Skip to main content

Plasmid DNA and the Killer Phenomenon in Kluyveromyces

  • Chapter
Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

Abstract

As established from studies on genetic factors for bacterial sexuality, colicin production and resistance to antibacterial antibiotics, plasmids were long recognized as extrachromosomal circular DNA. The 2-μm DNA of Saccharomyces cerevisiae, the first eukaryote plasmid, as well as many other eukaryotic and prokaryotic plastids, was also found to be circular DNA (Esser et al. 1986; Volkert et al. 1989). The general notion of plasmids being circular was first undermined by the discovery of mitochondrial linear plasmids from Zea mays (Pring et al. 1977). Later, two novel linear DNA plasmids (pGKL1 and pGKL2) were identified in the lactose-assimilating yeast Kluyveromyces lactis (Gunge et al. 1981; Wesolowski et al. 1982a). Now linear plasmids are known to exist widely, not only in eukaryotes, including plants, mycelial fungi, yeasts, and green algae (Meinhardt et al. 1990), but also in prokaryotes such as Streptomyces spp. (Hirochika et al. 1984; Kinashi et al. 1987; Keen et al. 1988; Wu and Roy 1993) and the bacterium Borrelia burgdorferi (Barbour and Garbon 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleström P, Akusjärvi G, Pettersson M, Pettersson U (1982) DNA sequence analysis of the region encoding the terminal protein and the hypothetical N-gene product of adenovirus type 2. J Biol Chem 257: 1349213498

    Google Scholar 

  • Andreadis A, Hsu YP, Hermodson M, Kohlhaw G, Schimmel P (1984) Yeast LEU2 repression of mRNA levels by leucine and primary structure of the gene product. J Biol Chem 259: 8058–8062

    Google Scholar 

  • Baldari C, Murray JAH, Ghiara P, Cesaren G, Galeotti CL (1987) A novel leader peptide which allows efficient secretion of a fragment of human interleukin lß in Saccharomyces cerevisiae. EMBO J 6: 229–234

    PubMed  CAS  Google Scholar 

  • Barbour AG, Garbon CF (1987) LInear plasmids of the bacterium Borrelia burghorferi have covalently closed ends. Science 237: 409–411

    PubMed  CAS  Google Scholar 

  • Bernad A, Zaballos A, Salas M, Blanco L (1987) Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases. EMBO J 6: 42194225

    Google Scholar 

  • Bernad A, Blanco L, Lazaro JM, Martin G, Salas M (1989) A conserved 3’ -* 5’ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59: 219–228

    PubMed  CAS  Google Scholar 

  • Bibbs JS, Chiou HC, Hall JD, Mount DW, Retondo MJ, Weller SK, Coen DM (1985) Sequence and mapping analyses of the herpes simplex virus DNA polymerase gene predict a C-terminal substrate binding domian. Proc Natl Acad Sci USA 82: 7969–7973

    Google Scholar 

  • Broach JR, Li YY, Feldman J, Jayaram M, Abraham J, Nasmyth KA, Hicks JB (1982) Localization and sequence analysis of yeast origins of DNA replication. Cold Spring Harbor Lab Symp Quant Biol 47: 11651173

    Google Scholar 

  • Burke DT, Carle GF, Olson MV (1987) Cloning of large segments of exogeneous DNA into yeast by means of artificial chromosome vectors. Science 236: 806–812

    PubMed  CAS  Google Scholar 

  • Butler AR, O’Donnel RW, Martin VJ, Gooday GW, Stark MJR (1991a) Kluyveromyces lactis toxin has an essential chitinase activity. Eur J Biochem 199: 483–488

    Google Scholar 

  • Butler AR, Porter M, Start MJR (1991b) Intracellular expression of Kluyveromyces lactis toxin gamma subunit mimics treatment with exogeneous toxin and distinguishes two classes of toxin-resistant mutant. Yeast 7: 617–625

    PubMed  CAS  Google Scholar 

  • Carnevali F, Sarcoe LE, Whittaker PA (1976) Differential effects of nalidixate on the cell growth of respiratory competent strains and cytoplasmic petite mutants of Saccharomyce cerevisiae. Mol Gen Gent 146: 95–100

    CAS  Google Scholar 

  • Challberg MD, Kelly TJ (1982) Eukaryotic DNA replication: viral and plasmid model systems. Annu Rev Biochem 51: 901–934

    PubMed  CAS  Google Scholar 

  • Challberg MD, Kelly TJ (1989) Animal virus DNA replication. Annu Rev Biochem 58: 671–717

    PubMed  CAS  Google Scholar 

  • Challberg MD, Rawlins DR (1984) Template requirements for the initiation of adenovirus DNA replication. Proc Natl Acad Sci USA 81: 100–104

    PubMed  CAS  Google Scholar 

  • Chan BSS, Court DA, Vierula PJ, Bertrand H (1991) The kalilo linear senescense-inducing plasmid of Neurospora is an invertron and encodes DNA and RNA polymerases. Curr Genet 20: 225–237

    PubMed  CAS  Google Scholar 

  • De Louvencourt L, Fukuhara H, Heslot H, Wesolowski M (1983) Transformation of Kluyveromyces lactis by killer plasmid DNA. J Bacteriol 154: 737–742

    PubMed  Google Scholar 

  • Del Giudice L, Massardo RD, Manna F, Evidente A, Randazzzo G, Wolf K (1984) Differential effect of the alkaloid lycorine on rho+, mit-, and rho° strains of Saccharomyce cerevisiae. Curr Genet 8: 493–498

    Google Scholar 

  • Düvell A, Hessberg-Stutzke H, Oeser B, RogmannBackwinkel P, Tudzynski P (1988) Structural and functional analysis of mitochondrial plasmids in Claviceps purpurea. Mol Gen Genet 214: 128–134

    PubMed  Google Scholar 

  • Escarmis C, Salas M (1982) Nucleotide sequence of the early genes 3 and 4 of bacteriophage y29. Nucl Acids Res 10: 5785–5798

    PubMed  CAS  Google Scholar 

  • Esser K, Kück U, Lang-Hinrichs C, Lemke P, Osiewacz HD, Stahl U, Tudzynski P (1986) Plasmids of eukaryotes. Fundamentals and applications. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Evans IH, Wilkie D (1976) Mitochondrial role in the induction of sugar utilization in Saccharomyces cerevisiae. In: Saccone C, Kroon AM (eds) The genetic function of mitochondrial DNA. Elsevier, North-Holland, Amsterdam, pp 209–217

    Google Scholar 

  • Fabiani L, Aragona M, Frontali L (1990) Isolation and sequence analysis of a K. lactis chromosomal DNA element able to autonomously replicate in S. cerevisiae and K. lactis. Yeast 6: 69–76

    PubMed  CAS  Google Scholar 

  • Fujimura H, Hishinuma F, Gunge N (1987) Terminal segment of Kluyveromyces lactis linear DNA plasmid pGKL2 supports autonomous replication of hybrid plasmids in Saccharomyces cerevisiae. Curr Genet 12: 99–104

    PubMed  CAS  Google Scholar 

  • Fujimura H, Yamada T, Hishinuma F, Gunge N (1988) DNA replicastion in vivo of linear DNA killer plasmids pGKL1 and pGKL2 in Saccharomyces cerevisiae. FEMS Lett 49: 441–444

    CAS  Google Scholar 

  • Fukuhara H (1987) The RF1 gene of the killer DNA of yeast may encode a DNA polymerase. Nucl Acids Res 15: 10046

    PubMed  CAS  Google Scholar 

  • Garcia P, Hermoso JM, Garcia JA, Garcia E, Lopez R, Salas M (1986) Formation of a covalent complex between the terminal protein of pneumococcal bacteriophage Cp-1 and 5’-dAMP. J Virol 58: 31–35

    PubMed  CAS  Google Scholar 

  • Gunge N (1988) Kluyveromyces linear DNA plasmids. In: Koltin Y, Leibowitz MJ (eds) Viruses of fungi and simple eukaryotes. Marcel Dekker, New York, pp 265282

    Google Scholar 

  • Gunge N, Kitada K (1988) Replication and maintenance of the Kluyveromyces liner pGKL plasmids. Eur J Epidemio14: 409–414

    Google Scholar 

  • Gunge N, Sakaguchi K (1981) Intergeneric transfer of deoxyribouncleic acid killer plasmids, pGKL1 and pGKL2, from Kluyveromyces lactis into Saccharomyces cerevisiae by cell fusion. J Bacteriol 147: 155–160

    PubMed  CAS  Google Scholar 

  • Gunge N, Yamane C (1984) Incompatibility of linear DNA killer plasmids pGKL1 and pGKL2 from Kluyveromyces lactis with mitochondrial DNA from Saccharomyces cerevisiae. J Bacteriol 159: 533–539

    PubMed  CAS  Google Scholar 

  • Gunge N, Tamaru A, Ozawa F, Sakaguchi K (1981) Isolation and characterization of linear deoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmidassociated killer character. J Bacteriol 145: 382–390

    PubMed  CAS  Google Scholar 

  • Gunge N, Murata K, Sakaguchi K (1982) Transformation of Saccharomyces cerevisiae with linear DNA killer plasmids from Kluyveromyces lactis. J Bacteriol 151: 462–464

    PubMed  CAS  Google Scholar 

  • Gunge N, Murakami K, Takesako T, Moriyama H (1990) Mating type locus-dependent stability of the Kluyveromyces linear pGKL plasmids in Saccharomyces cerevisiae. Yeast 6: 417–427

    PubMed  CAS  Google Scholar 

  • Gunge N, Fukuda K, Morikawa S, Murakami K, Takeda M, Miwa A (1993) Osmophilic linear plasmids from salt-tolerant yeast Debaryomyces hansenii. Curr Genet 23: 443–449

    PubMed  CAS  Google Scholar 

  • Haber JE (1992) Mating-type gene switching in Saccharomyces cerevisiae. Trends Genet 8: 446–452

    PubMed  CAS  Google Scholar 

  • Hsieh JC, Yoo SK, Ito J (1990) An essential arginine residue for initiation of protein-primed DNA replication. Proc Natl Acad Sci USA 87: 8665–8669

    PubMed  CAS  Google Scholar 

  • Hermanna J, Osiewacz HD (1992) The linear mitochondrial plasmid pAL2–1 of a long-lived Podospora anserina mutant is an invertron encoding a DNA and RNA polymerase. Curr Genet 22: 491–500

    Google Scholar 

  • Herskowitz I (1989) A regulatory hierarchy for cell specialization in yeast. Nature 342: 749–757

    PubMed  CAS  Google Scholar 

  • Hirochika H, Nakamura K, Sakaguchi K (1984) A linear DNA plasmid from Streptomyces rochei with an inverted terminal repetition of 614 base pairs. EMBO J 3: 761766

    Google Scholar 

  • Hishinuma F, Hirai K (1991) Genome organization of the linear plasmid, pKL, isolated from Saccharomyces kluyveri. Mol Gen Genet 226: 97–106

    PubMed  CAS  Google Scholar 

  • Hishinuma F, Nakamura K, Hirai K, Nishizawa R, Gunge N, Maeda T (1984) Cloning and nucleotide sequence of the DNA killer plasmids from yeast. Nucl Acids Res 12: 7581–7597

    PubMed  CAS  Google Scholar 

  • Jimerez A, Davies J (1980) Expression of transposable antibiotic element in Saccharomyces. Nature 287: 869871

    Google Scholar 

  • Julius D, Brake A, Blair L, Kunisawa R, Thorner J (1984) Isolation of the putative structural gene for the lysinearginine-cleaving endopeptidase required for processing of yeast prepro-a-factor. Cell 37: 1075–1089

    PubMed  CAS  Google Scholar 

  • Jung G, Leavitt MC, Ito J (1987a) Yeast killer plasmid pGKL1 encodes a DNA polymerase belonging to the family B DNA polymerases. Nucl Acids Res 15: 9088

    PubMed  CAS  Google Scholar 

  • Jung G, Leavitt MC, Ito J (1987b) Bacteriophage PRD1 DNA polymerase: evolution of DNA polymerases. Proc Natl Acad Sci USA 84: 8287–8291

    PubMed  CAS  Google Scholar 

  • Kaisho Y, Yoshimura K, Nakahama K (1989) Increase in gene expression by respiratory-deficient mutation. Yeast 5: 91–98

    PubMed  CAS  Google Scholar 

  • Kämper J, Meinhardt F, Gunge N, Esser K (1989a) New recombinant linear DNA-elements derived from Kluyveromyces lactis killer plasmids. Nucl Acids Res 17: 1781

    PubMed  Google Scholar 

  • Kämper J, Meinhardt F, Gunge N, Esser K (1989b) In vivo construction of linear vectors based on killer plasmids from Kluyveromyces lactis: selection of a nuclear gene results in attachment of telomeres. Mol Cell Biol 9: 3931–3937

    PubMed  Google Scholar 

  • Kämper J, Esser K, Gunge N, Meinhardt F (1991) Heterologus gene expression on the linear DNA killer plasmid from Kluyveromyces lactis. Curr Genet 19: 109–118

    PubMed  Google Scholar 

  • Kawamoto S, Arai N, Kobayashi M, Kawahara K, Iwahashi H, Tanabe C, Hatori H, Ohno T, Nakamura T (1990) Isolation and characterization of mutants of Saccharomyces cerevisiae resistant to killer toxin of Kluyveromyces lactis. J Ferment Bioeng 70: 222–227

    CAS  Google Scholar 

  • Kawamoto S, Nomura M, Ohno T (1992) Cloning and characterization of SKT5, a Saccharomyces cerevisiae gene that affects protoplast regeneration and resistance to killer toxin of Kluyveromyces lactis. J Ferment Bioeng 74: 199–208

    CAS  Google Scholar 

  • Keen CL, Mendelovitz S, Cohen G, Aharonowitz Y, Roy KL (1988) Isolation and characterization of a linear DNA plasmid from Streptomyces clavuligerus. Mol Gen Genet 212: 172–176

    PubMed  CAS  Google Scholar 

  • Kempken F, Meinhardt F, Esser K (1989) In organello replication and viral affinity of linear, extrachomosomal DNA of the ascomycete Ascobolus immersus. Mol Gen Genet 218: 523–530

    PubMed  CAS  Google Scholar 

  • Kikuchi Y, Hirai K, Hishinuma F (1984) The yeast linear DNA killer plasmids, pGKL1 and pGKL2, possess terminally attached proteins. Nucl Acids Res 12: 56855692

    Google Scholar 

  • Kikuchi Y, Hirai K, Gunge N, Hishinuma, F (1985) Hairpin plasmid — a novel linear DNA of perfect hairpin structure. EMBO J 4: 1881–1886

    PubMed  CAS  Google Scholar 

  • Kinashi H, Shimazu M, Sakai A (1987) Giant linear plasmids in Streptomyces which code for antibiotic biosynthesis genes. Nature 328: 454–456

    PubMed  CAS  Google Scholar 

  • Kitada K, Gunge N (1988) Palindrome-hairpin linear plasmids possessing only a part of the ORF1 gene of the yeast killer plasmid pGKL1. Mol Gen Genet 215: 46–52

    PubMed  CAS  Google Scholar 

  • Kitada K, Hishinuma F (1987) A new linear DNA plasmid isolated from the yeast Saccharomyces kluyveri. Mol Gen Genet 206: 377–381

    CAS  Google Scholar 

  • Leon P, Walbot V, Bedinger P (1989) Molecular analysis of the liner 2.3 kb plasmid of maize mitochondria: apparent capture of tRNA genes. Nucl Acids Res 17: 4089–4099

    PubMed  CAS  Google Scholar 

  • Levings III CS, Sederoff RR (1983) Nucleotide sequence of the S-2 mitochondrial DNA from the S cytoplasm of maize. Proc Natl Acad Sci USA 80: 4055–4059

    PubMed  CAS  Google Scholar 

  • Liao X, Small WC, Spere PA, Butow RA (1991) Intramitochondrial functions regulate nonmitochondrial citrate synthetase (CITA) expression in Saccharomyces cerevisiae. Mol Cell Biol 11: 38–46

    PubMed  CAS  Google Scholar 

  • Ligon JM, Bolen PL, Hill DS, Bothast RJ, Kurzman CP (1989) Physical and biological characterization of linear DNA plamids of the yeast Pichia inositovora. Plasmids 21: 185–194

    CAS  Google Scholar 

  • Lundblad V, Blackburn EH (1990) DNA-dependent polymerase motifs in EST1: tentative identification of a protein component of an essential yeast telomerase. Cell 60: 529–530

    PubMed  CAS  Google Scholar 

  • Massardo DR, Manna F, Schäfer B, Wolf K, Del Giudice L (1994) Complete absence of mitochondrial DNA in the petite-negative yeast Schizosaccharomyces pombe to resistance towards the alkaloid lycorine. Curr Genet 25: 80–83

    PubMed  CAS  Google Scholar 

  • McNeel DG, Tamanoi F (1991) TRF1, a novel DNA-binding protein recognizing the terminal sequences of the pGKL1 linear DNA plasmids. Proc Natl Acad Sci USA 88: 11398–11402

    PubMed  CAS  Google Scholar 

  • Meinhardt F, Kempken F, Kämper J, Esser K (1990) Linear plasmids among eukaryotes: fundamentals and application. Curr Genet 17: 89–95

    PubMed  CAS  Google Scholar 

  • Miller AM, MacKay VL, Nasmyth KA (1985) Identification and comparison of two sequence elements that confer cell-type specific transcription in yeast. Nature 314: 598–603

    PubMed  CAS  Google Scholar 

  • Miyashita S, Hirochika H, Ikeda J, Hashiba T (1990) Linear plasmid DNAs of the plant pathogenic fungus Rhizoctonia solani with unique terminal structures. Mol Gen Genet 220: 165–171

    PubMed  CAS  Google Scholar 

  • Niwa O, Sakaguchi K, Gunge N (1981) Curing of the killer deoxyribonucleic acid plasmids of Kluyveromyces lactis. J Bacteriol 148: 988–990

    PubMed  CAS  Google Scholar 

  • Oeser B, Tudzynski P (1989) The linear mitochondrial plasmid pCIK1 of the phytopathogenic fungus Claviceps purpurea may code for a DNA polymerase and an RNA polymerase. Mol Gen Genet 217: 132–140

    PubMed  CAS  Google Scholar 

  • Ono B, Ishino-Arao Y, Takasugi K, Taniguchi M, Fukuda M, Fukui M, Miyakawa I, Sando N (1990) “Alternative self diploidization” or “ASD” homothalism in Saccharomyces cerevisiae: isolation of a mutant, nuclear-cytoplasmic interaction and endomitotic diploidization. Genetics 125:729–7398

    Google Scholar 

  • Paillard M, Sederoff RR, Levings III CS (1985) Nucleotide sequence of the S-1 mitochondrial DNA from the S cytoplasm of maize. EMBO J 4: 1125–1128

    PubMed  CAS  Google Scholar 

  • Parikh VS, Morgan MM, Scott R, Clements LS, Butow RA (1987) The mitochondrial genotype can influence nuclear gene expression in yeast. Science 235: 576580

    Google Scholar 

  • Parikh VS, Conrad-Webb H, Docherty R, Butow RA (1989) Interaction between the yeast mitochondrial and nuclear genomes influences the abundance of novel transcripts derived from the spacer region of the nuclear ribosomal DNA repeat. Mol Cell Biol 9: 1897–1907

    PubMed  CAS  Google Scholar 

  • Perentesis J, Genbauffe FS, Veldman SA, Galeotti CL, Livingston DM, Bodley JW, Murphy JR (1988) Expression of diphtheria toxin fragment A and human-toxin fusion proteins in toxin-resistant yeast mutants. Proc Natl Acad Sci USA 85: 8386–8390

    PubMed  CAS  Google Scholar 

  • Perlman P, Halvorson HO (1983) A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol 167: 391–409

    PubMed  CAS  Google Scholar 

  • Pluta AF, Zakian VA (1989) Recombination occurs dur- ing telomere formation in yeast. Nature 337: 429–433

    PubMed  CAS  Google Scholar 

  • Pring DR, Levings III CS, Hu WWL, Timothy DH (1977) Unique DNA associated with mitochondria in the “S”-type cytoplasm of male-sterile maize. Proc Natl Acad Sci USA 74: 2904–2908

    PubMed  CAS  Google Scholar 

  • Robison MM, Royer JC, Horgen PA (1991) Homology between mitochondrial DNA of Agaricus bisporus and an internal portion of a linear mitochondrial plasmid of Agaricus bitorquis. Curr Genet 20: 225–237

    Google Scholar 

  • Rohe M, Schrage K, Meinhardt F (1991) The linear plasmid pMC3–2 from Morchella conica is structurally related to adenovirus. Curr Genet 20: 527–533

    PubMed  CAS  Google Scholar 

  • Romanos M, Boyd A (1988) A transcriptional barrier to expression of cloned toxin genes of the linear plasmid k1 of Kluyveromyces lactis: evidence that native kl has novel promoters. Nucl Acids Res 16: 7333–7350

    PubMed  CAS  Google Scholar 

  • Rothstein R (1983) One step gene disruption in yeast. In: Wu R, Grossman L, Moldave K (eds) Recombinant DNA, part C. Methods in enzymology, vol 101. Academic Press, New York, pp 202–211

    Google Scholar 

  • Salas M (1991) Protein-priming of DNA replication. Annu Rev Biochem 60: 39–71

    PubMed  CAS  Google Scholar 

  • Samac DA, Leong SA (1989) Characterization of the termini of linear plasmids from Nectria haematococca and their use in construction of an autonomously replicating transformation vector. Curr Genet 16: 187194

    Google Scholar 

  • Savilahti H, Bamford DH (1987) The complete nucleotide sequence of the left very early region of Escherichia coli bacteriophage PRD1 coding for the terminal protein and the DNA polymerase. Gene 57:121–130

    Google Scholar 

  • Schaffrath R, Stark MJR, Gunge N, Meinhardt F (1992) Kluyveromyces lactis killer system: ORF1 of pGKL2 has no function in immunity expression and is dispensable for killer plasmid replication and maintenance. Curr Genet 21: 357–363

    Google Scholar 

  • Schardl CL, Pring DR, Lonsdale DM (1985) Mitochondrial DNA rearrangements associated with fertile revertants of S-type male-sterile maize. Cell 43: 361–368

    PubMed  CAS  Google Scholar 

  • Shampay J, Blackburn EH (1988) Generation of telomerelength heterogeneity in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 85: 534–538

    PubMed  CAS  Google Scholar 

  • Shampay J, Szostak JW, Blackburn EH (1984) DNA sequences of telomeres maintained in yeast. Nature 310: 154–157

    PubMed  CAS  Google Scholar 

  • Shepherd HS, Ligon JM, Bolon PL, Kurzman CP (1987) Cryptic DNA plasmids of the heterothallic yeast Saccharomyces crataegensis. Curr Genet 12: 297–304

    CAS  Google Scholar 

  • Sleep D, Belfield GP, Goodey AR (1990) The secretion of human serum albumin from the yeast Saccharomyces cerevisiae using five different leader sequences. Bio Technol 8: 42–46

    CAS  Google Scholar 

  • Smart JE, Stillman BW (1982) Adenovirus terminal protein precursor. J Biol Chem 257: 13499–13506

    PubMed  CAS  Google Scholar 

  • Sor F, Fukuhara H (1985) Structure of a linear plasmid of the yeast Kluyveromyces lactis: compact organization of the killer genome. Curr Genet 9: 147–155

    CAS  Google Scholar 

  • Sor F, Wesolowski M, Fukuhara H (1983) Inverted terminal repetitions of the two linear DNA associated with the killer character of the yeast Kluyveromyces lactis. Nucl Acids Res 11: 5037–5044

    PubMed  CAS  Google Scholar 

  • Stam JC, Kwakman J, Meijer M, Stuije AR (1987) Efficient isolation of the linear DNA killer plasmid of Kluyveromyces lactis: evidence for location and expression in the cytoplasm and characterixation of their terminally bound proteins. Nucl Acids Res 14: 68716884

    Google Scholar 

  • Stark MJR, Boyd A (1986) The killer toxin of Kluyveromyces lactis: characterization of the toxin subunits and identification of the genes which encode them. EMBO J 5: 1995–2002

    PubMed  CAS  Google Scholar 

  • Stark MJR, Mileham AJ, Romanos MA, Boyd A (1984) Nucleotide sequence and transcription analysis of a linear DNA plasmid associated with the killer character of the yeast Kluyveromyces lactis. Nucl Acids Res 12: 6011–6033

    PubMed  CAS  Google Scholar 

  • Stark MJR, Boyd A, Mileham A, Romanos MA (1990) The plasmid-encoded killer system of Kluyveromyces lactis: a review. Yeast 6: 1–29

    PubMed  CAS  Google Scholar 

  • Stillman BW, Tamanoi F, Mathews MB (1982) Purification of an adenovirus-coded DNA polymerase that is required for initiation of DNA replication. Cell 31: 613–623

    PubMed  CAS  Google Scholar 

  • Sugisaki Y, Gunge N, Sakaguchi K, Yamasaki, Tamura G (1983) Kluyveromyces lactis killer toxin inhibits adenylate cyclase of sensitive yeast cells. Nature 304: 464–466

    Google Scholar 

  • Sugisaki Y, Gunge N, Sakaguchi K, Yamasaki M, Tamura G (1984) Characterization of a novel killer toxin encoded by a double-stranded linear DNA killer plasmid of Kluyveromyces lactis. Eur J Biochem 141: 241–245

    PubMed  CAS  Google Scholar 

  • Sugisaki Y, Gunge N, Sakaguchi K, Yamasaki M, Tamura G (1985) Transfer of DNA killer plasmids from Kluyveromyces lactis to Kluyveromyces fragilis and Candida pseudotropicalis. J Bacteriol 164: 1373–1375

    PubMed  CAS  Google Scholar 

  • Szostak JW, Blackburn EH (1982) Cloning yeast telomeres on linear plasmid vectors. Cell 29: 245–255

    PubMed  CAS  Google Scholar 

  • Takita MA, Castilho-Valavicius B (1993) Absence of cell wall chitin in Saccharomyces leads to resistance to Kluyveromyces lactis killer toxin. Yeast 9: 589–598

    PubMed  CAS  Google Scholar 

  • Tanguy-Rougeau C, Chen XJ, Wesolowski-Louvel M, Fukuhara H (1990) Expression of a foreign KmR gene in linear killer DNA plasmids in yeast. Gene 91: 43–50

    PubMed  CAS  Google Scholar 

  • Thompson A, Oliver SG (1986) Physical separation and functional interaction of Kluyveromyces lactis and Saccharomyces cerevisiae ARS elements derived from killer plasmid DNA. Yeast 2: 179–191

    PubMed  CAS  Google Scholar 

  • Tipper D, Bostian KA (1984) Double-stranded ribonucleic acid killer systems in yeasts. Microbiol Rev 48: 125–156

    PubMed  CAS  Google Scholar 

  • Toda T, Cameron S, Sass P, Zoller M, Scott JD, McMullen B, Hurwitz M, Krebs EG, Wigler M (1987) Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 7: 1371–1337

    PubMed  CAS  Google Scholar 

  • Tokunaga T, Wada N, Hishinuma F (1987a) Expression and identification of immunity determinations on linear DNA killer plasmids pGKL1 and pGKL2 in Kluyveromyces lactis. Nucl Acids Res 15: 1031–1046

    PubMed  CAS  Google Scholar 

  • Tokunaga M, Wada N, Hishinuma F (1987b) A novel yeast secretion vector utilizing secretion signal of killer toxin encoded on the yeast linear DNA plasmid pGKL1. Biochem Biophys Res Commun 114: 613–619

    Google Scholar 

  • Tokunaga M, Wada N, Hishinuma F (1988) A novel yeast secretion signal isolated from 28 K killer precursor protein encoded on the killer DNA plasmid pGKL1. Nucl Acids Res 16: 7499–7511

    PubMed  CAS  Google Scholar 

  • Tokunaga M, Kawamura A, Hishinuma F (1989) Expression of pGKL killer 28 K subunit in Saccharomyce cerevisiae: identification of 28 K subunit as a killer toxin. Nucl Acids Res 17: 3435–3446

    PubMed  CAS  Google Scholar 

  • Tokunaga M, Kawamura A, Kitada K, Hishinuma F (1990) Secretion of killer toxin encoded on the linear DNA plasmid pGKL1 from Saccharomyces cerevisiae. J Biol Chem 265: 17274–17280

    PubMed  CAS  Google Scholar 

  • Tokunaga M, Kawamura A, Yonekyu S, Kishida M, Hishinuma F (1993) Secretion of mouse a-amylase from fission yeast Schizosaccharomyces pombe: presence of chymostatin-sensitive protease activity in the culture medium. Yeast 9: 379–387

    PubMed  CAS  Google Scholar 

  • Tommasino M (1991) Killer system of Kluyveromyces lactis: the open reading frame 10 of the pGKL2 plasmid encodes a putative DNA binding protein. Yeast 7: 245252

    Google Scholar 

  • Tommasino M, Ricci S, Galeotti CL (1988) Genome organization of the plasmid pGKL2 from Kluyveromyces lactis. Nucl Acids Res 16: 5863–5878

    PubMed  CAS  Google Scholar 

  • Treinin M, Simchen G (1993) Mitochondrial activity is required for the expression of IMEI, a regulator of meiosis in yeast. Curr Genet 23: 223–227

    PubMed  CAS  Google Scholar 

  • Volkert FC, Wilson DW, Broach JR (1989) Deoxyribonucleic acid plasmids in yeasts. Microbiol Rev 53: 299–317

    PubMed  CAS  Google Scholar 

  • Walmsley RM (1987) Yeast telomeres: the end of the chromosome story? Yeast 3: 139–148

    PubMed  CAS  Google Scholar 

  • Wesolowski M, Algeri A, Goffrini P, Fukuhara H (1982a) Killer DNA plasmids of the yeast Kluyveromyces lactis. I. Mutations affecting the killer phenotype. Curr Genet 5: 191–197

    Google Scholar 

  • Wesolowski M, Algeri A, Fukuhara H (1982b) Killer DNA plasmids of the yeast Kluyveromyces lactis. II. Restriction endonuclease maps. Curr Genet 5: 199–203

    Google Scholar 

  • Wesolowski-Louvel M, Tanguy-Rougeau C, Fukuhara H (1988) A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast Kluyveromyces lactis. Yeast 4: 71–81

    PubMed  CAS  Google Scholar 

  • White JH, Butler AR, Stark MJR (1989) Kluyveromyces lactis toxin does not inhibit yeast adenylyl cyclase. Nature 341: 666–668

    Google Scholar 

  • Wickner RB (1981) Killer system in Saccharomyces cerevisiae. In: Strathern JN, Jones EW, Broach JR (eds) The Molecular Biology of the Yeast Saccharomyces cerevisiae: Life cycle and inheritance. Cold Spring Harbor Lab, Cold Spring Harbor, New York, pp 415444

    Google Scholar 

  • Wilson DW, Meacock PA (1988) Extranuclear gene expression in yeast: evidence for a plasmid-encoded RNA polymerase of unique structure. Nucl Acids Res 16: 8097–8112

    PubMed  CAS  Google Scholar 

  • Worsham PL, Bolen PL (1990) Killer toxin production in Pichia acaciae is associated with linear DNA plasmids. Curr Genet 18: 77–78

    PubMed  CAS  Google Scholar 

  • Wu X, Roy K (1993) Complete nucleotide sequence of a linear plasmid from Streptomyces clavuligerus and characterization of its RNA transcripts. J Bacteriol 175: 37–52

    PubMed  CAS  Google Scholar 

  • Yamakawa M, Hishinuma F, Gunge N (1985) Construction of a plasmid replicating in both Saccharomyces cerevisiae and Kluyveromyces lactis. Agric Biol Chem 49: 1537–1539

    CAS  Google Scholar 

  • Yoshikawa H, Ito J (1982) Nucleotide sequence of the major early region of bacteriophage 029. Gene 17: 323–335

    PubMed  CAS  Google Scholar 

  • Zakian VA (1989) Structure and function of telomeres. Annu Rev Genet 23: 579–604

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gunge, N. (1995). Plasmid DNA and the Killer Phenomenon in Kluyveromyces . In: Kück, U. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10364-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10364-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10366-1

  • Online ISBN: 978-3-662-10364-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics