Skip to main content

Plasmid DNA in Mycelial Fungi

  • Chapter
Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

Abstract

The plasmid of Podospora anserina, discovered more than a decade ago (Stahl et al. 1978; Cummings et al. 1979) was the first to be found in a mycelial or filamentous fungus. Since then a large number of plasmids were described and characterized from fungi. Most plasmids are linear, but several are circular, similar to those found in bacteria. Eukaryotic plasmids were paid great attention, mainly based on two assumptions: (1) eukaryotic plasmids were thought to be valuable tools for vector development, based on the widespread use in bacteria (e.g. Esser et al. 1983), and (2) plasmids were believed to be responsible for a number of phenotypes, e.g. senescence in P. anserina. However, a successful vector system has yet to be developed, because most fungal plasmids are mitochondrially localized and mitochondrial transformation is still an obstacle in most species. The second assumption indeed was proven to be correct in some cases (e.g. senescence in P. anserina, for a review see Kück 1989; Osiewacz 1990), while mostly an association of plasmids and a particular phenotype are circumstantial only (e.g. Düve11 et al. 1988). Yet plasmids in mycelial fungi are still promising candidates to work with. Most of them are related to other mobile genetic elements, such as introns, retrotransposons or viruses. Examples are circular plasmids of Neurospora and Podospora, which exhibit similarities to or even resemble introns (Nargang et al. 1984; Osiewacz and Esser 1984; Michel and Lang 1985; Akins et al. 1988). Circular plasmids nevertheless do not form a uniform group. They are apparently of different origin and appear to have unique sequences. In contrast to the circular type, most linear plasmids exhibit viral characteristics with respect to struc­ture, replication and function, and form a much more uniform group, with respect to structure, function and sequence similarity (Kempken et al. 1989; Oeser and Tudzynski 1989; Chan et al. 1991; Court et al. 1991; Rohe et al. 1991; Hermanns and Osiewacz 1992). This fact un­doubedly reflects a common origin of these plasmids, which will be considered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akins RA, Lambowitz AM (1990) Analysis of large deletions in the Mauriceville and Varkud mitochondrial plasmids of Neurospora. Curr Genet 18: 365–369

    PubMed  CAS  Google Scholar 

  • Akins RA, Kelley RL, Lambowitz AM (1986) Mitochondrial plasmids of Neurospora: integration into mitochondrial DNA and evidence for reverse transcription in mitochondria. Cell 47: 505–516

    PubMed  CAS  Google Scholar 

  • Akins RA, Grant DM, Stohl LL, Bottorff DA, Nargang FA, Lambowitz AM (1988) Nucleotide sequence of the Varkud mitochondrial plasmid of Neurospora and synthesis of a hybrid transcript with a 5’-leader derived from mitochondrial RNA. J Mol Biol 204: 1–25

    PubMed  CAS  Google Scholar 

  • Akins RA, Kelley RL, Lambowitz AM (1989) Characterization of mutant mitochondrial plasmids of Neurospora ssp. that have incorporated tRNAs by reverse transcription. Mol Cell Biol 9: 678–691

    PubMed  CAS  Google Scholar 

  • Almasan A, Mishra NC (1990) Characterization of a novel plasmid-like element in Neurospora crassa derived mostly from the mitochondrial DNA. Nucl Acids Res 18: 5871–5877

    PubMed  CAS  Google Scholar 

  • Arrand JR, Roberts RJ (1979) The nucleotide sequences at the termini of adenovirus-2 DNA. J Mol Biol 128: 577–594

    PubMed  CAS  Google Scholar 

  • Bernad A, Blanco L, Lazaro JM, Martin G, Salas M, (1989) A conserved 3’-5’exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59: 219–228

    PubMed  CAS  Google Scholar 

  • Bertrand H, Griffith AJF (1989) Linear plasmids that integrate into mitochondrial DNA in Neurospora. Genome 31: 155–159

    Google Scholar 

  • Bertrand H, Collins RA, Stohl LL, Goewert RR, Lambowitz AM (1980) Deletion mutants of Neurospora crassa, mitochondrial DNA and their relationship to the “start-stop” growth phenotype. Proc Natl Acad Sci USA 77: 6032–6036

    PubMed  CAS  Google Scholar 

  • Bertrand H, Chan BSS, Griffith AJF (1985) Insertion of a foreign nucleotide sequence into mitochondrial DNA causes senescence in Neurospora intermedia. Cell 41: 877–884

    PubMed  CAS  Google Scholar 

  • Bertrand H, Griffiths AJF, Court DA, Cheng CK (1986) An extrachromosomal plasmid is the ethiological precursor of kaIDNA insertion sequences in the mitochondrial chromosome of senescence in Neurospora intermedia. Cell 47: 829–837

    PubMed  CAS  Google Scholar 

  • Blanco L, Bernad A, Blasco MA, Salas M (1991) A general structure for DNA-dependent DNA polymerases. Gene 100: 27–38

    PubMed  CAS  Google Scholar 

  • Böckelmann B (1985) Genetische Untersuchungen zur Seneszenz bei Hyphenpilzen. Dissertation, Ruhr-Universität Bochum

    Google Scholar 

  • Bonitz SG, Coruzzi G, Thalenfeld BE, Tzagoloff A, Macino G (1980) Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit I of the yeast cytochrome ocidase. J Biol Chem 255: 11927–11941

    Google Scholar 

  • Carusi EA (1977) Evidence for blocked 5’-termini in human adenovirus DNA. Virology 76: 380–394

    PubMed  CAS  Google Scholar 

  • Challberg MD, Kelly TJ Jr (1982) Eucaryotic DNA replication: viral and plasmid model systems. Annu Rev Biochem 51: 901–934

    PubMed  CAS  Google Scholar 

  • Challberg MD, Ostrove JM, Kelly TJ Jr (1982) Initiation of adenovirus DNA replication: detection of covalent complexes between nucleotid and 80-kilodalton terminal protein. J Virol 41: 265–270

    PubMed  CAS  Google Scholar 

  • Chan BSS, Court DA, Vierula JP, Bertrand H (1991) The Kalilo linear senescence-inducing plasmid of Neurospora is an invertron and encodes DNA and RNA polymerases. Curr Genet 20: 225–237

    PubMed  CAS  Google Scholar 

  • Collins RA, Saville BJ (1990) Independent transfer of mitochondrial chromosomes and plasmids during unstable vegetative fusion in Neurospora. Nature 345: 177–179

    PubMed  CAS  Google Scholar 

  • Collins RA, Stohl LL, Cole MD, Lambowitz AM (1981) Characterization of a novai plasmid DNA found in mitochondria of Neurospora crassa. Cell 24: 443–452

    PubMed  CAS  Google Scholar 

  • Court DA, Bertrand H (1992) Genetic organization and structural features of Maranhar, a senescence-inducing linear mitochondrial plasmid of Neurospora crassa. Curr Genet 22: 385–397

    PubMed  CAS  Google Scholar 

  • Court DA, Griffiths AJF, Kraus SR, Russell PJ, Bertrand H (1991) A new senescence-inducing mitochondrial linear plasmid in field-isolated Neurospora crassa strains from India. Curr Genet 19: 129–137

    PubMed  CAS  Google Scholar 

  • Cullen D, Budde A, Kistler H, Samac D, Leong S (1985) Analysis of mitochondrial genome and plasmid-like DNA from Fusarium species. J Cell Biochem 9C: 169

    Google Scholar 

  • Cummings DJ, Belcour L, Grandchamp C (1979) Mitochondrial DNA from Podospora anserina. II. Properties of mutant DNA and multimeric circular DNA from senescent cultures. Mol Gen Genet 171: 239–250

    Google Scholar 

  • Dasgupta J, Chan BS, Keith MA, Bertrand H (1988) Kalilo insertion sequences from the senescent strains of Neurospora intermedia are flanked by long inverted repeats of mitochondrial DNA. Genome 30 (Suppl. 1): 318

    Google Scholar 

  • De Vries H, de Jonge JC, Van’t Sant P, Agsteribbe E, Amberg A (1981) A “stopper” mutant of Neurospora crassa containing two populations of aberrant mitochondrial DNA. Curr Genet 3: 205–211

    Google Scholar 

  • Düvell A, Hessberg-Stutzke H, Oeser B, RogmannBackwinkel P, Tudzynski P (1988) Structural and functional analysis of mitochondrial plasmids in Claviceps purpurea. Mol Gen Genet 214: 128–134

    PubMed  Google Scholar 

  • Esser K (1985) Genetic control of aging. The mobile intron model. In: Bergener M, Ermini M, Stähelin HB (eds) The 1984 Sandoz lectures in gerontology. Thresholds in aging. Academic Press, London, pp 3–20

    Google Scholar 

  • Esser K, Kück U, Stahl U, Tudzynski P (1983) Cloning vectors of mitochondrial origin for eukaryotes: a new concept in genetic engeneering. Curr Genet 7: 239–243

    CAS  Google Scholar 

  • Faßbender S (1993) Intron-kodierte Polypeptide aus Chloroplasten und Mitochondrien. Dissertation, Fakultät für Biologie, Ruhr-Universität Bochum

    Google Scholar 

  • Field J, Gronostajski RM, Hurwitz J (1984) Properties of the adenovirus DNA polymerase. J Biol Chem 259: 9487–9495

    PubMed  CAS  Google Scholar 

  • Francou F (1981) Isolation and characterization of a linear DNA molecule in the fungus Ascobolus immersus. Mol Gen Genet 184: 440–444

    CAS  Google Scholar 

  • Gargber RC, Turgeon BG, Yoder OC (1984) A mitochondrial plasmid from the plant pathogenic fungus Cochliobolus heterostrophus. Mol Gen Genet 196: 301–310

    Google Scholar 

  • Gessner-Ulrich K, Tudzynski P (1992) Transcripts and translation products of a mitochondrial plasmid of Claviceps purpurea. Curr Genet 21: 249–254

    PubMed  CAS  Google Scholar 

  • Giasson L, Lalonde M (1987) Analysis of a linear plasmid isolated from the pathogenic fungus Ceratocystis fimbriata Ell.andHalst. Curr Genet 11: 331–334

    CAS  Google Scholar 

  • Giese H, Christiansen SK, Jensen HP (1990) Extrachromosomal plasmid-like DNA in the obligate parasitic fungus Erysiphe graminis f. sp. hordei. Theor Appl Genet 79: 56–64

    CAS  Google Scholar 

  • Griffiths AJF, Bertrand H (1984) Unstable cytoplasms in Hawaiian strains of Neurospora intermedia. Curr Genet 8:387— 398

    Google Scholar 

  • Griffiths JF, Kraus SR, Barton R, Court DA, Myers CJ, Bertrand H (1990) Heterokaryotic transmission of senescence plasmid DNA in Neurospora. Curr Genet 17: 139–145

    CAS  Google Scholar 

  • Gunge N, Taman’ A, Ozawa F, Sakaguchi K (1981) Isolation and characterization of linear desoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmid-associated killer character. J Bacteriol 159: 533–539

    Google Scholar 

  • Hall JD (1988) Modeling functional sites in DNA polymerase(. TIG 4: 42–46

    PubMed  CAS  Google Scholar 

  • Hashiba T, Homma Y, Hyakumachi M, Matsuda I (1984) Isolation of a DNA plasmid in the fungus Rhizoctonia solani. J Gen Microbiol 130: 2067–2070

    PubMed  CAS  Google Scholar 

  • Hay RT (1985a) The origin of adenovirus DNA replication: minimal DNA sequence requirement in vivo. EMBO J 4: 421–426

    PubMed  CAS  Google Scholar 

  • Hay RT (1985b) Origin of adenovirus DNA replication. Role of the nuclear factor I binding site in vivo. J Mol Biol 186: 129–136

    PubMed  CAS  Google Scholar 

  • Hermanns J, Osiewacz HD (1992) The linear mitochondrial plasmid pAL2–1 of long-lived Podospora anserina mutant AL2 is an invertron encoding a DNA and RNA polymerase. Curr Genet 22: 491–500

    PubMed  CAS  Google Scholar 

  • Hermanns J, Osiewacz HD (1994) Three mitochondrial unassigned open reading frames of Podospora anserina represent remnants of a viral-type RNA polymerase gene. Curr Genet 25: 150–157

    PubMed  CAS  Google Scholar 

  • Honeyman AL, Currier TC (1986) Isolation and characterization of linear DNA elements from the mitochondria of Gaeumannomyces graminis. Appl Environ Microbiol 52: 924–929

    PubMed  CAS  Google Scholar 

  • Inciarte MR, Lazaro JM, Salas M, Vinuela E (1976) Structure of replicating DNA molecules of Bacillus subtilis bacteriophage ¢29. J Virol 34: 187–199

    Google Scholar 

  • Ito J, Braithwaite DK (1991) Compilation and alignment of DNA polymerase sequences. Nucl Acids Res 19: 4045–4057

    PubMed  CAS  Google Scholar 

  • Jamet-Vierney C, Begel O, Belcour L (1980) Senescence in Podospora anserina: amplification of a mitochondrial DNA sequence. Cell 21: 189–194

    Google Scholar 

  • Katayose Y, Kajiwara S, Shishido K (1990) The basidiomycete Lentinus edodes linear mitochondrial DNA plasmid contains a segment exhibiting a high autonomously replicating sequence activity in Saccharomyces cerevisiae. Nucl Acids Res 18: 1395–1400

    PubMed  CAS  Google Scholar 

  • Kellner M, Burmester A, Wöstemeyer A, Wöstemeyer J (1993) Transfer of genetic information from the mycoparasite Parasitella parasitica to its host Absidia glauca. Curr Genet 23: 334–337

    PubMed  CAS  Google Scholar 

  • Kempken F (1989) Evolution mobiler genetischer Elemente: Lineare, extrachromosomale DNA bei dem Ascomyceten Ascobolus immersus. Bibi Mycol 128, Gramer, Berl in Stuttgart

    Google Scholar 

  • Kempken F (1994) Unique features of a linear plasmid of Ascobolus immersus and its implications for plasmid evolution in general. Current topics in molecular genetics. (in press)

    Google Scholar 

  • Kempken F, Meinhardt F, Esser K (1989) In organello replication and viral affinity of linear, extrachromosomal DNA of the ascomycete Ascobolus immersus. Mol Gen Genet 218: 523–530

    PubMed  CAS  Google Scholar 

  • Kempken F, Hermanns J, Osiewacz HD (1992) Evolution of linear plasmids. J Mol Evol 35: 502–513

    PubMed  CAS  Google Scholar 

  • Kim WK, Whitmore E, Klassen GR (1990) Homologous linear plasmids in mitochondria of three species of wheat bunt fungi, Tilletia caries, T. laevis and T. controversa. Curr Genet 17: 229–233

    CAS  Google Scholar 

  • Kistler HC, Leong SA (1986) Linear plasmidlike DNA in the plant pathogenic fungus Fusarium oxysporum f. sp. conglutinans. J Bacteriol 167: 587–593

    PubMed  CAS  Google Scholar 

  • Kück U (1989) Mitochondrial DNA rearrangements in Podospora anserina. Exp Mycol 13: 111–120

    Google Scholar 

  • Kück U, Faßbender S (1991) Zur Verwandtschaft mobiler Genelemente. BIUZ 21: 31–36

    Google Scholar 

  • Kück U, Osiewacz HD, Schmidt U, Kappelhoff B, Schulte E, Stahl U, Esser K (1985) The onset of senescence is affected by DNA rearrangements of a discontinous mitochondrial gene in Podospora anserina. Curr Genet 9:373— 382

    Google Scholar 

  • Kuiper MTR, Lambowitz AM (1988) A novel reverse transcriptase activity associated with mitochondrial plasmids of Neurospora. Cell 55: 693–704

    PubMed  CAS  Google Scholar 

  • Kuiper MTR, Sabourin JR, Lambowitz AM (1990) Identification of the reverse transcriptase encoded by the Mauriceville and Varkud mitochondrial plasmids of Neurospora. J Biol Chem 265: 6936–6943

    PubMed  CAS  Google Scholar 

  • Kuzmin EV, Levchenko JV (1987) S1 plasmid from cms-S-maize mitochondria encodes a viral type DNA polymerase. Nucl Acids Res 15: 6758

    PubMed  CAS  Google Scholar 

  • Kuzmin EV, Levchenko JV, Zaitseva GN (1988) S2 plasmid from cms-S-maize mitochondria potentially encodes a specific RNA polymerase. Nucl Acids Res 16: 4177

    PubMed  CAS  Google Scholar 

  • Lambowitz AM (1989) Infectious introns. Cell 56: 323–326

    PubMed  CAS  Google Scholar 

  • Lazarus CM, Earl AJ, Turner G, Küntzel H (1980) Amplification of a mitochondrial DNA sequence in the cytoplasmically inherited “ragged” mutant of Aspergillus amstelodami. Eur J Biochem 106: 633–641

    PubMed  CAS  Google Scholar 

  • Leon P, O’Brian-Vedder C, Walbot V (1992) Expression of ORF1 of the linear 2.3 kb plasmid of maize mitochondria: product localization and similarities to the 130 kDa protein encoded by the S2 episom. Curr Genet 22: 61–67

    PubMed  CAS  Google Scholar 

  • Li Q, Nargang FE (1993) Two Neurospora mitochondrial plasmids encode DNA polymerases containing motifs characteristic of family B DNA polymerases but lack the sequence asp-thr-asp. Proc Natl Acad Sci USA 90: 4299–4303

    PubMed  CAS  Google Scholar 

  • Manson JC, Lidedell AD, Leaver CJ, Murray K (1986) A protein specific to mitochondria from S-type male-sterile cytoplasm of maize is encoded by an episomal DNA. EMBO J 5: 2775–2780

    PubMed  CAS  Google Scholar 

  • Marcou (1961) Notion de longévité et nature cytoplasmique du déterminant de la sénescence chez quelques champignons. Ann Sci Nat Bot 12: 653–764

    Google Scholar 

  • Meinhardt F, Esser K (1984) Linear extrachromosomal DNA in the morel Morchella conica. Curr Genet 8: 15–18

    CAS  Google Scholar 

  • Meinhardt F, Esser K (1987) The plasmids of the morels: characterization and prerequisites for vector development. Appl Mircrobiol Biotechnol 27: 276–282

    CAS  Google Scholar 

  • Meinhardt F, Rohe M (1992) Extranuclear inheritance: linear protein-primed replicating genomes in plants and microorganisms. Prog Bot 54: 334–357

    Google Scholar 

  • Meinhardt F, Kempken F, Esser K (1986) Proteins are bound to the termini of a linear plasmid in the filamentous fungus Ascobolus immersus. Curr Genet 11: 243–246

    CAS  Google Scholar 

  • Meinhardt F, Kempken F, Kämper J, Esser K (1990) Linear plasmids among eukaryotes: fundamentals and applications. Curr Genet 17: 89–95

    PubMed  CAS  Google Scholar 

  • Michel F, Lang F (1985) Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature 316: 641–643

    PubMed  CAS  Google Scholar 

  • Minuth W, Tudzynski P, Esser K (1982) Extrachromosomal genetics of Cephalosporium acremonium. I. Characterization and mapping of mitochondria DNA. Curr Genet 5: 227–231

    Google Scholar 

  • Miyashita S, Hirochika H, Ikeda J, Hashiba T (1990) Linear plasmid DNAs of the plant pathogenic fungus Rhizoctonia solani with unique terminal structures. Mol Gen Genet 220: 165–171

    PubMed  CAS  Google Scholar 

  • Mogen KL, Siegel MR, Schardl CL (1991) Linear DNA plasmids of the perennial ryegrass choke pathogen, Epichloe typhina ( Clavicipitaceae ). Curr Genet 20: 519–526

    Google Scholar 

  • Mohan M, Meyer RJ, Anderson JB, Horgan PA (1984) Plasmid-like DNAs in the commercially important mushroom genus Agaricus. Curr Genet 8: 615–619

    CAS  Google Scholar 

  • Müller F, Brühl KH, Freidel K, Kowallik KV, Ciriacy M (1987) Processing of the Tyl proteins and formation of Tyl virus-like particles in Saccharomyces cerevisiae. Mol Gen Genet 226: 145–153

    Google Scholar 

  • Nargang FE, Bell JB, Stohl LL, Lambowitz AM (1984) The DNA sequence and genetic organization of a Neurospora mitochondrial plasmid suggest a relationship to introns and mobile elements. Cell 38: 441453

    Google Scholar 

  • Nargang FE, Pande S, Kennell JC, Akins RA, Lambowitz AM (1992) Evidence that a 1,6 kilobase region of Neurospora mtDNA was derived by insertion of the LaBelle mitochondrial plasmid. Nucl Acids Res 20: 1101–1108

    PubMed  CAS  Google Scholar 

  • Normand P, Simonet P, Giasson L, Ravel-Chapius P, Fortin JA, Lalonde M (1987) Presence of a linear plasmidlike DNA molecule in the fungal pathogen Ceratocystis fimbriata Ell.andHalst. Curr Genet 11: 335–338

    CAS  Google Scholar 

  • Oeser B (1988) S2 plasmid from Zea mays probably encodes a specific RNA polymerase: an alternative alignment. Nucl Acids Res 16: 8729

    PubMed  CAS  Google Scholar 

  • Oeser B, Tudzynski P (1989) The linear mitochondrial plasmid pCIK1 of the phytopathogenic fungus Claviceps purpurea may code for a DNA polymerase and an RNA polymerase. Mol Gen Genet 217: 132–140

    PubMed  CAS  Google Scholar 

  • Oeser B, Rogmann-Backwinkel P, Tudzynski P (1993) Interactions between mitochondrial DNA and mitochondrial plasmids in Claviceps purpurea: analysis of plasmid-homologous sequences upstream of the IrRNAgene. Curr Genet 23: 315–322

    PubMed  CAS  Google Scholar 

  • Osiewacz HD (1990) Molecular analysis of aging processes in fungi. Mutat Res 237: 1–8

    PubMed  CAS  Google Scholar 

  • Osiewacz HD, Esser K (1984) The mitochondrial plasmid of Podospora anserina: a mobile intron of a mitochondrial gene. Curr Genet 8: 299–305

    CAS  Google Scholar 

  • Osiewacz HD, Hermanns J, Marcou D, Triffi M, Esser K (1989) Mitochondrial DNA rearrangements are correlated with a delayed amplification of the mobile intron (p1DNA) in a long-lived mutant of Podospora anserina. Mutat Res 219: 9–15

    PubMed  CAS  Google Scholar 

  • Pande S, Lemire EG, Nargang FE (1989) The mitochondrial plasmid from Neurospora intermedia strain Labelle-lb contains a long open reading frame with blocks of amino acids characteristic of reverse transcriptases and related proteins. Nucl Acids Res 17: 2023–2042

    PubMed  CAS  Google Scholar 

  • Plummer KM, Howlett BJ (1993) Major chromosomal length polymorphisms are evident after meiosis in the phytopathogenic fungus Leptosphaeria maculons. Curr Genet 24: 107–113

    PubMed  CAS  Google Scholar 

  • Pring DR, Levings III CS, Hu WWL, Timothy DH (1977) Unique DNA associated with mitochondria in the “S”-type cytoplasm of male-sterile maize. Proc Natl Acad Sci USA 7: 2904–2908

    Google Scholar 

  • Qin H, Welker DL, Youssef NN (1993) Isolation and characterization of a linear plasmid from the entomopathogenic fungus Ascosphaera apis. Plasmid 29: 19–30

    PubMed  CAS  Google Scholar 

  • Rekosh DMK, Russel WC, Bellet AJD, Robinson AJ (1977) Identification of a protein linked to the ends of adenovirus DNA. Cell 11: 283–295

    PubMed  CAS  Google Scholar 

  • Rizet G (1953) Sur l’impossibilité d’obtenir la multiplication végétative ininterrompue et illimitée de l’ascomycète Podospora anserina. CR Acad SCI Paris 237: 838–855

    CAS  Google Scholar 

  • Robison MM, Royer JC, Horgen PA (1991) Homology between mitochondrial DNA of Agaricus bisporus and an internal portion of a linear mitochondrial plasmid of Agaricus bitorquis. Curr Genet 19: 495–502

    PubMed  CAS  Google Scholar 

  • Rohe M, Meinhardt F (1992) Both open reading frames of the linear plasmid pMC3–2 from the ascomycete Morchella conica are transcribed in vivo. Curr Genet 22: 507–509

    PubMed  CAS  Google Scholar 

  • Rohe M, Schrage K, Meinhardt F (1991) The linear plasmid pMC3–2 from Morchella conica is structurally related to adenoviruses. Curr Genet 20: 527–533

    PubMed  CAS  Google Scholar 

  • Rohe M, Schründer J, Tudzynski P, Meinhardt F (1992) Phylogenetic relationships of linear, protein-primed replicating genomes. Curr Genet 21: 173–176

    PubMed  CAS  Google Scholar 

  • Rubidge T (1986) Survey of Fusarium species for plasmidlike DNA and some evidence for its occurrence in a strain of F. merismoides. Trans Br Mycol Soc 87: 463–466

    CAS  Google Scholar 

  • Samac DA, Leong SA (1986) Plasmid-like DNAs from Fusarium solani. J Cell Biochem 19c: 27

    Google Scholar 

  • Samac DA, Leong SA (1988) Two linear plasmids in mitochondria of Fusarium solani f. sp. cucurbitae. Plasmid 19: 57–67

    PubMed  CAS  Google Scholar 

  • Savilahti H, Bamford DH (1987) The complete nucleotide sequence of the left very early region of Escherichia coli bacteriophage PRD1 coding for the terminal protein and the DNA polymerase. Gene 57:121–130

    Google Scholar 

  • Schründer J, Debaud JC, Meinhardt F (1991) Adenovirallike genetic elements in Hebeloma circinans. Abstr 3rd Eur Symp Mycorrhizas, Sheffield

    Google Scholar 

  • Schründer J, Rohe M, Debaud JC, Meinhardt F (1992) Characterization of a linear DNA-molecule from the ectomycorrhizal fungus Hebeloma circinans and its relationship to other protein primed replicating genomes. Abstr VAAM Meet 1992, Düsseldorf

    Google Scholar 

  • Schulte E, Lambowitz AM (1991) The LaBelle mitochondrial plasmid of Neurospora intermedia encodes a novel DNA polymerase that may be derived from a reverse transcriptase. Mol Cell Biol 11: 1996–1706

    Google Scholar 

  • Schulte E, Kück U, Esser K (1988) Extrachromosomal mutants from Podospora anserina: permanent vegetative growth in spite of multiple recombination events in the mitochondrial genome. Mol Gen Genet 211: 342–349

    CAS  Google Scholar 

  • Seeger C, Summers J, Manson WS (1991) Viral DNA synthesis. Curr Top Microbiol Immunol 168: 41–59

    PubMed  CAS  Google Scholar 

  • Sellem CH, Sainsard-Chanet A, Belcour L (1990) Detection of a protein encoded by a class II mitochondrial intron of Podospora anserina. Mol Gen Genet 224: 232–240

    PubMed  CAS  Google Scholar 

  • Sheperd HS (1992) Linear, non-mitochondrial plasmids of Alternaria alternata. Curr Genet 21: 169–172

    Google Scholar 

  • Sor F, Wesolowski M, Fukuhara H (1983) Inverted terminal repetitions of the two linear DNA associated with the killer character of the yeast Kluyveromyces lactis. Nucl Acids Res 11: 5037–5044

    PubMed  CAS  Google Scholar 

  • Stahl U, Lemke PA, Tudzynski P, Kück U, Esser K (1978) Evidence for plasmid-like DNA in a filamentous fungus, the ascomycete Podospora anserina. Mol Gen Genet 162: 341–343

    PubMed  CAS  Google Scholar 

  • Steinhilber W, Cummings DJ (1986) A DNA polymerase activity with characteristics of a reverse transcriptase in Podospora anserina. Curr Gen Genet 10: 389–392

    CAS  Google Scholar 

  • Stohl LL, Collins RA, Cole MD, Lambowitz AM (1982) Characterization of two new plasmid DNAs found in mitochondria of wild-type Neurospora intermedia strains. Nucl Acids Res 10: 1439–1458

    PubMed  CAS  Google Scholar 

  • Takano H, Kawano S, Kuroiwa T (1991) Telomeric structures in a linear mitochondrial plasmid from Physarum polycephalum. Curr Genet 20: 315–317

    CAS  Google Scholar 

  • Tudzynski P, Düvell A (1985) Molecular aspects of mitochondrial plasmids in Claviceps purpurea. In: Quaglianello E, Slater EC, Palmieri F, Saccone C, Kroon AN (eds) Achievements and perspectives of mitochondrial research. Vol II. Biogenesis. Elsevier, Amsterdam, pp 249–256

    Google Scholar 

  • Tudzynski P, Esser K (1986) Extrachromosomal genetics of Claviceps purpurea. II. Plasmids in various wild strains and integrated plasmid sequences in mitochondrial genomic DNA. Curr Genet 10: 463–467

    Google Scholar 

  • Tudzynski P, Stahl U, Esser K (1980) Transformation to senescence with plasmid-like DNA in the ascomycete Podospora anserina. Curr Genet 2: 181–184

    CAS  Google Scholar 

  • Tudzynski P, Düvell A, Esser K (1983) Extrachromosomal genetics of Claviceps purpurea. I. Mitochondrial DNA and mitochondrial plasmids. Curr Genet 7: 145–150

    Google Scholar 

  • Vartapetian AB, Bogdanov AA (1987) Proteins covalently linked to viral genomes. In: Cohn WE, Moldave K (eds) Progress in nucleic acid research and molecular biology. Academic Press, New york, 34: 209–230

    Google Scholar 

  • Vierula PJ, Bertrand H (1992) A deletion derivative of the Kalilo senescence plasmid forms hairpin and duplex DNA structures in the mitochondria of Neurospora. Mol Gen Genet 234: 361–368

    PubMed  CAS  Google Scholar 

  • Vierula PJ, Cheng CK, Court DA, Humphrey RW, Thomas DY, Bertrand H (1990) The kalilo senescence plasmid of Neurospora intermedia has covalently-linked 5’-terminal proteins. Curr Genet 17: 195–201

    CAS  Google Scholar 

  • Wang K, Pearson GD (1985) Adenovirus sequences required for replication in vivo. Nucl Acids Res 13: 5173–5187

    PubMed  CAS  Google Scholar 

  • Wang GH, Seeger C (1992) The reverse transcriptase of Hepatitis B Virus Acts as a protein primer for viral DNA synthesis. Cell 633–670

    Google Scholar 

  • Wang H, Kennell JC, Kuiper MTR, Sabourin JR, Saladanha R, Lambowitz AM (1992) The Mauriceville plasmid of Neurospora crassa: characterization of a novel reverse transcriptase that begins cDNA synthesis at the 3’ end of template RNA. Mol Cell Biol 12: 5131–5144

    PubMed  CAS  Google Scholar 

  • Wright RW, Horrum MA, Cummings DJ (1982) Are mitochondrial structural genes selectively amplified during senescence in Podospora anserina. Cell 29: 505–515

    PubMed  CAS  Google Scholar 

  • Xiong Y, Eickbusch TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9: 3353–3362

    PubMed  CAS  Google Scholar 

  • Yang X, Griffiths AJF (1993) Plasmid diversity in senescent and nonsenescent strains of Neurospora. Mol Gen Genet 237: 177–186

    PubMed  CAS  Google Scholar 

  • Yoshikawa H, Ito J (1982) Nucleotide sequence of the major early region of bacteriophage PHI29. Gene 17: 323–335

    PubMed  CAS  Google Scholar 

  • Yui Y, Katayose Y, Shishido K (1988) Two linear plasmidlike DNA elements simultaneously maintained in Pleurotus ostreatus. Biochem Biophy Acta 951: 53–60

    CAS  Google Scholar 

  • Zabala G, Walbot V (1988) An S1 episomal gene of maize mitochondria is expressed in male sterile and fertile plants of the S-type cytoplasm. Mol Gen Genet 211: 386–392

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kempken, F. (1995). Plasmid DNA in Mycelial Fungi. In: Kück, U. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10364-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10364-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10366-1

  • Online ISBN: 978-3-662-10364-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics