural system of classification of bacteria. Zentralblatt fĂ¼r Bakteriologie, Parasitenkunde, Infektionskrankheiten, und Hygiene, Abt. 2 94:369–403.

    Google Scholar 

  • Kuznetsova, V. A., Gorlenko, V. M. 1965. Effect of temperature on the development of microorganisms from flooded strata of the Romashkino oil field. [In Russian, with English summary.] Mikrobiologiya 34:329–334.

    CAS  Google Scholar 

  • Laanbroek, H. J., Stal, L. J., Veldkamp, H. 1978. Utilization of hydrogen and formate by Campylobacter spec, under aerobic and anaerobic conditions. Archives of Microbiology 119:99–102.

    Article  PubMed  CAS  Google Scholar 

  • Laishley, E. J., Krouse, H. R. 1978. Stable isotope fractionation by Clostridium pasteurianum. 2. Regulation of sulfite reductases by sulfur amino acids and their influence on sulfur isotope Fractionation during So3 2~ and SO4 2- reduction. Canadian Journal of Microbiology 24:716–724.

    Article  PubMed  CAS  Google Scholar 

  • Lapage, S. P., Shelton, J. E., Mitchell, T. G. 1970. Media for the maintenance and preservation of bacteria, p. 120. In: Norris, J. R., Ribbons, D. W. (eds.), Methods in microbiology, vol. 3A. London, New York: Academic Press.

    Google Scholar 

  • Le Gall, J., Postgate, J. R. 1973. The physiology of sulphate-reducing bacteria, pp. 81–133. In: Rose, H. A., Tempest, D. W. (eds.), Advances in microbial physiology, vol. 10. London, New York: Academic Press.

    Google Scholar 

  • Martens, C. S., Berner, R. A. 1974. Methane production in the interstitial waters of sulfate-depleted marine sediments. Science 185:1167–1169.

    Article  PubMed  CAS  Google Scholar 

  • Moore, W. E. C., Johnson, J. L., Holdeman, L. V. 1976. Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Puminococcus. International Journal of Bacteriology 26:238–252.

    Article  Google Scholar 

  • Nissenbaum, A., Presley, B. J., Kaplan, I. R. 1972. Early diagenesis in a reducing fjord, Saanich inlet, British Columbia I. Chemical and isotope changes in major components of interstitial water. Geochimica Cosmochimica Acta 36:1007–1027.

    Article  CAS  Google Scholar 

  • Pankhurst, E. S. 1968. Significance of sulphate-reducing bacteria to the gas industry: A review. Journal of Applied Bacteriology 31:179–193.

    Article  Google Scholar 

  • Pankhurst, E. S. 1971. The isolation and enumeration of sulphate-reducing bacteria, p. 223. In: Shapton, D. A., Board, R. G. (eds.), Isolation of anaerobes. Society for Applied Bacteriology Technical Series No. 5. New York, London: Academic Press.

    Google Scholar 

  • Peck, H. D., Jr. 1966. Some evolutionary aspects of inorganic sulphur metabolism. University of Maryland Lectures on Theoretical and Applied Aspects of Modern Microbiology. Baltimore: University of Maryland.

    Google Scholar 

  • Pfennig, N. 1975. The phototrophic bacteria and their role in the sulfur cycle. Plant and Soil 43:1–16.

    Article  CAS  Google Scholar 

  • Postgate, J. R. 1951. The reduction of sulphur compounds by Desulphovibrio desulphuricans. Journal of General Microbiology 5:725–738.

    Article  PubMed  CAS  Google Scholar 

  • Postgate, J. R. 1959. Sulphate reduction by bacteria. Annual Reviews of Microbiology 13:505–520.

    Article  Google Scholar 

  • Postgate, J. R. 1963. Versatile medium for the enumeration of sulfate-reducing bacteria. Applied Microbiology 11:265–267.

    PubMed  CAS  Google Scholar 

  • Postgate, J. R. 1965. Recent advances in the study of the sulfate-reducing bacteria. Bacteriological Reviews 29:425–441.

    PubMed  CAS  Google Scholar 

  • Postgate, J. R., Campbell, L. L. 1966. Classification of Desulfo-vibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriological Reviews 30:732–738.

    PubMed  CAS  Google Scholar 

  • Rittenberg, S. C. 1941. Studies on marine sulfate-reducing bacteria. Doctoral Thesis. University of California, Los Angeles, California.

    Google Scholar 

  • Roy, A. B., Trudinger, P. A. 1970. The biochemistry of inorganic compounds of sulphur. Cambridge: University Press.

    Google Scholar 

  • Rozanova, E. P., Khudyakova, A. I. 1974. A new nonspore-forming Thermophilic sulfate-reducing organism, Desulfo-vibrio thermophilus nov. spec. [In Russian, with English summary.] Microbiologiya 43:1069–1075.

    CAS  Google Scholar 

  • Rozanova, E. P., Nazina, T. N. 1976. A mesophilic, sulfate-reducing rod-shaped, nonspore-forming bacterium. [In Russian, with English summary.] Microbiologiya 45:825–830.

    CAS  Google Scholar 

  • Rubentschik, L. 1928. #x00DC;ber Sulfatreduktion durch Bakterien bei Zellulosegärungsprodukten als Energiequelle. Zentralblatt fĂ¼r Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 2 73:483–496.

    Google Scholar 

  • Schoberth, S. 1973. A new strain of De suifovibrio gigas isolated from a sewage plant. Archiv fĂ¼r Mikrobiologie 92:365–368.

    Article  PubMed  CAS  Google Scholar 

  • Selwyn, S. C., Postgate, J. R. 1959. A search for the Rubentschikii group of Desulphovibrio. Antonie van Leeu-wenhoek Journal Microbiology and Serology 25:465–472.

    Article  CAS  Google Scholar 

  • Skyring, G. W., Jones, H. E., Goodchild, D. 1977. The taxonomy of some new isolates of dissimilatory sulfate-reducing bacteria. Canadian Journal of Microbiology 23:1415–1425.

    Article  PubMed  CAS  Google Scholar 

  • Soimajärvi, J., Pursiainen, M., Korhonen, J. 1978. Sulphate-reducing bacteria in paper machine waters and in suction roll perforations. European Journal of Applied Microbiology and Biotechnology 5:87–93.

    Article  Google Scholar 

  • Sorokin, Yu. I. 1966a. Sources of energy and carbon for biosynthesis in sulfate-reducing bacteria. [In Russian, with English summary.] Microbiologiya 35:761–766.

    CAS  Google Scholar 

  • Sorokin, Yu. I. 1966b. Investigation of the structural metabolism of sulfate-reducing bacteria with 14C. [In Russian, with English summary.] Microbiologiya 35:967–977.

    CAS  Google Scholar 

  • Starkey, R. L. 1957. The general physiology of the sulfate-reducing bacteria in relation to corrosion, pp. 25–43. In: Sulfate-reducing bacteria, their relation to the secondary recovery of oil. Science Symposium, St. Bonaventure College, St. Bonaventure, New York.

    Google Scholar 

  • Takai, Y., Kamura, T. 1966. The mechanism of reduction in waterlogged paddy soil. Folia Microbiologica 11:304–313.

    Article  CAS  Google Scholar 

  • TrĂ¹per, H. G. 1969. Bacterial sulfate reduction in the Red Sea hot brines, pp. 263–271. In: Degens, E. T, Ross, D. A. (eds.), Hot brines and recent heavy metal deposits in the Red Sea. New York: Springer-Verlag.

    Chapter  Google Scholar 

  • TrĂ¼per, H. G., Kelleher, J. J., Jannasch, H. W. 1969. Isolation and Characterization of sulfate-reducing bacteria from various marine environments. Archiv fĂ¼r Mikrobiologie 65: 208–217.

    Article  PubMed  Google Scholar 

  • Tuttle, J. H., Jannasch, H. W. 1973. Dissimilatory reduction of inorganic sulfur by facultatively anaerobic marine bacteria. Journal of Bacteriology 115:732–737.

    PubMed  CAS  Google Scholar 

  • van Delden, A. 1903. Beitrag zur Kenntnis der Sulfatreduktion durch Bakterien. Centralblatt for Bakteriologie und Parasitenkunde, Abt. 2 11:81–94, 113–119.

    Google Scholar 

  • Werkman, C. H., Weaver, H. J. 1927. Studies in the bacteriology of sulphur stinker spoilage of canned sweet corn. Iowa State College Journal of Science 2:57–67.

    CAS  Google Scholar 

  • Widdel, F. 1980. Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Doctoral Thesis. University of Göttingen, Göttingen, Federal RepubĂ¼c of Germany.

    Google Scholar 

  • Widdel, F., Pfennig, N. 1977. A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) Acetoxidans. Archives of Microbiology 112:119–122.

    Article  PubMed  CAS  Google Scholar 

  • Winfrey, M. R., Zeikus, J. G. 1977. The effect of sulfate on car-bon and electron flow during microbial methanogenesis in fresh water sediments. Applied and Environmental Microbiology 33:275–281.

    PubMed  CAS  Google Scholar 

  • Wolfe, R. S., Pfennig, N. 1977. Reduction of sulfur by spirillum 5175 and syntrophism with Chlorobium. Applied and Environmental Microbiology 33:427–433.

    PubMed  CAS  Google Scholar 

  • Wolin, M. J. 1976. Interactions between H2-producing and methane-producing species, pp. 141–150. In: Schlegel, H. G., Gottschalk, G., Pfennig, N. (eds.), Microbial formation and utilization of gases, Göttingen: Goltze.

    Google Scholar 

  • Zinder, S. H., Brock, T. D. 1978. Dimethyl sulfoxide as an electron acceptor for anaerobic growth. Archives of Microbiology 116:35–40.

    Article  PubMed  CAS  Google Scholar 

  • ZoBell, C. E. 1957. Ecology of sulfate-reducing bacteria, pp. 1–24. In: Sulfate-reducing bacteria, their relation to the secondary recovery of oil. Science Symposium, St. Bonaventure College, St. Bonaventure, New York.

    Google Scholar 

  • ZoBell, C. E., Morita, R. Y. 1957. Barophilic bacteria in some deep sea sediments. Journal of Bacteriology 73:563–568.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pfennig, N., Widdel, F., TrĂ¼per, H.G. (1981). The Dissimilatory Sulfate-Reducing Bacteria. In: Starr, M.P., Stolp, H., TrĂ¼per, H.G., Balows, A., Schlegel, H.G. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13187-9_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13187-9_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13189-3

  • Online ISBN: 978-3-662-13187-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics