Skip to main content

Prokaryotes and their Habitats

  • Chapter
Book cover The Prokaryotes

Abstract

Prokaryotes are well recognized as essential members of the biosphere. They inhabit all possible locations for life to exist, from those offering ideal conditions for growth and reproduction to those representing extreme environments at the borderline of abiotic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Aaronson, S. 1970. Experimental microbial ecology. New York: Academic Press.

    Google Scholar 

  • Acher, A. J., Juven, B. J. 1977. Destruction of coliforms in water and sewage by dye-sensitized photooxidation. Applied and Environmental Microbiology 33:1019–1022.

    CAS  PubMed  Google Scholar 

  • Adler, J. 1974. Chemoreception and Chemotaxis in bacteria, pp. 107–131. In: Jaenicke, L. (ed.), Biochemistry of sensory functions. Berlin: Springer-Verlag.

    Google Scholar 

  • Ahrens, R., Moll, G., Rheinheimer, G. 1968. Die Rolle der Fimbrien bei der eigenartigen Sternbildung von Agrobacterium luteum. Archiv für Mikrobiologie 63:321–330.

    CAS  PubMed  Google Scholar 

  • Akin, D. E. 1976. Ultrastructure of rumen bacterial attachment to forage cell walls. Applied and Environmental Microbiology 31:562–568.

    CAS  PubMed  Google Scholar 

  • Akin, D. E., Amos, W. E. 1975. Rumen bacterial degradation of forage cell walls investigated by electron microscopy. Applied Microbiology 29:692–701.

    CAS  PubMed  Google Scholar 

  • Alexander, M. 1971. Microbial ecology. New York: John Wiley & Sons.

    Google Scholar 

  • Alexander, M. 1976. Natural selection and the ecology of microbial adaptation in a biosphere, pp. 3–25. In: Heinrich, M. R. (ed.), Extreme environments. Mechanisms of microbial adaptation. New York: Academic Press.

    Google Scholar 

  • Alexander, M. 1977. Introduction to soil microbiology, 2nd ed. New York, London, Sydney: John Wiley & Sons.

    Google Scholar 

  • Anwar, M., Khan, T. H., Prebble, J., Zagalski, P. F. 1977. Membrane-bound carotenoid in Micrococcus luteus protects naphthoquinone from photodynamic action. Nature 270:538–540.

    CAS  PubMed  Google Scholar 

  • Aragno, M. 1978. Enrichment, isolation and preliminary characterization of a thermophilic, endospore-forming hydrogen bacterium. FEMS Microbiology Letters 3:13–15.

    CAS  Google Scholar 

  • Atlas, R. M., Bartha, R. 1980. Microbial ecology: Fundamentals and applications. Reading, Massachusetts: Addison-Wesley.

    Google Scholar 

  • Babenzien, H.-D. 1965. Über Vorkommen und Kultur von Nevskìa ramosa. Zentralblatt für Bakteriologie, Chapausitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl. 1: 111–116.

    Google Scholar 

  • Babenzien, H.-D. 1967. Zur Biologie von Nevskia ramosa. Zeitschrift für Allgemeine Mikrobiologie 7:89–96.

    CAS  PubMed  Google Scholar 

  • Ballard, R. D. 1977. Notes on a major oceanographic find. Oceanus 20:35–44.

    Google Scholar 

  • Barber, R. T. 1968. Dissolved organic carbon from deep waters resists microbial oxidation. Nature 220:274–275.

    CAS  PubMed  Google Scholar 

  • Baross, J. A., Morita, R. Y. 1978. Microbial life at low temperatures: Ecological aspects, pp. 9–71. In: Kushner, D. J. (ed.), Microbial life in extreme environments. London, New York, San Francisco: Academic Press.

    Google Scholar 

  • Bartha, R., Atlas, R. M. 1977. The microbiology of aquatic oil spills. Advances in Applied Microbiology 22:225–266.

    CAS  PubMed  Google Scholar 

  • Bartnicki-Garcia, S., Nickerson, W. J. 1962. Nutrition, growth and morphogenesis of Mucor rouxii. Journal of Bacteriology 84:841–858.

    CAS  PubMed  Google Scholar 

  • Bauchop, T. 1971. Mechanism of hydrogen formation in Trichomonas foetus. Journal of General Microbiology 68:27–33.

    CAS  PubMed  Google Scholar 

  • Bauchop, T. 1977. Foregut fermentation, pp. 223–310. In: Clarke, R. T. J., Bauchop, T. (eds.), Microbial ecology of the gut. London, New York, San Francisco: Academic Press.

    Google Scholar 

  • Bauld, J., Brock, T. D. 1973. Ecological studies of Chloroflexus, a gliding photosynthetic bacterium. Archiv für Mikrobiologie 92:267–284.

    Google Scholar 

  • Baumann, L., Baumann, P., Mandel, M., Allen, R. D. 1972.Taxonomy of aerobic marine bacteria. Journal of Bacteriology 110:402–429.

    CAS  PubMed  Google Scholar 

  • Baumann, P., Baumann, L. 1977. Biology of the marine enterobacteria: Genera Beneckea and Photobacterium. Annual Review of Microbiology 31:39–61.

    CAS  PubMed  Google Scholar 

  • Bavendamm, W. 1924. Die farblosen und roten Schwefelbakterien des Süss- und Salzwassers. Pflanzenforschung 2:1–156.

    Google Scholar 

  • Bayley, S. T., Morton, R. A. 1978. Recent developments in the molecular biology of extremely halophilic bacteria. CRC Critical Reviews in Microbiology 6:151–205.

    CAS  PubMed  Google Scholar 

  • Bayley, S. T., Morton, R. A. 1979. Biochemical evolution of halobacteria, pp. 109–124. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  • Beijerinck, M. W. 1895. Über Spirillum desulfuricans als Ursache von Sulfatreduktion. Zentralblatt für Bakteriologie, Chapausitenkunde, Infektionskrankheiten und Hygiene, Abt. 2 1:1–9.

    Google Scholar 

  • Beijerinck, M. W. 1921–1940. Verzammelde Geschritten. 1–6. Nijhoff, Den Haag.

    Google Scholar 

  • Benemann, J. R. 1973. Nitrogen fixation in termites. Science 181:164–165.

    CAS  PubMed  Google Scholar 

  • Bennett, A. F. 1978. Activity metabolism of the lower vertebrates. Annual Review of Physiology 40:447–469.

    CAS  PubMed  Google Scholar 

  • Berg, B., van Hofsten, B., Pettersson, G. 1972. Electron microscopic observations on the degradation of cellulose fibres by Cellvibrio fulvus and Sporocytophaga myxococcoides. Journal of Applied Bacteriology 35:215–219.

    CAS  PubMed  Google Scholar 

  • Bergensen, F. J., Hipsley, E. H. 1970. The presence of N2-fixing bacteria in the intestine of man and animals. Journal of General Microbiology 60:61–65.

    Google Scholar 

  • Berndt, H., Ostwal, K.-P., Lalucat, J., Schumann, Ch., Mayer, F., Schlegel, H. G. 1976. Identification and physiological characterization of the nitrogen fixing bacterium Corynebacterium autotrophicum GZ 29. Archives of Microbiology 108:17–26.

    CAS  PubMed  Google Scholar 

  • Bezdek, H. G., Carnicci, A. F. 1972. Surface concentration of marine bacteria. Limnology and Oceanography 17:566–569.

    Google Scholar 

  • Bhuiya, Z. H., Walker, N. 1977. Autotrophic nitrifying bacteria in acid tea soils from Bangladesh and Sri Lanka. Journal of Applied Bacteriology 42:253–257.

    CAS  PubMed  Google Scholar 

  • Biebl, H., Pfennig, N. 1978. Growth yield of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Archives of Microbiology 117:9–16.

    CAS  Google Scholar 

  • Blakemore, R. P. 1975. Magnetotactic bacteria. Science 190:377–379.

    CAS  PubMed  Google Scholar 

  • Blakemore, R. P., Frankel, R. B., Kalmijn, A. J. 1980. South-seeking magnetotactic bacteria in the Southern Hemisphere. Nature 286:384–385.

    Google Scholar 

  • Blakemore, R. P., Maratea, D., Wolfe, R. S. 1979. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. Journal of Bacteriology 140:720–729.

    CAS  PubMed  Google Scholar 

  • Bland, J. A., Staley, J. T. 1978. Observations on the biology of Thiothrix. Archives of Microbiology 117:79–87.

    Google Scholar 

  • Blumershine, R. V., Savage, D. C. 1978. Filamentous microbes indigenous to the murine small bowel: A scanning electron microscopic study of their morphology and attachment to the epithelium. Microbial Ecology 4:95–103.

    Google Scholar 

  • Bokor, R. 1933. Die Mikrobiologie der Szik- (Salz- oder Alkali-) Böden mit besonderer Berücksichtigung ihrer Fruchtbarmachung, pp. 221–258. In: Fehér, D. (ed.), Untersuchungen über die Mikrobiologie des Waldbodens. Berlin: Springer-Verlag.

    Google Scholar 

  • Bousfield, I. J., MacKenzie, A. R. 1976. Inactivation of bacteria by freeze-drying. Society for Applied Bacteriology Symposium Series 5:329–344.

    CAS  Google Scholar 

  • Boyer, E. V., Ingle, M. B., Merver, G. D. 1973. Bacillus alcalophilus subsp. halodurans subsp. nov.: An alkaline-amylase-producing, alkalophilic organism. International Journal of Systematic Bacteriology 23:238–242.

    Google Scholar 

  • Boylen, C. W. 1973. Survival of Arthrobacter crystallopoietes during prolonged periods of extreme desiccation. Journal of Bacteriology 113:33–37.

    CAS  PubMed  Google Scholar 

  • Breznak, J. A., Brill, W. J., Mertins, J. W., Coppel, H. C. 1973. Nitrogen fixation in termites. Nature 244:577–579.

    CAS  PubMed  Google Scholar 

  • Brierley, C. L. 1977. Thermophilic microorganisms in extraction of metals from ores, pp. 273–284. In: Underkofler, L. A. (ed.), Developments in industrial microbiology. Proceedings of the 33rd General Meeting of the Society for Industrial Microbiology, vol. 18. Washington: American Institute of Biological Sciences.

    Google Scholar 

  • Brierley, C. L. 1978. Bacterial leaching. CRC Critical Reviews in Microbiology 6:207–262.

    CAS  PubMed  Google Scholar 

  • Brierley, C. L., Brierley, J. A. 1973. A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Canadian Journal of Microbiology 19:183–188.

    CAS  PubMed  Google Scholar 

  • Brierley, J. A. 1978. Thermophilic iron-oxidizing bacteria found in copper leaching dumps. Applied and Environmental Microbiology 36:523–525.

    CAS  PubMed  Google Scholar 

  • Brierley, J. A., Lockwood, S. J. 1977. The occurrence of thermophilic iron-oxidizing bacteria in a copper leaching system. FEMS Microbiology Letters 2:163–165.

    CAS  Google Scholar 

  • Brison, J., Courtois, D., Denis, F. 1974. Microbiological study of a hypersaline lake in French Somaliland. Applied Microbiology 27:819–822.

    Google Scholar 

  • Brock, T. D. 1967. Life at high temperatures. Science 158:1012–1019.

    CAS  PubMed  Google Scholar 

  • Brock, T. D. 1969. Microbial growth under extreme conditions. Society for General Microbiology Symposium 19:15–41.

    Google Scholar 

  • Brock, T. D. 1970. High temperature systems. Annual Review of Ecology and Systematics 1:191–220.

    Google Scholar 

  • Brock, T. D. 1978. Thermophilic microorganisms and life at high temperatures. New York, Heidelberg, Berlin: Springer-Verlag.

    Google Scholar 

  • Brock, T. D. 1979. Ecology of saline lakes, pp. 29–47. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  • Brock, T. D., Boylen, K. L. 1973. Presence of thermophilic bacteria in laundry and domestic hot-water heaters. Applied Microbiology 25:72–76.

    CAS  PubMed  Google Scholar 

  • Brock, T. D., Freeze, H. 1969. Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile. Journal of Bacteriology 98:289–297.

    CAS  PubMed  Google Scholar 

  • Brock, T. D., Brock, M. L., Bott, T. L., Edwards, M. R. 1971. Microbial life at 90°C: The sulfur bacteria of Boulder Spring. Journal of Bacteriology 107:303–314.

    CAS  PubMed  Google Scholar 

  • Brock, T. D., Brock, K. M., Belly, R. T., Weiss, R. L. 1972. Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archiv für Mikrobiologie 84:54–68.

    Google Scholar 

  • Brown, A. D. 1978. Microbial water stress. Bacteriological Reviews 40:803–846.

    Google Scholar 

  • Bryant, M. P., Wolin, E. A., Wolin, M. J., Wolfe, R. S. 1967. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Archiv für Mikrobiologie 59:20–31.

    CAS  PubMed  Google Scholar 

  • Bryant, M. P., Campbell, L. L., Reddy, C. A., Crabill, M. R. 1977. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Applied and Environmental Microbiology 33: 1162–1169.

    CAS  PubMed  Google Scholar 

  • Buchner, P. 1953. Endosymbiose der Tiere mit pflanzlichen Mikroorganismen. Basel: Birkhäuser Verlag.

    Google Scholar 

  • Buder, J. 1919. Zur Biologie des Bacteriopurpurins und der Purpurbakterien. Jahrbücher der Wissenschaftlichen Botanik 58:525–628.

    CAS  Google Scholar 

  • Butlin, K. R., Postgate, J. R. 1954. The microbiological formation of sulphur in Cyrenaican lakes, pp. 112–122. In: Cloudsley-Thompson, J. L. (ed.), Biology of deserts. London: Institute of Biology.

    Google Scholar 

  • Cagle, G. D. 1975. Fine structure and distribution of extracellular polymer surrounding selected aerobic bacteria. Canadian Journal of Microbiology 21:395–408.

    CAS  PubMed  Google Scholar 

  • Cappenberg, Th. E. 1974a. Interrelations between sulfate-reduc-ing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observations. Antonie van Leeuwenhoek Journal of Microbiology and Serology 40:285–295.

    CAS  Google Scholar 

  • Cappenberg, Th. E. 1974b. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. II. Inhibition experiments. Antonie van Leeuwenhoek Journal of Microbiology and Serology 40:297–306.

    CAS  Google Scholar 

  • Castenholz, R. W. 1969. Thermophilic blue-green algae and the thermal environment. Bacteriological Reviews 33:476–504.

    CAS  PubMed  Google Scholar 

  • Castenholz, R. W. 1976. The effect of sulfide on the blue-green algae of hot springs. I. New Zealand and Iceland. Journal of Phycology 12:54–68.

    CAS  Google Scholar 

  • Castenholz, R. W. 1977. The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park. Microbial Ecology 3:79–105.

    CAS  Google Scholar 

  • Castenholz, R. W. 1979. Evolution and ecology of thermophilic microorganisms, pp. 373–392. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  • Chen, M., Wolin, M. J. 1977. Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium. Applied and Environmental Microbiology 34:756–759.

    CAS  PubMed  Google Scholar 

  • Chet, I., Mitchell, R. 1976. Ecological aspects of microbial chemotactic behavior. Annual Review of Microbiology 30:221–239.

    CAS  PubMed  Google Scholar 

  • Chislett, M. E., Kushner, D. J. 1961. A strain of Bacillus circulans capable of growing under highly alkaline conditions. Journal of General Microbiology 24:187–190.

    CAS  PubMed  Google Scholar 

  • Clark, A. E., Walsby, A. E. 1978a. The occurrence of gas-vacuolate bacteria in lakes. Archives of Microbiology 118:223–228.

    Google Scholar 

  • Clark, A. E., Walsby, A. E. 1978b. The development and vertical distribution of populations of gas-vacuolate bacteria in a eutrophic, monomictic lake. Archives of Microbiology 118:229–233.

    Google Scholar 

  • Clark, F. E. 1967. Bacteria in soil, pp. 15–49. In: Burges, A., Raw, F. (eds.), Soil biology. London: Academic Press.

    Google Scholar 

  • Clarke, R. T. J. 1977. The gut and its micro-organisms, pp. 35–71. In: Clarke, R. T. J., Bauchop, T. (eds.), Microbial ecology of the gut. London, New York, San Francisco: Academic Press.

    Google Scholar 

  • Coates, M. E., Fuller, R. 1977. The gnotobiotic animal in the study of gut microbiology, pp. 311–346. In: Clarke, R. T. J., Bauchop, T. (eds.), Microbial ecology of the gut. London, New York, San Francisco: Academic Press.

    Google Scholar 

  • Cohen, Y., Padan, E., Shilo, M. 1975. Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Journal of Bacteriology 123:855–861.

    CAS  PubMed  Google Scholar 

  • Cohen, Y., Krumbein, W. E., Goldberg, M., Shilo, M. 1977. Solar lake (Sinai). I. Physical and chemical limnology. Limnology and Oceanography 22:597–608.

    CAS  Google Scholar 

  • Cohen-Bazire, G., Stainer, R. Y. 1958. Inhibition of carot-enoid synthesis in photosynthetic bacteria. Nature 181: 250–252.

    CAS  PubMed  Google Scholar 

  • Cohen-Bazire, G., Kunisawa, R., Pfennig, N. 1969. ComChapautive study of the structure of gas vacuoles. Journal of Bacteriology 100:1049–1061.

    CAS  PubMed  Google Scholar 

  • Cohn, F. 1881. Gutachten über die Abwässer verschiedener Zuckerfabriken im Winter 1881. Quoted from Kolkwitz, 1906.

    Google Scholar 

  • Colmer, A. R., Temple, K. L., Hinkle, M. E. 1950. An iron-oxidizing bacterium from the drainage of some bituminous coal mines. Journal of Bacteriology 59:317–328.

    CAS  PubMed  Google Scholar 

  • Costerton, J. W., Geesey, G. G., Cheng, K-J. 1978. How bacteria stick. Scientific American 238:86–95.

    CAS  PubMed  Google Scholar 

  • Costerton, J. W., Ingram, J. M., Cheng, K.-J. 1974. Structure and function of the cell envelope of Gram-negative bacteria. Bacteriological Reviews 38:87–110.

    CAS  PubMed  Google Scholar 

  • Cross, T. 1968. Thermophilic actinomycetes. Journal of Applied Bacteriology 31:36–53.

    CAS  PubMed  Google Scholar 

  • Cundell, A. M., Sleeter, T. D., Mitchell, R. 1977. Microbial populations associated with the surface of the brown alga Ascophyllum nodosum. Microbial Ecology 4:81–91.

    Google Scholar 

  • Dazzo, F. B., Yanke, W. E., Brill, W. J. 1978. Trifoliin: A Rhizobium recognition protein from white clover. Biochimica et Biophysica Acta 539:276–286.

    CAS  PubMed  Google Scholar 

  • De Bont, J. A. M., Mulder, E. G. 1974. Nitrogen fixation and co-oxidization of ethylene by a methane-utilizing bacterium. Journal of General Microbiology 83:113–121.

    Google Scholar 

  • Degens, E. T., Ross, D. A. 1974. The Black Sea: Geology, chemistry and biology. Memoir 20. Tulsa: American Association of Petroleum.

    Google Scholar 

  • Dehority, B. A. 1971. Carbon dioxide requirement of various species of rumen bacteria. Journal of Bacteriology 105:70–76.

    CAS  PubMed  Google Scholar 

  • Demolì, R., Liebmann, H. 1952. Über die Verteilung von Sphaerotilus natans im Fluss. Schweizerische Zeitschrift für Hydrologie 14:289–297.

    Google Scholar 

  • De Rosa, M., Gambacorta, A., Bu’lock, J. D. 1975. Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. Journal of General Microbiology 86:156–164.

    PubMed  Google Scholar 

  • Dondero, N. C. 1961. Sphaerotilus, its nature and economic significance. Advances in Applied Microbiology 3:77–107.

    CAS  PubMed  Google Scholar 

  • Dondero, N. C. 1975. The Sphaerotilus-Leptothrix group. Annual Review of Microbiology 29:407–465.

    CAS  PubMed  Google Scholar 

  • Drasar, B. S., Hill, M. J. 1974. Human intestinal flora. London, New York, San Francisco: Academic Press.

    Google Scholar 

  • Duckworth, R. B. 1975. Water relations in foods. Proceedings of an International Symposium in Glasgow, September 1974. London: Academic Press.

    Google Scholar 

  • Duda, V. I., Makaer’eva, D. E. 1977. Morphogenesis and function of gas caps on spores of anaerobic bacteria of the genus Clostridium. [In Russian, with English summary.] Mikrobiologiya 46:689–694.

    CAS  Google Scholar 

  • Dugan, P. R., MacMillan, C. B., Pfister, R. M. 1970. Aerobic heterotrophic bacteria indigenous to pH 2.8 acid mine water: Microscopic examination of acid streamers. Journal of Bacteriology 101:973–981.

    CAS  PubMed  Google Scholar 

  • Dundas, I. D., Larsen, H. 1962. The physiological role of the carotenoid pigments of Halobacterium salinarium. Archiv für Mikrobiologie 44:233–239.

    CAS  Google Scholar 

  • Dundas, I. E. D. 1977. Physiology of Halobacteriaceae. Advances in Microbial Physiology 15:85–120.

    CAS  PubMed  Google Scholar 

  • Ebisu, S., Kato, K., Kotani, S., Misaki, A. 1975. Structural differences in fructans elaborated by Streptococcus mutans and S. salivarius. Journal of Biochemistry 78:879–887.

    CAS  PubMed  Google Scholar 

  • Ellwood, D. C., Hedger, J. N., Latham, M. H., Lynch, J. M., Slater, J. H. 1980. Contemporary microbial ecology. London, New York, Toronto, Sydney, San Francisco: Academic Press.

    Google Scholar 

  • Ensign, J. C., Wolfe, R. S. 1964. Nutritional control of morphogenesis in Arthrobacter crystallopoietes. Journal of Bacteriology 87:924–932.

    CAS  PubMed  Google Scholar 

  • Eutick, M. L., O’Brien, R. W., Slaytor, M. 1978. Bacteria from the gut of Australian termites. Applied and Environmental Microbiology 35:823–828.

    CAS  PubMed  Google Scholar 

  • Fairbairn, D. 1970. Biochemical adaptation and loss of genetic capacity in helminth Chapausites. Biological Reviews 45:29–72.

    CAS  PubMed  Google Scholar 

  • Fenchel, T. M. 1969. The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem. Ophelia 6:1–182.

    Google Scholar 

  • Fenchel, T. M., Barker-J0rgensen, B. 1977. Detritus food chains in aquatic ecosystems: The role of bacteria. Advances in Microbial Ecology 1:1–58.

    CAS  Google Scholar 

  • Fenchel, T. M., Riedl, R. J. 1970. The sulfide system: A new biotic community underneath the oxidized layer of marine sand bottoms. Marine Biology 7:255–268.

    CAS  Google Scholar 

  • Fenchel, T. M., Straarup, B. J. 1971. Vertical distribution of photosynthetic pigments and the penetration of light in marine sediments. Oikos 22:172–182.

    CAS  Google Scholar 

  • Ferry, J. G., Wolfe, R. S. 1976. Anaerobic degradation of benzoate to methane by a microbial consortium. Archives of Microbiology 107:33–40.

    CAS  PubMed  Google Scholar 

  • Fletcher, M., Loeb, G. I. 1979. Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Applied and Environmental Microbiology 37:67–72.

    CAS  PubMed  Google Scholar 

  • Fliermans, C. B., Brock, T. D. 1972. Ecology of sulfur-oxidizing bacteria in hot acid soils. Journal of Bacteriology 111:343–350.

    CAS  PubMed  Google Scholar 

  • Focht, D. D., Verstraete, W. 1977. Biochemical ecology of nitrification and denitrification. Advances in Microbial Ecology 1:135–214.

    CAS  Google Scholar 

  • Foglesong, M. A., Walker, D. H., Jr., Puffer, J. S., Markovetz, A. J. 1975. Ultrastructural morphology of some prokaryotic microorganisms associated with the hindgut of cockroaches. Journal of Bacteriology 123:336–345.

    CAS  PubMed  Google Scholar 

  • Foster, J. W. 1949. Chemical activities of fungi. New York: Academic Press.

    Google Scholar 

  • Frankel, R. B., Blakemore, R. P., Wolfe, R. S. 1979. Magnetite in freshwater magnetotactic bacteria. Science 203: 1355–1356.

    CAS  PubMed  Google Scholar 

  • Fridovich, I. 1974. Superoxide dismutases. Advances in Enzymology 41:35–97.

    CAS  Google Scholar 

  • Fridovich, I. 1975. Oxygen: Boon and bane. American Scientist 63:54–59.

    CAS  PubMed  Google Scholar 

  • Fridovich, I. 1976. Oxygen radicals, hydrogen peroxide, and oxygen toxicity, pp. 239–277. In: Pryor, W. A. (ed.), Free radicals in biology, vol. 1. New York: Academic Press.

    Google Scholar 

  • Gerber, N. N. 1975. Prodigiosin-like pigments. CRC Critical Reviews in Microbiology 3:469–485.

    CAS  PubMed  Google Scholar 

  • Germaine, G. R., Chludzinski, A. M., Schachtele, C. F. 1974. Streptococcus mutans dextransucrase: Requirement for primer dextran. Journal of Bacteriology 120:287–294.

    Google Scholar 

  • Gillespy, T. G., Thorpe, R. H. 1968. Occurrence and significance of thermophiles in canned foods. Journal of Applied Bacteriology 31:59–65.

    CAS  PubMed  Google Scholar 

  • Golovacheva, R. S. 1976. Thermophilic nitrifying bacteria from hot springs. [In Russian, with English summary.] Mikro-biologiya 45:377–379.

    Google Scholar 

  • Golovacheva, R. S. 1979. Attachment of Sulfobacillus thermosulfidooxidans cells to the surface of sulfide minerals. [In Russian, with English summary.] Mikrobiologiya 48:528–533.

    CAS  Google Scholar 

  • Golovacheva, R. S., Karavaiko, G. I. 1978. Sulfobacillus, a new genus of thermophilic sporeforming bacteria. [In Russian, with English summary.] Mikrobiologiya 47:815–822.

    CAS  Google Scholar 

  • Gorini, L. 1960. Antagonism between substrate and repressor in controlling the formation of a biosynthetic enzyme. Proceedings of the National Academy of Sciences of the United States of America 46:682–690.

    CAS  PubMed  Google Scholar 

  • Gorlenko, W. M., Dubinina, G. A., Kuznezow, S. J. 1977. Ecology of aquatic microorganisms. [In Russian.] Moscow: Nauka.

    Google Scholar 

  • Goto, E., Kodama, T., Minoda, Y. 1977. Isolation and culture conditions of thermophilic hydrogen bacteria. Agricultural and Biological Chemistry 41:685–690.

    CAS  Google Scholar 

  • Gottlieb, S. F. 1971. Effect of hyperbaric oxygen on microorganisms. Annual Review of Microbiology 25:111–152.

    CAS  PubMed  Google Scholar 

  • Grant, W. D., Mills, A. A., Schofield, A. K. 1979. An alkalo-philic species of Ectothiorhodospira from a Kenyan soda lake. Journal of General Microbiology 110:137–142.

    Google Scholar 

  • Greenberg, E. P., Hastings, J. W., Ulitzur, S. 1979. Induction of luciferase synthesis in Beneckea harveyi by other marine bacteria. Archives of Microbiology 120:87–91.

    CAS  Google Scholar 

  • Griffin, D. M., Luard, E. J. 1979. Water stress and microbial ecology, pp. 49–63. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  • Gromet-Elhanan, Z. 1977. Electron transport and photophos-phorylation in photosynthetic bacteria, pp. 637–662. In: Trebst, A., Avron, M. (eds.), Encyclopaedia of plant physiology, vol. 5. Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Gunner, H. B., Alexander, M. 1964. Anaerobic growth of Fusarium oxysporum. Journal of Bacteriology 87: 1309–1316.

    CAS  PubMed  Google Scholar 

  • Hansen, M. H., Ingvorsen, K., Barker-J0rgensen, B. 1978. Mechanisms of hydrogen sulfide release from coastal marine sediments to the atmosphere. Limnology and Oceanography 23:68–76.

    CAS  Google Scholar 

  • Harder, W., Veldkamp, H. 1968. Physiology of an obligate psychrophilic marine Pseudomonas species. Journal of Applied Bacteriology 31:12–33.

    CAS  Google Scholar 

  • Harder, W., Veldkamp, H. 1971. Competition of marine psychrophilic bacteria at low temperatures. Antonie van Leeuwenhoek Journal of Microbiology and Serology 37:51–63.

    CAS  Google Scholar 

  • Hardie, J. M., Bowden, G. H. 1974. The normal microbial flora of the mouth, pp. 47–83. In: Skinner, F. A., Carr, J. G. (eds.), The normal microbial flora of man. London, New York: Academic Press.

    Google Scholar 

  • Harold, R., Stanier, R. Y. 1955. The genera Leucothrix and Thiothrix. Bacteriological Reviews 19:49–58.

    CAS  PubMed  Google Scholar 

  • Harris, R. H., Mitchell, R. 1973. The role of polymers in microbial aggregation. Annual Review of Microbiology 27:27–50.

    CAS  PubMed  Google Scholar 

  • Hassan, H. M., Fridovich, I. 1979. Superoxide dismutase and its role for survival in the presence of oxygen, pp. 179–193. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  • Hastings, J. W., Nealson, K. H. 1977. Bacterial bioluminescence. Annual Review of Microbiology 31:549–595.

    CAS  PubMed  Google Scholar 

  • Heinen, W. 1974. Proceedings of the first European workshop on microbial adaptation to extreme environments. Biosystems 6:57–80.

    Google Scholar 

  • Held, A. A. 1970. Nutrition and fermentative energy metabolism of the water mold Aqualinderella fermentans. Mycologia 62:339–358.

    CAS  Google Scholar 

  • Held, A. A., Emerson, R., Fuller, M. S., Gleason, F. H. 1969. Blastocladia and Aqualinderella: Fermentative water molds with high carbon dioxide optima. Science 165:706–708.

    CAS  PubMed  Google Scholar 

  • Henrici, A. T., Johnson, D. E. 1935. Studies of freshwater bacteria. II. Stalked bacteria, a new order of Schizomycetes. Journal of Bacteriology 30:61–86.

    CAS  PubMed  Google Scholar 

  • Herdman, M., Janvier, M., Waterbury, J. B., Rippka, R., Stanier, R. Y. 1979. Deoxyribonucleic acid base composition of cyanobacteria. Journal of General Microbiology 111:63–71.

    CAS  Google Scholar 

  • Heukelekian, H., Heller, A. 1940. Relation between food concentration and surface for bacterial growth. Journal of Bacteriology 40:547–558.

    CAS  PubMed  Google Scholar 

  • Heumann, W., Marx, R. 1964. Feinstruktur und Funktion der Fimbrien bei dem sternbildenden Bakterium Pseudomonas echinoides. Archiv für Mikrobiologie 47:325–337.

    Google Scholar 

  • Hirsch, P. 1974. Budding bacteria. Annual Review of Microbiology 28:392–444.

    Google Scholar 

  • Hirsch, P. 1979. Life under conditions of low nutrient concentrations, pp. 357–372. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  • Hirsch, P., Pankratz, St. H. 1970. Study of bacterial populations in natural environments by use of submerged electron microscope grids. Zeitschrift für Allgemeine Mikrobiologie 10:589–605.

    CAS  PubMed  Google Scholar 

  • Hochachka, P. W., Mustafa, T. 1972. Invertebrate facultative anaerobiosis. Science 178:1056–1060.

    CAS  PubMed  Google Scholar 

  • Hochachka, P. W., Somero, G. N. 1973. Strategies of biochemical adaptation. London: W. B. Saunders.

    Google Scholar 

  • Hoffmann, C. 1942. Beiträge zur Vegetation des Farbstreifen-Sandwattes. Kieler Meeresforschungen 4:85–108.

    Google Scholar 

  • Holdemann, L. V., Cato, E. P., Moore, W. E. C. 1977. Anaerobe laboratory manual, 4th ed. Blacksburg, Virginia: Virginia Polytechnic Institute and State University.

    Google Scholar 

  • Hungate, R. E. 1950. The anaerobic mesophilic cellulolytic bacteria. Bacteriological Reviews 14:1–49.

    CAS  PubMed  Google Scholar 

  • Hungate, R. E. 1962. Ecology of bacteria, pp. 95–119. In: Gunsalus, J. C., Stanier, R. Y. (eds.), The bacteria, vol. IV: The physiology of growth. New York: Academic Press.

    Google Scholar 

  • Hungate, R. E. 1966. The rumen and its microbes. New York, London: Academic Press.

    Google Scholar 

  • Hungate, R. E. 1967. Hydrogen as an intermediate in the rumen fermentation. Archiv für Mikrobiologie 59:158–164.

    CAS  PubMed  Google Scholar 

  • Hungate, R. E. 1975. The rumen microbial ecosystem. Annual Review of Ecology and Systematics 6:39–66.

    CAS  Google Scholar 

  • Hussain, H. M. 1973. Ökologische Untersuchungen über die Bedeutung thermophiler Mikroorganismen für die Selbsterhitzung von Heu. Zeitschrift für Allgemeine Mikrobiologie 13:323–334.

    CAS  PubMed  Google Scholar 

  • Iannotti, E. L., Kafkewit, D., Wolin, M. J., Bryant, M. P. 1973. Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: Changes caused by interspecies transfer of H2. Journal of Bacteriology 114:1231–1240.

    CAS  PubMed  Google Scholar 

  • Imhoff, J. F., Trüper, H. G. 1977. Ectothiorhodospira halochloris sp. nov., a new extremely halophilic bacterium containing bacteriochlorophyll b. Archives of Microbiology 114:115–121.

    CAS  Google Scholar 

  • Inniss, W. E. 1975. Interaction of temperature and psychrophilic microorganisms. Annual Review of Microbiology 29:445–465.

    CAS  PubMed  Google Scholar 

  • Inniss, W. E., Ingraham, J. L. 1978. Microbial life at low temperatures: Mechanisms and molecular aspects, pp. 73–104. In: Kushner, D. J. (ed.), Microbial life in extreme environments. London: Academic Press.

    Google Scholar 

  • Jannasch, H. W. 1955. Zur Ökologie der zymogenen planktischen Bakterienflora natürlicher Gewässer. Archiv für Mikrobiologie 23:146–180.

    CAS  PubMed  Google Scholar 

  • Jannasch, H. W. 1956. Vergleichende bakteriologische Untersuchung der Adsorptionswirkung des Nil-Trübschlammes. Berichte der Limnologischen Flussstation Freudenthal 7:21–27.

    Google Scholar 

  • Jannasch, H. W. 1957. Die bakterielle Rotfarbung der Salzseen des Wadi Natrun (Ägypten). Archiv für Hydrobiologie 53: 425–433.

    Google Scholar 

  • Jannasch, H. W. 1958. Studies of planktonic bacteria by means of a direct membrane filter method. Journal of General Microbiology 18:609–620.

    CAS  PubMed  Google Scholar 

  • Jannasch, H. W. 1960. Versuche über Denitrifikation und die Verfügbarkeit des Sauerstoffes in Wasser und Schlamm. Archiv für Hydrobiologie 56:355–369.

    Google Scholar 

  • Jannasch, H. W. 1967. Enrichment of aquatic bacteria in continuous culture. Archiv für Mikrobiologie 59:165–173.

    CAS  PubMed  Google Scholar 

  • Jannasch, H. W. 1977. Growth kinetics of aquatic bacteria. Society for Applied Bacteriology Symposium Series 6:55–68.

    Google Scholar 

  • Jannasch, H. W. 1978. Microorganisms and their aquatic habitat, pp. 17–24. In: Krumbein, W. E. (ed.), Environmental bio-geochemistry and geomicrobiology, vol. 1. Ann Arbor, Michigan: Ann Arbor Scientific Publications.

    Google Scholar 

  • Jannasch, H. W. 1979. Microbial ecology of aquatic low-nutrient habitats, pp. 243–260. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  • Jannasch, H. W., Mateles, R. I. 1974. Experimental bacterial ecology studies in continuous culture. Advances in Microbial Physiology 11:165–212.

    Google Scholar 

  • Jannasch, H. W., Pritchard, P. H. 1972. The role of inert particulate matter in the activity of aquatic microorganisms. In: Melchiorri-Santolinie, U., Hopton, J. W. (eds.), Detritus and its role in aquatic ecosystems. Memorie dell’Istituto Italiano di Idrobiologia Dott Marco de Marchi Pallanza Italy Suppl. 29:289–308.

    Google Scholar 

  • Jannasch, H. W., Triiper, H. G., Tuttlet, J. H. 1974. The microbial sulfur cycle in the Black Sea, pp. 419–425. In: Dergens, E. T., Ross, D. A. (eds.), The Black Sea: Its geology, chemistry and biology, Memoir 20. Tulsa: American Association of Petroleum.

    Google Scholar 

  • Jannasch, H. W., Wirsen, C. O. 1973. Deep-sea microorganisms: In situ response to nutrient enrichment. Science 180:641–643.

    CAS  PubMed  Google Scholar 

  • Jannasch, H. W., Wirsen, C. O. 1977. Retrieval of concentrated and undecompressed microbial populations from the deep sea. Applied and Environmental Microbiology 33:642–646.

    CAS  PubMed  Google Scholar 

  • Jannasch, H. W., Wirsen, C.O. 1979. Chemosynthetic primary production at East Pacific sea floor spreading centers. Bioscience 29:592–598.

    CAS  Google Scholar 

  • Jannasch, H. W., Wirsen, C. O., Taylor, C. D. 1976. Undecom-pressed microbial populations from the deep sea. Applied and Environmental Microbiology 32:360–367.

    CAS  PubMed  Google Scholar 

  • Jones, O. T. G. 1977. Electron transport and ATP synthesis in the photosynthetic bacteria, pp. 151–183. In: Haddock, B. A., Hamilton, W., A. (eds.), Microbial energetics. Cambridge, London, New York: Cambridge University Press.

    Google Scholar 

  • Kato, G., Maruyama, Y., Nakamura, M. 1979. Role of lectins and lipopolysaccharides in the recognition process of specific legume-Rhizobium symbiosis. Agricultural and Biological Chemistry 43:1085–1092.

    CAS  Google Scholar 

  • Kelly, M. T., Brock, T. D. 1969. Physiological ecology of Leucothrix mucor. Journal of General Microbiology 59:153–162.

    CAS  PubMed  Google Scholar 

  • Kluyver, A. J., Donker, H. J. L. 1925. The unity in the chemistry of the fermentative sugar dissimilation processes of microbes. Proceedings of the Royal Academy of Amsterdam 28:297–313.

    CAS  Google Scholar 

  • Kluyver, A. J., Donker, H. J. L. 1926. Die Einheit in der Biochemie. Chemie der Zelle und Gewebe 13:134–190.

    CAS  Google Scholar 

  • Koch, A. L. 1979. Microbial growth in low concentrations of nutrients, pp. 261–279. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  • Kolkwitz, R. 1904–1906. Mykologie und Reinigung der städtischen und der Zuckerfabriksabwässer, p. 391. In: Lafar, F. (ed.), Handbuch der technischen Mykologie, vol. III. Jena: Gustav Fischer Verlag.

    Google Scholar 

  • Korhonen, T. K., Nurmiaho, E.-L., Tuovinen, O. H. 1978. Fimbriation in Thiobacillus A2. FEMS Microbiology Letters 3:195–198.

    Google Scholar 

  • Koshland, D. E., Jr. 1974. The chemotactic response in bacteria, pp. 133–160. In: Jaenicke, L. (ed.), Biochemistry of sensory functions. Berlin: Springer-Verlag.

    Google Scholar 

  • Koshland, D. E., Jr. 1976. Bacterial Chemotaxis as a simple model for a sensory system. Trends in Biochemical Sciences 1:1–3.

    CAS  Google Scholar 

  • Krinsky, N. I. 1979. Carotenoid pigments: Multiple mechanisms for coping with the stress of photosensitized oxidations, pp. 163–177. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  • Krul, J. M., Hirsch, P., Staley, J. T. 1970. Toxothrix trichogenes (Chol.) Beger et Bringmann: The organism and its biology. Antonie van Leeuwenhoek Journal of Microbiology and Serology 36:409–420.

    CAS  Google Scholar 

  • Kuenen, J. G., Boonstra, H. G., Schröder, J., Veldkamp, H. 1977. Competition for inorganic substrates among chemo-organotrophic and chemolithotrophic bacteria. Microbial Ecology 3:119–130.

    CAS  Google Scholar 

  • Kushner, D. J. 1971. Life in extreme environments, pp. 485–491. In: Buvet, R., Ponnamperuma, C. (eds.), Chemical evolution and origin of life. Amsterdam: North-Holland.

    Google Scholar 

  • Kushner, D. J. 1978. Life in high salt and solute concentrations: Halophilic bacteria, pp. 317–368. In: Kushner, D. J. (ed.), Microbial life in extreme environments. London, New York, San Francisco: Academic Press.

    Google Scholar 

  • Kuznezow, S. I. 1959. Die Rolle der Mikroorganismen im Stoffkreislauf der Seen. Berlin: VEB Deutscher Verlag der Wissenschaften.

    Google Scholar 

  • Kuznezow, S. I. 1977. Trends in the development of ecological microbiology, pp. 1–48. In: Droop, M. R., Jannasch, H. W. (eds.), Advances in aquatic microbiology. London, New York, San Francisco: Academic Press.

    Google Scholar 

  • Landau, J. V., Pope, D. H. 1980. Recent advances in the area of barotolerant protein synthesis in bacteria and implications concerning barotolerant and barophilic growth. Advances in Aquatic Microbiology 2:49–76.

    CAS  Google Scholar 

  • Langworthy, T. A. 1978. Microbial life in extreme pH values, pp. 279–315. In: Kushner, D. J. (ed.), Microbial life in extreme environments. London, New York, San Francisco: Academic Press.

    Google Scholar 

  • Lanyi, J. K. 1979. Physical-chemical aspects of salt-dependence in Halobacteria, pp. 93–107. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  • Lapage, S. P., Shelton, J. E., Mitchell, T. G., MacKenzie, A. R. 1970. Culture collections and the preservation of bacteria, pp. 135–228. In: Norris, J. R., Ribbons, D. W. (eds.), Methods in microbiology, vol. 3A. London, New York: Academic Press.

    Google Scholar 

  • la Rivière, J. W. M. 1963. Cultivation and properties of Thiovulum majus Hinze, pp. 61–72. In: Oppenheimer, C. H. (ed.), Marine microbiology. Springfield, Illinois: Charles C. Thomas.

    Google Scholar 

  • la Rivière, J. W. M. 1965. Enrichment of colorless sulfur bacteria. Zentralblatt für Bakteriologie, Chapausitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl. 1:17–27.

    Google Scholar 

  • Larsen, H. 1967. Biochemical aspects of extreme halophilism. Advances in Microbial Physiology 1:97–132.

    CAS  Google Scholar 

  • Larsen, H. 1971. Halophilism, microbial. In: McGraw-Hill encyclopedia of science and technology, 3rd ed. New York: McGraw-Hill.

    Google Scholar 

  • Larsen, H. 1973. The halobacteria’s confusion to biology. The fourth A. J. Kluyver memorial lecture delivered before the Netherlands Society for Microbiology, April 1972 at the Delft University of Technology. Antonie van Leeuwenhoek Journal of Microbiology and Serology 39:383–396.

    CAS  Google Scholar 

  • Latham, M. J., Wolin, M. J. 1977. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Applied and Environmental Microbiology 34:297–301.

    CAS  PubMed  Google Scholar 

  • Latham, M. J., Brooker, B. E., Pettipher, G. L., Harris, P. J. 1978. Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial ryegrass (Lolium perenne). Applied and Environmental Microbiology 35:156–165.

    Google Scholar 

  • Leathen, W. W., Braley, S. A., Sr., McIntyre, L. D. 1953. The role of bacteria in the formation of acid from certain sulfuritic constituents associated with bituminous coal. H. Ferrous iron oxidizing bacteria. Applied Microbiology 1:65–68.

    CAS  PubMed  Google Scholar 

  • Lee, A., Phillips, M. 1978. Isolation and cultivation of spirochetes and other spiral-shaped bacteria associated with the cecal mucosa of rats and mice. Applied and Environmental Microbiology 35:610–613.

    CAS  PubMed  Google Scholar 

  • Leifson, E. 1962. The bacterial flora of distilled and stored water. I. General observations, techniques and ecology. International Bulletin of Bacteriological Nomenclature and Taxonomy 12:133–153.

    Google Scholar 

  • Le Roux, N. W., Wakerley, D. S., Hunt, S. D. 1977. Thermophilic Thiobacillus-type bacteria from Icelandic thermal areas. Journal of General Microbiology 100:197–201.

    Google Scholar 

  • Liener, I. E. 1976. Phytohemagglutinins (phytolectins). Annual Review of Plant Physiology 27:291–319.

    CAS  Google Scholar 

  • Loesche, W. J. 1969. Oxygen sensitivity of various anaerobic bacteria. Applied Microbiology 18:723–727.

    CAS  PubMed  Google Scholar 

  • McBee, R. H. 1977. Fermentation in the hindgut, pp. 185–222. In: Clarke, R. T. J., Bauchop, T. (eds.), Microbial ecology of the gut. London, New York, San Francisco: Academic Press.

    Google Scholar 

  • McLeod, R. A. 1968. On the role of inorganic ions in the physiology of marine bacteria. Advances in the Microbiology of the Sea 1:95.

    Google Scholar 

  • Madigan, M. T., Brock, T. D. 1977. Adaptation by hot springs phototrophs to reduced light intensities. Archives of Microbiology 113:111–120.

    CAS  PubMed  Google Scholar 

  • Mandel, M., Leadbetter, E. R., Pfennig, N., Trüper, H. G. 1971. Deoxyribonucleic acid base compositions of photo-trophic bacteria. International Journal of Systematic Bacteriology 21:222–230.

    Google Scholar 

  • Marchlewitz, B., Schwartz, W. 1961. Untersuchungen über die Mikroben-Assoziation saurer Grubenwässer. Zeitschrift für Allgemeine Mikrobiologie 1:100–114.

    CAS  Google Scholar 

  • Marples, M. J. 1965. The ecology of the human skin. Springfield, Illinois: Charles C. Thomas.

    Google Scholar 

  • Marples, M. J. 1974. The normal microbial flora of the skin, pp. 7–12. In: Skinner, F. A., Carr, J. G. (eds.), The normal microbial flora of man. London, New York: Academic Press.

    Google Scholar 

  • Marples, M. J. 1976. Life on the human skin. Scientific American 220:108–115.

    Google Scholar 

  • Marquis, R. E. 1976. High-pressure microbial physiology, pp. 159–241. In: Rose, A. H., Tempest, D. W. (eds.), Advances in microbial physiology, vol. 14. London: Academic Press.

    Google Scholar 

  • Marquis, R. E., Matsumara, P. 1978. Microbial life under pressure, pp. 105–158. In: Kushner, D. J. (ed.), Microbial life in extreme environments. London: Academic Press.

    Google Scholar 

  • Marshall, K. C. 1976. Interfaces in microbial ecology. Cambridge, London: Harvard University Press.

    Google Scholar 

  • Marshall, K. C. 1979. Growth at interfaces, pp. 281–290. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  • Martin, H. H. 1969. Die Struktur der Zellwand bei Gramnegativen Bakterien. Arzneimittel-Forschung 19:266–272.

    CAS  PubMed  Google Scholar 

  • Martin, S. M. 1964. Conservation of microorganisms. Annual Review of Microbiology 18:1–16.

    CAS  PubMed  Google Scholar 

  • Marx, J. L. 1977. Looking at lectins: Do they function in recognition processes? Science 196:1429–1430.

    CAS  PubMed  Google Scholar 

  • Marx, R., Heumann, W. 1962. Uber Geisseifeinstrukturen und Fimbrien bei zwei Pseudomonas -Stämmen. Archiv für Mikrobiologie 43:245–254.

    CAS  PubMed  Google Scholar 

  • Matin, A. 1979. Microbial regulatory mechanisms at low nutrient concentrations as studies in chemostat, pp. 323–339. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  • Matin, A., Veldkamp, H. 1978. Physiological basis of the selective advantage of a Spirillum sp. in a carbon-limited environment. Journal of General Microbiology 105:187–197.

    CAS  PubMed  Google Scholar 

  • Matin, A., Veldhuis, C., Stegemann, V., Veenhuis, M. 1979. Selective advantage of a Spirillum sp. in a carbon-limited environment. Accumulation of poly-β-hydroxybutyric acid and its role in starvation. Journal of General Microbiology 112:349–355.

    CAS  PubMed  Google Scholar 

  • Matsumara, P., Marquis, R. E. 1977. Energetics of streptococcal growth inhibition by hydrostatic pressure. Applied and Environmental Microbiology 33:885–892.

    Google Scholar 

  • Matthews, M. M., Sistrom, W. R. 1959. Function of carotenoid pigments in non-photo synthetic bacteria. Nature 184:1892–1893.

    Google Scholar 

  • Mayer, F. 1971. Elektronenmikroskopische Untersuchung der Fimbrienkontraktion bei dem sternbildenden Bodenbakte-rium Pseudomonas echinoides. Archiv für Mikrobiologie 76:166–173.

    CAS  PubMed  Google Scholar 

  • Mayer, F., Schmitt, R. 1971. Elektronenmikroskopische, diffraktometrische und disc-elektrophoretische Untersuchungen an Fimbrien des sternbildenden Bodenbakteriums Pseudomonas echinoides und einer nicht-sternbildenden Mutante. Archiv für Mikrobiologie 79:311–326.

    CAS  PubMed  Google Scholar 

  • Mazanec, K., Kocur, M., Martinec, T. 1965. Electron microscopy of ultrathin sections of Sporosarcina ureae. Journal of Bacteriology 90:808–816.

    CAS  PubMed  Google Scholar 

  • Meers, J. L. 1973. Growth of bacteria in mixed cultures. CRC Critical Reviews in Microbiology 2:139–184.

    CAS  Google Scholar 

  • Menzel, D. W., Ryther, J. H. 1970. Distribution and cycling of organic matter in the oceans. In: Hood, D. W. (ed.), Organic matter in natural waters. Alaska: Institute of Marine Sciences.

    Google Scholar 

  • Millar, W. N. 1973. Heterotrophic bacterial population in acid coal mine water: Flavobacterium acidurans, sp. n. International Journal of Systematic Bacteriology 23:142–150.

    Google Scholar 

  • Miller, R. E., Simons, L. A. 1962. Survival of bacteria after twenty-one years in the dried state. Journal of Bacteriology 84:1111–1114.

    CAS  PubMed  Google Scholar 

  • Miller, W. D. 1890. The micro-organisms of the human mouth, Philadelphia 1890 [unaltered reprint from original work]. Basel, Munich, Paris, London, New York, Sydney: Karger.

    Google Scholar 

  • Minato, H., Suto, T. 1978. Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached therefrom. Journal of General and Applied Microbiology 24:1–16.

    Google Scholar 

  • Mitskevich, I. N. 1979. The total number of biomass of microorganisms in deep waters of the Black Sea. [In Russian, with English summary.] Mikrobiologiya 48:552–557.

    CAS  Google Scholar 

  • Moore, W. E. C., Holdeman, L. V. 1974. Human fecal flora: The normal flora of 20 Japanese-Hawaiians. Applied Microbiology 27:961–979.

    CAS  PubMed  Google Scholar 

  • Morita, R. Y. 1975. Psychrophilic bacteria. Bacteriological Reviews 39:144–167.

    CAS  PubMed  Google Scholar 

  • Morita, R. Y. 1976. Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic and barophilic bacteria, pp. 279–298. In: Gray, T. G. R., Postgate, J. R. (eds.), The survival of vegetative microbes. Cambridge: Cambridge University Press.

    Google Scholar 

  • Morris, J. G. 1975. The physiology of obligate anaerobiosis. Advances in Microbial Physiology 12:169–246.

    CAS  Google Scholar 

  • Morris, J. G. 1976. Fifth Stenhouse-Williams Memorial Lecture—oxygen and the obligate anaerobe. Journal of Applied Bacteriology 40:229–244.

    CAS  PubMed  Google Scholar 

  • Morris, J. G. 1978. The biochemistry of anaerobiosis. Biochemical Society Transactions 6:353–356.

    CAS  PubMed  Google Scholar 

  • Morris, J. G. 1979. Nature of oxygen toxicity in anaerobic microorganisms, pp. 149–162. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  • Morris, J. G., O’Brien, R. W. 1971. Oxygen and Clostridia: A review, pp. 1–37. In: Barker, A. N., Gould, G. W., Wolf, J. (eds.), Spore research 1971. London: Academic Press.

    Google Scholar 

  • Mossel, D. A. A. 1975. Water and micro-organisms in foods—a synthesis, pp. 347–361. In: Duckworth, R. B. (ed.), Water relations of foods. London: Academic Press.

    Google Scholar 

  • Mossel, D. A. A., Ingram, M. 1955. The physiology of the microbial spoilage of foods. Journal of Applied Bacteriology 18:232–268.

    CAS  Google Scholar 

  • Müller, M. 1975. Biochemistry of protozoan microbodies: Peroxisomes, glycerophosphate oxidase bodies, hydrogenosomes. Annual Review of Microbiology 29:467–483.

    PubMed  Google Scholar 

  • Müller-Neuglück, M., Engel, H. 1961. Photoinaktivierung von Nitrobacter winogradskyi Buch. Archiv für Mikrobiologie 39:130–138.

    Google Scholar 

  • Mulder, E. G., Brotonegoro, S. 1974. Free-living heterotrophic nitrogen-fixing bacteria, pp. 37–85. In: Quispel, A. (ed.), The biology of nitrogen fixation. Amsterdam: North-Holland.

    Google Scholar 

  • Nasim, A., James, A. P. 1978. Life under conditions of high irradiation, pp. 409–439. In: Kushner, D. J. (ed.), Microbial life in extreme environments. London, New York, San Francisco: Academic Press.

    Google Scholar 

  • Neijssel, O. M., Hueting, S., Crabbendam, K. J., Tempest, D. W. 1975. Dual pathways of glycerol assimilation in Klebsiella aerogene s NCIB 418. Their regulation and possible functional significance. Archives of Microbiology 104:83–87.

    CAS  PubMed  Google Scholar 

  • Noble, W. C., Pitcher, D. G. 1979. Microbial ecology of the human skin. Advances in Microbial Ecology 2:245–289.

    Google Scholar 

  • Noble, W. C., Somerville, D. A. 1974. Microbiology of human skin. London, Philadelphia, Toronto: W. B. Saunders.

    Google Scholar 

  • Nottingham, P. M., Hungate, R. E. 1969. Methanogenic fermentation of benzoate. Journal of Bacteriology 98:1170–1172.

    CAS  PubMed  Google Scholar 

  • Nultsch, W. 1975. Phototaxis and photokinesis, pp. 29–90. In: Carlile, M. J. (ed.), Primitive sensory and communication systems: The taxes and tropisms of microorganisms and cells. London: Academic Press.

    Google Scholar 

  • O’Brien, R. W., Morris, J. G. 1971. Oxygen and the growth and metabolism of Clostridium acetobutylicum. Journal of General Microbiology 68:307–318.

    PubMed  Google Scholar 

  • Odum, E. P. 1977. Ecology: The link between the natural and the social sciences, 2nd ed. London, New York, Sydney, Toronto: Holt, Rinehart & Winston.

    Google Scholar 

  • Ohta, K., Kiyomiya, A., Koyama, N., Nosoh, Y. 1975. The basis of the alkalophilic property of a species of bacillus. Journal of General Microbiology 86:259–266.

    Google Scholar 

  • Okon, Y., Albrecht, S. L., Bums, R. H. 1976. Factors affecting growth and nitrogen fixation of Spirillum lipoferum. Journal of Bacteriology 127:1248–1254.

    CAS  PubMed  Google Scholar 

  • Oren, A., Padan, E. 1978. Induction of anaerobic, photoauto-trophic growth in the cyanobacterium Oscillatoria limnetica. Journal of Bacteriology 133:558–563.

    CAS  PubMed  Google Scholar 

  • Oren, A., Shilo, M. 1979. Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: Sulfur respiration and lactate fermentation. Archives of Microbiology 122:77–84.

    CAS  Google Scholar 

  • Orpin, C. G. 1972. The culture in vitro of the rumen bacterium Quin’s oval. Journal of General Microbiology 73:523–530.

    CAS  PubMed  Google Scholar 

  • Orpin, C. G. 1973. The intracellular polysaccharide of the rumen bacterium Eadie’s oval. Archiv für Mikrobiologie 90:247–254.

    CAS  PubMed  Google Scholar 

  • Ottow, J. C. G. 1975. Ecology, physiology, and genetics of fimbriae and pili. Annual Review of Microbiology 29:79–108.

    CAS  PubMed  Google Scholar 

  • Overbeck, J. 1972. Zur Struktur und Funktion des aquatischen Ökosystems. Berichte der Deutschen Botanischen Gesellschaft 85:553–579.

    CAS  Google Scholar 

  • Padan, E. 1979a. Facultative anoxygenic photosynthesis in cyanobacteria. Annual Review of Plant Physiology 30:27–40.

    CAS  Google Scholar 

  • Padan, E. 1979b. Impact of facultatively anaerobic photoauto-trophic metabolism on ecology of cyanobacteria (blue-green algae). Advances in Microbial Ecology 3:1–48.

    CAS  Google Scholar 

  • Pask-Hughes, R. A., Williams, R. A. D. 1975. Extremely thermophilic Gram-negative bacteria from hot tap water. Journal of General Microbiology 88:321–328.

    CAS  PubMed  Google Scholar 

  • Pask-Hughes, R. A., Williams, R. A. D. 1977. Yellow-pigmented strains of Thermus spp. from Icelandic hot springs. Journal of General Microbiology 102:375–383.

    CAS  Google Scholar 

  • Patterson, H., Irvin, R., Costerton, J. W., Cheng, K.-J. 1975. Ultrastructure and adhesion properties of Ruminococcus albus. Journal of Bacteriology 122:278–287.

    CAS  PubMed  Google Scholar 

  • Pfennig, N. 1961. Eine vollsynthetische Nährlösung zur selektiven Anreicherung einiger Schwefelpurpurbakterien. Naturwissenschaften 48:136.

    Google Scholar 

  • Pfennig, N. 1965. Anreicherungskulturen für rote und grüne Schwefelbakterien. Zentralblatt für Bakteriologie, Chapausitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl. 1: 179–189, 503–504.

    Google Scholar 

  • Pfennig, N. 1967. Photosynthetic bacteria. Annual Review of Microbiology 21:286–324.

    Google Scholar 

  • Pfennig, N. 1979. General physiology and ecology of photosynthetic bacteria, pp. 3–18. In: Sistrom, W. R., Clayton, R. (eds.), Photosynthetic bacteria. New York: Plenum.

    Google Scholar 

  • Pfennig, N., Biebl, H. 1976. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Archives of Microbiology 110:3–12.

    CAS  PubMed  Google Scholar 

  • Pfennig, N., Cohen-Bazire, G. 1967. Some properties of the green bacterium Pelodictyon clathratiforme. Archiv für Mikrobiologie 59:226–236.

    CAS  PubMed  Google Scholar 

  • Pierson, B. K., Castenholz, R. W. 1974. A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Archives of Microbiology 100:5–24.

    CAS  PubMed  Google Scholar 

  • Poindexter, J. S. 1964. Biological properties and classification of the Caulobacter group. Bacteriological Reviews 28:231–295.

    CAS  PubMed  Google Scholar 

  • Poindexter, J. S. 1979. Morphological adaptation to low nutrient concentrations, pp. 341–356. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  • Pope, D. H., Smith, W. P., Orgrinc, M. A., Landau, J. V. 1976. Protein synthesis at 680 atm.: Is it related to environmental origin, physiological type, or taxonomic group? Applied and Environmental Microbiology 31:1001–1002.

    CAS  PubMed  Google Scholar 

  • Prebble, J., Huda, S. 1977. The photosensitivity of the malate oxidase system of a pigmented strain and a carotenoidless mutant of Sarcina lutea (Micrococcus luteus). Archives of Microbiology 113:39–42.

    CAS  PubMed  Google Scholar 

  • Pringsheim, E. G. 1957. Observations on Leucothrix mucor and Leucothrix cohaercus nov. sp. with a survey of colorless filamentous organisms. Bacteriological Reviews 21:69–81.

    CAS  PubMed  Google Scholar 

  • Prins, R. A. 1977. Biochemical activities of gut microorganisms, pp. 73–183. In: Clarke, R. T. J., Bauchop, T. (eds.), Microbial ecology of the gut. London, New York, San Francisco: Academic Press.

    Google Scholar 

  • Raj, H. D. 1977. Leucothrix. CRC Critical Reviews in Microbiology 5:271–301.

    CAS  PubMed  Google Scholar 

  • Ramaley, R. F., Hixson, J. 1970. Isolation of a nonpigmented, thermophilic bacterium similar to Thermus aquaticus. Journal of Bacteriology 103:527–528.

    CAS  PubMed  Google Scholar 

  • Reddy, C. A., Bryant, M. P., Wolin, M. J. 1972a. Characteristics of S organism isolated from Methanobacillus omelianskii. Journal of Bacteriology 109:539–545.

    CAS  PubMed  Google Scholar 

  • Reddy, C. A., Bryant, M. P., Wolin, M. J. 1972b. Ferredoxin-dependent conversion of acetaldehyde to acetate and H2 in extracts of S organism. Journal of Bacteriology 110:133–138.

    CAS  PubMed  Google Scholar 

  • Reichelt, J. L., Baumann, P. 1973. Taxonomy of the marine, luminous bacteria. Archiv für Mikrobiologie 94:283–330.

    Google Scholar 

  • Richards, F. A., Vaccaro, R. F. 1958. The Cariaco Trench, an aerobic basin in the Caribbean Sea. Deep-Sea Research 3:214–228.

    Google Scholar 

  • Richards, F. R. 1975. The Cariaco basin (Trench). Oceanography and Marine Biology Annual Review 13:11–67.

    CAS  Google Scholar 

  • Rittenberg, S. C. 1979. Bdellovibrio: A model of biological interactions in nutrient impoverished environments? pp. 305–322. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  • Robinson, J. B., Salonius, P. O., Chase, F. E. 1965. A note on the differential response of Arthrobacter spp. and Pseudomonas spp. to drying in soil. Canadian Journal of Microbiology 11:746–748.

    CAS  PubMed  Google Scholar 

  • Rose, A. H. 1968. Physiology of microorganisms at low temperatures. Journal of Applied Bacteriology 31:1–11.

    CAS  PubMed  Google Scholar 

  • Rosebury, T. 1972. Der Reinlichkeitstick. Hamburg: Hoffmann & Campe Verlag.

    Google Scholar 

  • Rudd, J. W. M., Taylor, C. D. 1980. Methane cycling in aquatic environments. Advances in Aquatic Microbiology 2:77 – 150.

    CAS  Google Scholar 

  • Rupela, O. P., Tauro, P. 1973. Isolation and characterization of Thiobacillus from alkali soils. Soil Biology and Biochemistry 5:891–897.

    CAS  Google Scholar 

  • Russell, C., Melville, T. H. 1978. A review: Bacteria in the human mouth. Journal of Applied Bacteriology 44:163–181.

    CAS  PubMed  Google Scholar 

  • Rutter, P. R., Abbott, A. 1978. A study of the interaction between oral streptococci and hard surfaces. Journal of General Microbiology 105:219–226.

    CAS  PubMed  Google Scholar 

  • Sadoff, H. L. 1973. ComChapautive aspects of morphogenesis in three prokaryotic genera. Annual Review of Microbiology 27:133–153.

    CAS  PubMed  Google Scholar 

  • Sadoff, H. L. 1975. Encystment and germination in Azotobacter vinelandii. Bacteriological Reviews 39:516–539.

    CAS  PubMed  Google Scholar 

  • Savage, D. C. 1977a. Microbial ecology of the gastrointestinal tract. Annual Review of Microbiology 31:107–133.

    CAS  PubMed  Google Scholar 

  • Savage, D. C. 1977b. Interactions between the host and its microbes, pp. 277–310. In: Clarke, R. T. J., Bauchop, T. (eds.), Microbial ecology of the gut. London, New York, San Francisco: Academic Press.

    Google Scholar 

  • Scarr, M. P. 1968. Thermophiles in sugar. Journal of Applied Bacteriology 31:66–74.

    CAS  PubMed  Google Scholar 

  • Schenk, A., Aragno, M. 1979. Bacillus schlegelii, a new species of thermophilic, facultatively chemolithoautotrophic bacterium oxidizing molecular hydrogen. Journal of General Microbiology 115:333–341.

    Google Scholar 

  • Schlegel, H. G. (ed.). 1965. Anreicherungskultur und Mutantenauslese. Zentralblatt für Bakteriologie, Chapausitenkunde, Infektionskrankheiten und Hygiene, Abt. 1 Orig., Suppl. 1.

    Google Scholar 

  • Schlegel, H. G., Jannasch, H. W. 1967. Enrichment cultures. Annual Review of Microbiology 21:49–70.

    CAS  PubMed  Google Scholar 

  • Schlegel, H. G., Pfennig, N. 1961. Die Anreicherungskultur einiger Schwefelpurpurbakterien. Archiv für Mikrobiologie 38:1–39.

    CAS  PubMed  Google Scholar 

  • Schmidt, J. M. 1971. Prosthecate bacteria. Annual Review of Microbiology 25:93–110.

    CAS  PubMed  Google Scholar 

  • Schmidt-Lorenz, W. 1967. Behaviour of microorganisms at low temperatures. Bulletin de l’Institut International du Froid 1–59.

    Google Scholar 

  • Schnaitman, C., Lundgren, D. G. 1965. Organic compounds in the spent medium of Ferrobacillus ferrooxidans. Canadian Journal of Microbiology 11:23–27.

    CAS  PubMed  Google Scholar 

  • Schön, G. H., Engel, H. 1962. Der Einfluß des Lichtes auf Nitrosomonas europaea Win. Archiv für Mikrobiologie 42:415–428.

    Google Scholar 

  • Schroff, G., Schöttler, U. 1977. Anaerobic reduction of fu-marate in the body wall musculature of Arenicola marina (Polychaeta). Journal of ComChapautive Physiology 116: 325–336.

    CAS  Google Scholar 

  • Schultz, J. E., Breznak, J. A. 1978. Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Applied and Environmental Microbiology 35:930–936.

    CAS  PubMed  Google Scholar 

  • Schultz, J. E., Breznak, J. A. 1979. Cross-feeding of lactate between Streptococcus lactis and Bacteroides sp. isolated from termite hindguts. Applied and Environmental Microbiology 37:1206–1210.

    CAS  PubMed  Google Scholar 

  • Schwarz, J. A., Yayanos, A., Colwell, R. R. 1976. Metabolic activities of the intestinal microflora of a deep sea invertebrate. Applied and Environmental Microbiology 31:46–48.

    CAS  PubMed  Google Scholar 

  • Schweinfurth, G., Lewin, L. 1898. Beiträge zur Topographie und Geochemie des ägyptischen Natron-thals. Zeitschrift für die Gesamte Erdkunde 33:1–25.

    CAS  Google Scholar 

  • Shilo, M. (ed.). 1979. Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  • Shokes, R. F., Trabant, P. K., Presley, B. J., Reid, D. F. 1977. Anoxic, hypersaline basin in the northern Gulf of Mexico. Science 196:1443–1446.

    CAS  PubMed  Google Scholar 

  • Sineriz, F., Pirt, S. J. 1977. Methane production from glucose by a mixed culture of bacteria in the chemostat: The role of Citrobacter. Journal of General Microbiology 101:57–64.

    CAS  Google Scholar 

  • Singer, C. E., Ames, B.N. 1970. Sunlight ultraviolet and bacterial DNA base ratios. Science 170:822–826.

    CAS  PubMed  Google Scholar 

  • Skopintsev, B. A., Karpov, A. V., Vershinina, O. A. 1959. Study of the dynamics of some sulfur compounds in the Black Sea under experimental conditions. Soviet Oceanography Series [English translation] 4:55–72.

    Google Scholar 

  • Smith, D. W. 1978. Water relations of microorganisms in nature, pp. 369–380. In: Kushner, D. J. (ed.), Microbial life in extreme environments. London, New York, San Francisco: Academic Press.

    Google Scholar 

  • Sneath, P. H. A. 1962. Longevity of micro-organisms. Nature 195:643–646.

    CAS  PubMed  Google Scholar 

  • Sorokin, Y. I. 1964. On the primary production and bacterial activities in the Black Sea. Journal du Conseil, Conseil International pour l’Exploration de la Mer 29:41–60.

    CAS  Google Scholar 

  • Sorokin, Y. I. 1970. Interrelations between sulphur and carbon turnover in meromictic lakes. Archiv für Hydrobiologie 66:391–446.

    Google Scholar 

  • Souza, K. A., Deal, P. H. 1977. Characterization of a novel extremely alkaline bacterium. Journal of General Microbiology 101:103–109.

    Google Scholar 

  • Souza, K. A., Deal, P. H., Mack, H. M., Turnbill, C. E. 1974. Growth and reproduction of microorganisms under extremely alkaline conditions. Applied Microbiology 28:1066–1068.

    CAS  PubMed  Google Scholar 

  • Stanier, R. Y. 1942. The cytophaga group: A contribution to the biology of mycobacteria. Bacteriological Reviews 6:143–196.

    CAS  PubMed  Google Scholar 

  • Stapp, C., Bortels, H. 1931. Der Pflanzenkrebs und sein Erreger Pseudomonas tumefaciens. II. Mitteilung: Über den Lebenskreislauf von Pseudomonas tumefaciens. Zeitschrift für Chapausitenkunde 4:101–125.

    Google Scholar 

  • Stapp, C., Knösel, D. 1954. Zur Genetik sternbildender Bakterien. Zentralblatt für Bakteriologie, Chapausitenkunde, Infektionskrankheiten und Hygiene, Abt. 2 108:244–259.

    Google Scholar 

  • Stockhausen, F. 1907. Ökologie, “Anhäufungen” nach Beijer-inck. Berlin: Institut für Gärungsgewerbe.

    Google Scholar 

  • Strange, R. E. 1976. Microbial response to mild stress. Durham, England: Meadowfield Press.

    Google Scholar 

  • Strength, W. J., Isani, B., Linn, D. M., Williams, F. D., Vandermolen, G. E., Laughon, B. E., Krieg, N. R. 1976. Isolation and characterization of Aquaspirillum fascilus sp. nov., a rod-shaped, nitrogen-fixing bacterium having unusual flagella. International Journal of Systematic Bacteriology 26:253–268.

    Google Scholar 

  • Strohl, W. R., Larkin, J. M. 1979. Enumeration, isolation, and characterization of Beggiatoa from freshwater sediments. Applied and Environmental Microbiology 36:755–770.

    Google Scholar 

  • Sverdrup, H. W., Johnson, M. W., Fleming, R. H. 1942. The oceans. London: Prentice-Hall.

    Google Scholar 

  • Swart-Füchtbauer, H., Rippel-Baides, A. 1951. Die baktericide Wirkung des Sonnenlichtes. Archiv für Mikrobiologie 16:358–362.

    Google Scholar 

  • Tansey, M. R., Brock, T. D. 1978. Microbial life at high temperatures: Ecological aspects, pp. 159–216. In: Kushner, D. J. (ed.), Microbial life in extreme environments. London, New York, San Francisco: Academic Press.

    Google Scholar 

  • Tempest, D. W., Hunter, J. R. 1965. Magnesium-limited growth of Aerobacter aerogenes in a chemostat. Journal of General Microbiology 39:355–366.

    CAS  PubMed  Google Scholar 

  • Tempest, D. W., Meers, J. L., Brown, C. M. 1970. Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route. Biochemical Journal 117:405–407.

    CAS  PubMed  Google Scholar 

  • Tempest, D. W., Meers, J. L., Brown, C. M. 1973. Glutamate synthetase (Gogat): A key enzyme in the assimilation of ammonia by prokaryotic organisms, pp. 167–182. In: Prus-iner, S., Stadtman, E. R. (eds.), The enzymes of glutamine metabolism. New York, London: Academic Press.

    Google Scholar 

  • Tempest, D. W., Neijssel, O. M. 1976, Microbial adaptation of low-nutrient environments, pp. 283–296. In: Dean, A. C. R., Ellwood, D. C., Evans, C. G. T., Melling, J. (eds.), Continuous culture 6: Applications and new fields. Chichester: Ellis Horwood.

    Google Scholar 

  • Tempest, D. W., Neijssel, O. M. 1979. Eco-physiological aspects of microbial growth in aerobic nutrient-limited environments. Advances in Microbial Ecology 2:105–153.

    Google Scholar 

  • Thiele, H. H. 1968. Die Verwertung einfacher organischer Substrate durch Thiorhodaceae. Archiv für Mikrobiologie 60:124–138.

    CAS  PubMed  Google Scholar 

  • Torma, A. E. 1977. The role of Thiobacillus ferrooxidans in hydrometallurgical processes. Advances in Biochemical Engineering 6:1–37.

    CAS  Google Scholar 

  • Triiper, H. G. 1969. Bacterial sulfate reduction in the Red Sea hot brines, pp. 262–271. In: Degens, E. T., Ross, D. A. (eds.), Hot brines and recent heavy metal deposits in the Red Sea. New York: Springer-Verlag.

    Google Scholar 

  • Trüper, H. G. 1976. Higher taxa of the phototrophic bacteria: Chloroflexaceae fam. nov., a family for the gliding filamentous, phototrophic “green” bacteria. International Journal of Systematic Bacteriology 26:74–75.

    Google Scholar 

  • Tuovinen, O. H., Kelly, D. P. 1972. Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ores. Zeitschrift für Allgemeine Mikrobiologie 12:311–346.

    CAS  PubMed  Google Scholar 

  • Tuttle, J. H., Randles, C. I., Dugan, P. R. 1968. Activity of microorganisms in acid mine water. I. Influence of acid water on aerobic heterotrophs of a normal stream. Journal of Bacteriology 95:1495–1503.

    CAS  PubMed  Google Scholar 

  • Uesugi, I., Yajima, M. 1978. Oxygen and “strictly anaerobic” intestinal bacteria. I. Effects of dissolved oxygen on growth. Zeitschrift für Allgemeine Mikrobiologie 18:287–295.

    CAS  PubMed  Google Scholar 

  • Umbreit, T. H., Pate, J. L. 1978. Characterization of the holdfast region of wild-type cells of holdfast mutants of Asticcacaulis biprosthecum. Archives of Microbiology 118:157–168.

    Google Scholar 

  • van Gemerden, H. 1974. Coexistence of organisms competing for the same substrate: An example among the purple sulfur bacteria. Microbial Ecology 1:104–119.

    Google Scholar 

  • van Niel, C. B. 1932. On the morphology and physiology of the purple and green sulphur bacteria. Archiv für Mikrobiologie 3:1–112.

    Google Scholar 

  • van Niel, C. B. 1936. On the metabolism of the Thiorhodaceae. Archiv für Mikrobiologie 7:323–358.

    Google Scholar 

  • van Niel, C. B. 1955. The microbe as a whole, pp. 3–12. In: Waksman, S. A. (ed.), Perspectives and horizons in microbiology. New Brunswick: Rutgers University Press.

    Google Scholar 

  • van Veen, W. L., Mulder, E. G., Deinema, M. H. 1978. The Sphaerotilus-Leptothrix group of bacteria. Microbiological Reviews 42:329–356.

    PubMed  Google Scholar 

  • Vedder, A. 1934. Bacillus alcalophilus sp. nov., benevens enkle ervaringen met sterk alcalische voedingsbodems. Antonie van Leeuwenhoek Journal of Microbiology and Serology 1:141–147.

    Google Scholar 

  • Veldkamp, H. 1970. Enrichment cultures of prokaryotic organisms, pp. 305–361. In: Norris, J. R., Ribbons, D. W. (eds.), Methods in microbiology, vol. 3A. London: Academic Press.

    Google Scholar 

  • Veldkamp, H. 1976. Continuous culture in microbial physiology and ecology. Patterns of progress. Durham: Meadowfield Press.

    Google Scholar 

  • Veldkamp, H., Jannasch, H. W. 1972. Mixed culture studies with the chemostat. Journal of Applied Chemistry and Biotechnology 22:105–123.

    CAS  Google Scholar 

  • Veldkamp, H., van den Berg, G., Zevenhuizen, L. P. T. M. 1963. Glutamic acid production by Arthrobacter globiformis. Antonie van Leeuwenhoek Journal of Microbiology and Serology 29:35–51.

    CAS  Google Scholar 

  • Voelz, H., Dworkin, M. 1962. Fine structure of Myxococcus xanthus during morphogenesis. Journal of Bacteriology 84:943–952.

    CAS  PubMed  Google Scholar 

  • Völker, H., Schweisfurth, R., Hirsch, P. 1977. Morphology and ultrastructure of Crenothrix poly spora Cohn. Journal of Bacteriology 131:306–313.

    PubMed  Google Scholar 

  • Walsby, A. E. 1970. The gas vesicles of aquatic prokaryotes. In: Regulations between structure and function in the prokaryotic cell. Society for General Microbiology Symposium 28:327–357. London, New York, Melbourne, Cambridge University Press.

    Google Scholar 

  • Walsby, A. E. 1975. Gas vesicles. Annual Review of Plant Physiology 26:427–439.

    CAS  Google Scholar 

  • Walsby, A. E. 1977. The gas vacuoles of blue-green algae. Scientific American 237:90–97.

    CAS  Google Scholar 

  • Wangersky, P. J. 1976. The surface film as a physical environment. Annual Review of Ecology and Systematics 7:161–176.

    Google Scholar 

  • Watson, S. W., Waterbury, J. B. 1969. The sterile hot brines of the Red Sea, pp. 272–281. In: Degens, E. T., Ross, D. A. (eds.), Hot brines and recent heavy metal deposit in the Red Sea. New York: Springer-Verlag.

    Google Scholar 

  • Weibull, C. 1960. Movement, pp. 153–205. In: Gunsalus, I. C., Stanier, R. Y. (eds.), The bacteria, vol. 1: Structure. New York, London: Academic Press.

    Google Scholar 

  • Weimer, P. J., Zeikus, J. G. 1977. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum. Applied and Environmental Microbiology 33:289–297.

    CAS  PubMed  Google Scholar 

  • Weiss, R. L. 1973. Attachment of bacteria to sulphur in extreme environments. Journal of General Microbiology 77:501–507.

    CAS  Google Scholar 

  • Whittaker, R. H., Levin, S. A., Root, R. B. 1973. Niche, habitat and ecotope. American Naturalist 107:321–338.

    Google Scholar 

  • Whittenbury, R., Davies, S. L., Davey, J. F. 1970. Exospores and cysts formed by methane-utilizing bacteria. Journal of General Microbiology 61:219–226.

    CAS  PubMed  Google Scholar 

  • Wiegel, J., Schlegel, H. G. 1976. Enrichment and isolation of nitrogen fixing hydrogen bacteria. Archives of Microbiology 107:139–142.

    CAS  PubMed  Google Scholar 

  • Wiegel, J., Wilke, D., Baumgarten, J., Opitz, R., Schlegel, H. G. 1978. Transfer of the nitrogen fixing hydrogen bacterium Corynebacterium autotrophicum (Baumgarten et al.) to Xanthobacter gen. nov. International Journal of Systematic Bacteriology 28:573–581.

    Google Scholar 

  • Wiley, W. R., Stokes, J. L. 1963. Effect of pH and ammonium ions on the permeability of Bacillus pasteurii. Journal of Bacteriology 86:1152–1156.

    CAS  PubMed  Google Scholar 

  • Winfrey, M. R., Zeikus, J. G. 1977. Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Applied and Environmental Microbiology 33:275–281.

    CAS  PubMed  Google Scholar 

  • Winogradsky, S.N. 1925. Études sur la microbiologie du sol. I. Sur la méthode. Annales de l’Institut Pasteur 39:299–354.

    Google Scholar 

  • Winogradsky, S. N. 1926. Études sur la microbiologie du sol. Sur les microbes fixateurs d’azote. Annales de l’Institut Pasteur 40:455–520.

    CAS  Google Scholar 

  • Winogradsky, S. N. 1947. Principles de la Microbiologie Ecologique. Antonie van Leeuwenhoek Journal of Microbiology and Serology 12:5–15.

    CAS  Google Scholar 

  • Winogradsky, S. N. 1949. Microbiologie du sol. Problèmes et Méthodes. Paris: Masson et Cie.

    Google Scholar 

  • Wirsen, C. O., Jannasch, H. W. 1978. Physiological and morphological observations on Thiovulum sp. Journal of Bacteriology 136:765–774.

    CAS  PubMed  Google Scholar 

  • Wolfe, R. S. 1960. Observations and studies of Crenothrix polyspora. Journal of the American Water Works Association 52:915–918.

    Google Scholar 

  • Wolin, M.J. 1976. Interactions between H2-producing and methane-producing species, pp. 141–150. In: Schlegel, H. G., Gottschalk, G., Pfennig, N. (eds.), Microbial production and utilization of gases. Göttingen: Goltze.

    Google Scholar 

  • Woodroffe, R. C. S., Shaw, D. A. 1974. Natural control and ecology of microbial populations on skin and hair, pp. 13–34. In: Skinner, F. A., Carr, J. G. (eds.), The normal microbial flora of man. London, New York: Academic Press.

    Google Scholar 

  • Yayanos, A. 1978. Recovery and maintenance of live amphipods at a pressure of 580 bars from an ocean depth of 5700 meters. Science 200:1056–1059.

    CAS  PubMed  Google Scholar 

  • Zaitsev, Yu. P. 1971. Vinogradov, K. A. (ed.), Marine neustonology. Jerusalem: Keter Press.

    Google Scholar 

  • Zebe, E. 1977. Anaerober Stoffwechsel bei wirbellosen Tieren. Vorträge der Rheinisch-Westfälischen Akademie der Wissenschaften, N 269.

    Google Scholar 

  • Zeikus, J. G., Wolfe, R. S. 1972. Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. Journal of Bacteriology 109:707–713.

    CAS  PubMed  Google Scholar 

  • ZoBell, C. E. 1946. Marine microbiology, a monograph on hydrobacteriology. Waltham, Massachusetts: Chronica Botanica.

    Google Scholar 

  • ZoBell, C. E. 1970. Pressure effects of morphology and life processes, pp. 85–130. In: Zimmermann, A. (ed.), High pressure effects on cellular processes. London: Academic Press.

    Google Scholar 

  • ZoBell, C. E., Morita, R. Y. 1957. Barophilic bacteria in some deep sea sediments. Journal of Bacteriology 73:563–568.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schlegel, H.G., Jannasch, H.W. (1981). Prokaryotes and their Habitats. In: Starr, M.P., Stolp, H., Trüper, H.G., Balows, A., Schlegel, H.G. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13187-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13187-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13189-3

  • Online ISBN: 978-3-662-13187-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics