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Phase Transitions in Quantum Spin Systems with 
Isotropic and Nonisotropic Interactions 
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We prove the existence of spontaneous magnetization at sufficiently low 
temperature, and hence of a phase transition, in a variety of quantum spin 
systems in three or more dimensions. The isotropic spin 1/2 x -y  model and 
the Heisenberg antiferromagnet with spin 1, 3]2,...and with nearest neighbor 
interactions on a simple cubic lattice are included. 
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1. INTRODUCTION 

A basic subtlety in the study of statistical mechanics is the following: In 
nature, we observe abrupt changes in certain basic physical quantities, such 
as the magnetization of a magnet, but the statistical mechanics of systems 
with finitely many degrees of freedom is typically real analytic in all external 
variables. The resolution of  this apparent paradox is that the abrupt changes 
are only approximately abrupt: True discontinuities only occur in the limit 
of an infinite system. For this reason, one must expect the problem of 
rigorously proving the existence of phase transitions to be a difficult one 
even for systems for which there is considerable numerical evidence or even 
a heuristic explanation for such a transition. In fact, until recently, the only 
general method available for directly proving the existence of phase transi- 
tions was Peierls' method, developed by Dobrushin ~8~ and Griffiths ~15~ on 
the basis of original ideas of Peierls. ~35~ The method was developed originally 
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for classical spin systems, but it has been extended by Ginibre (la~ and 
Robinson (39) to treat highly anisotropic (Heisenberg) quantum models and 
by Glimm et  al. (~4~ to treat certain quantum field theories. The quantum 
spin systems were handled as perturbations of  the classical (Ising) model, 
so that this method seems to be restricted to the highly anisotropic regime; 
the quantum field theories are treated by going to the Euclidean region, 
where they become essentially c lass ica l  models. (~9~'~ 

One way of describing the limitations of  the Peierls argument is in terms 
of the broken symmetries that often accompany phase transit ions--the 
simplest physical example is the occurrence of a spontaneous magnetization 
in some direction in the absence of an external field. In all cases of  the Peierls 
argument accompanied by a broken symmetry, this symmetry has been a 
discrete (finite) symmetry group. Until recently, one has been unable to 
prove rigorously the existence of phase transitions in systems with a con- 
tinuous symmetry group, such as the classical Heisenberg model (" classical" 
spins with values on the unit sphere in R 3) or the quantum Heisenberg 
model. This situation has been changed by recent work of Fr6hlich, Simon, 
and Spencer (12~ (henceforth FSS), who prove the existence of phase transitions 
in a variety of classical spin systems, including certain classical Heisenberg 
models. I t  is our goal in this paper to provide the first p roof  of  phase transi- 
tions in any kind of quantum spin system with continuous symmetry-- in  
particular, we will prove that such transitions occur in the spin-1 nearest 
neighbor, quantum Heisenberg antiferromagnet on a simple cubic lattice in 
three or more space dimensions. It  is well known that a phase transition 
accompanied by a spontaneous magnetization cannot occur for this model 
in one or two dimensions. (21'28~ 

Since we use some of the ideas of  FSS as an important element of  our 
proof, it is useful to recall them. While FSS deal directly with infinite volume 
expectations, it is useful, for our purposes, to rephrase their results in terms 
of finite volume statements. Let A be a parallelepiped in the simple v-dimen- 
sional cubic lattice Z v of  the form 

A = { a ] 0  ~<.1 ~ < L ~ -  1 ..... 0 <. ,zv < . L ~ -  1} 

We shall refer to A as the standard L~ • �9 �9 �9 • Lv box. In the classical model, 
one has a " s p i n "  S~ for each a ~ A, where S has three components S (j~, 
j = 1, 2, 3. These classical spins will be normalized by 

S~,. S~-= ~ (S~J)) 2 = 1 (1) 
J 

and distributed according to the isotropic spherical distribution denoted by 

4 The Peierls argument has recently been extended to the entire anisotropic regime in the 
classical case C48) and to a large regime for the quantum anisotropic ferromagnet. C~9> 
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dA(S). The basic Hamiltonian is 

H = - ~ S = -  S=+s~ (2) 

where i is summed from 1 to v, and = is summed over A. Here 8~ is the unit 
vector whose ith component is 1 and we use the convention that i f~  = L~ - 1, 
then (= + li~)~ = 0, i.e., H has periodic boundary conditions. It is important 
that changing the boundary conditions does not affect the existence or 
nonexistence of a phase transition, so that the imposition of periodic 
boundary conditions is purely a matter of mathematical convenience. H has 
each pair of nearest neighbors (in A, viewed as a torus) interacting once with 
coupling 1. Since we will have the inverse temperature/3 as a free variable, 
we do not add an additional factor J in front of (2). We will occasionally 
use S= �9 S= = 1 to rewrite H as 

H = const + 1 ~ (S= - S=+8,) 2 (2') 

The partition function Z is defined by 

Z = ~ exp[-/TH(S)] ~ dh (S=) (3a) 
d eLEA 

and thermal expectations by 

(f(S))A.B = Z - 1  I f ( s )  exp[-flH(S)] ~ da (S=) (3b) 
/ t  

d 

Our translation of FSS is that their basic result is a proof that 

lim ( ~ ,  ( I A I - I ~  S~S')2~ 5 0  (4) 
a--, , x , l \ j % " =  z = c a  I / a , 5  

for t3 sufficiently large. Intuitively, (4) corresponds to macroscopic fluctuations 
in the bulk magnetization (since (S~ j)) = 0 by symmetry) and hence to the 
presence of a multiplicity of phases. We return to the question of relating (4) 
to other notions of phase transition at the conclusion of this section. 

We introduce the Fourier variables ~p by 

1 
Sp = ~ =z~ A [ exp( - ip -  a)]S= (5) 

where p runs through the dual lattice A*, i.e., ps = 2rrns/Ly; ns = - � 89  s + 
1 ..... �89 s (Ls even) or - �89 s - 1),..., �89 - 1) (Ly odd). In terms of these 
Fourier variables, H has the form 

H = const + ~ EpSp ~ g-t~ (2") 

where 

Ep = �89 ~ [1 - exp(ip �9 5)] = v i ~ cospi /> 0 (6) 
181=1 i = Z  
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and with the sum over 16[ over the 2v vectors + 8,. For a quantum system in 
which each spin has angular momentum S, 2SEp is the energy of a 
momentum-p spin wave. (4,9,1~ For later purposes we note that 

Ep ~ 1p[2/2 for ]PI small (7) 

In terms of the Fourier variables, (4) has the form 

lim [A[-lgp= 0 ~ 0 (4') 
./k--* o0 

where 

gp = (~p �9 ~_p)  (8) 

The FSS proof of (4') comes from two bounds. The first is the Plancherel 
relation (which is completely trivial in this case since finite sums are involved), 
yielding a sum rule 

1 
I A--- ~ ~ gp = ((S,) 2) = 1 (9) 

peA* 

(any value of a can be used). The second is the basic bound 

gp <~ 3/(2/3Ep); p ~ 0 (10) 

proven by FSS. The condition (10) has the physical interpretation that the 
average energy Ep(S~ ) .  Sift) per mode is dominated by its equipartition 
value of �89 per degree of freedom, counting each value of j as a separate 
degree of freedom. The bound (10) implies that 

lim IA1-1 ~ gp <. (3/2/3)G,(0) 
[A[~ r p:~O 

where 

G,(0) = (27r)-" J, (Ep)-i d~p (11) 
I p d < ~  

and we have obtained the Fourier integral (11) as a limit of Fourier sums. 
G,(0) is finite when v >/ 3 by (7). The sum rule (9) implies that (4') holds so 
long as 

(3/2/3)G,(0) < 1 

i.e., 

/3 > ~G,(0) --/3~ss (12) 

This method relies on the fact that the bound (10) and the sum rule (9) force 
a macroscopic occupation in the p = 0 mode. This is a kind of spin-wave 
Bose condensation. The above discussion is for the ferromagnet, but the same 
obviously applies to the antiferromagnet with p replaced by (rr,..., ~r) - p in 
suitable places. 

To explain the problems t h a t  have to be overcome in extending the 
FSS results to the quantum case, we must describe the model. Let S be a 
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fixed number chosen from 1/2, 1, 3/2 ..... Each site = E A has associated 
with it a (2S + 1)-dimensional space ~ ,  ~ C 2s+1 and three self-adjoint 
operators S= (S~J~,j = 1, 2, 3) obeying the usual commutation relations 
(summation convention used on Latin indices): 

[S~ s~, S~ ~1 = iEj~S~ '~ (13) 

However, (1) is replaced by 

S~ ~ = ~ (S~J') 2 = S(S  + 1) (1 Q) 
J 

Since dim ~,~ = 2S + 1, (13) and (1 Q) essentially determine S= uniquely. 
In volume A, the basic Hilbert space is ~ = | ~ ,  =~ C (2s+l>JAI. We 
abuse notation by letting S= stand for the triplet of operators on ~ that are 
the tensor product of 1 on each ~ for y r ~t and S= on ~Y~. The basic 
Hamiltonian is still given by (2) [or (2')] but now Z and thermal expectations 
are given by 

Z = Traea[exp(-/3HA)] (3 Qa) 

(A>A,e = Z -~ Tr[A exp(-/3H~,)] (3Ob) 

We still define operators ~p by (5). Due to the commutation relations 

= (13') 
one has that 

In particular, ~J~ commutes with its adjoint ~J~* = ~ and, with the defini- 
tion of g, by (8), we have gp = g_p. The expression (2") still holds [we 
caution the reader that the constants in (2') and (2") are different from those 
in the classical case]. The sum rule (9) is replaced by 

1 
[A--'~ ~ g" = S(S + 1) (9Q) 

p~/k* 

The difficult problem to overcome is that (10) cannot be true in the quantum 
case ! For, if (10) holds, then as fl ---> ~ with A fixed and finite, gp would 
approach zero and this, in turn, would imply that S=.S~ -= f,~ approaches a 
constant as /3 -+ ~ .  But as /3 ~ o% f ~  -+ S 2 for Qt ~ y and S(S  + 1) for 

= y. Therefore, because of the values o f f ,  r in the ferromagnetic ground 
state, (10) is false in the quantum case. We believe that the following is true 
for the ferromagnet: 

gp <~ V'~-~S coth(~S/3Ep) (10Q) 

We will prove the analog of (10Q) for the antiferromagnet in a two-step 
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process. First, we will prove (10) with gp replaced by a "Duhamel two-point 
function," bp. Second, we will obtain bounds relating bp and g, .  The second 
step in the argument carries over to the ferromagnet. Our proof of the first 
part does not. We believe that the first bound will be true in that case, but are 
unable to prove it. 

In Section 2, we discuss this Duhamel two-point function, which 
is not new (see the discussion in that section), and in Section 3 we prove 
a basic bound relating b, to gp (involving also the double commutator 
~ =  1 [[S~J), HI, ~ ] ) .  Section 4 contains a proof of the analog of (10) with 
gp replaced by bp. In Section 5 we put everything together to prove a phase 
transition in the sense of (4). In Sections 6 and 7 and the appendices we 
discuss the Heisenberg antiferromagnet and additional results. 

We should emphasize here that certain aspects of our argument are 
very general. The bounds in Section 3 are "operator theoretic" in the sense 
that they depend on no special properties of the Hamiltonian. As we will 
explain, we believe that the bounds in Section 4 have an extension to any 
antiferromagnetic quantum lattice system, but this part of our proof only 
works for nearest neighbor interactions on a simple cubic lattice (or a rather 
small class of other lattices that does not include face- or body-centered cubic 
lattices). In any event, the bounds in Section 4 depend neither on algebraic 
properties of the spins nor on the norms of the spin operators. It is only in 
combining the bounds from Sections 3 and 4 with a sum rule of the type of 
(9Q) that these detailed properties of the spin enter. It is here that the 
S dependence of our critical temperature bounds arises. 

We also note that modulo a factor of 3/2, the bounds that would follow 
if (10Q) could be proved for the ferromagnet, have the interpretation of 
making rigorous certain elements of spin-wave theory. ~,9,1~ We discuss this 
point further in Appendix B. 

Finally, we turn to relating the criterion (4) for phase transitions to 
other criteria. This is a problem discussed already by Griffiths ~16) (see 
Hepp and Lieb ~2~ for related results). Let us begin by giving an abstract 
version of Griffiths' main theorem and corollary (Ref. 16, w motivated 
by the form of the results given in the appendix to Ref. 20. 

To motivate the following theorem, it is useful to think of n as para- 
metrizing the size of a magnetic system, x as the magnetization, y as a 
magnetic field, and c~ as the partition function. 

Theorem 1.1 (Griff i ths~6)) .  Let /z, be a sequence of probability 

measures (i.e., f dtz~ = 1) on the real line such that, for y in an interval 

[ - e ,  c] about 0, 

lim -1 In ( e y'~ ~(Y) dlz,(x) 
~.-* oo n d 
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exists (and is finite). We assume c > 0. Let  

a t  = + lim {y-l[a(+y) - a(0)]} 
v$o 

(which exists since a is convex). Let  3 > 0 be fixed. Then 

lim dl~dx) < 1; lim dl~(x) < 1 
a +  + 6 ) n  ~ 

ProoL We prove  the first s tatement.  Let  

b .  = d/z~ (x) 
a+  +~)n 

If the first s ta tement  is false, then lira(l/n) In b .  /> O. Clearly, for  y /> 0 

f eyx dlx,(x ) >1 b~e,(~+ +o~ 

so that,  if lim(1/n) In b ,  /> 0, 

a(y) >1 (a+ + ~)y 
Since c~(0) = 0, 

l i m y - l [ ~ ( y )  - ~(0)] t> a+ + 3 
~$o 

which is impossible. [ ]  
This theorem says that  

_ dF"(x) 

goes to 1 with exponential ly small error.  

Corollary 1.1. Under  the hypothesis  o f  Theorem 1.1, if a+ = a_ = a 
[i.e., if ~(y) is differentiable a t  y = 0], then for  functions f obeying If(x)] ~< 
Ae BI~I for  some B < c (defined in Theorem 1.1) 

lim f f(x/n) dlx, (x) = f(a) 
n ~  oo J 

Remark. F o r f ( x )  = x ~, this is a result o f  H e p p  and LiebJ  2~ 

ProoL For  any f that  is bounded,  this follows immediately  f rom the 
theorem. Fix/3 > 0. Then 

fx~B lf(x/n)] dtz~(x) <~ A f=~B e"~'" dt'.(x) 

<~ Ae(B- c)B f eCXm dlz~(x ) 

<~ Ae(~-c~a[f e c= d/~(x) ]  lm 
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by H61der's inequality. Thus 

l ~  f If(x/n)[ d#,~(x) <~ Ae(B-c)a[a(c) + a(--c)] 
,II 

so that, given e, we can find/3o such that 

I~  ~ lf(x/n)l am(x) <~ E 

n-~oo JE[xI~Bo n 

Since f(- /n)  is bounded on (-flon, flon), we can use the remark at the beginning 
of the proof to conclude that 

lim f f(x/n) <. lim f f(x/n) dt,,(x) <<. f(a) + E f(a) <~ 

Since ~ is arbitrary, the result follows. �9 

Coro l la ry  1.2. Under the hypotheses of Theorem 1.1, for any function 
fobey ing  If(x)I ~< Ae BIxl for some B < c 

l~m f f(x/n) dF.(x) <~ max f (y)  
0._ "<y'<{~+ 

In particular, if f (y) = y2k (k an integer) and a_ = - a + ,  then 

a+ >1 lira x/n) 2~ dl~(x 

Remark. The case f (y)  = y2e with x/n bounded on supp F~ is the main 
result of Griffiths, (16) whose proof is abstracted above. 

Proof. For f bounded, the result follows from Theorem 1.1. The 
general case follows as in Corollary 1.1. �9 

Following Griffiths, (16> we can apply Corollary 1.2 to prove that long- 
range order in the sense of (4) implies a spontaneous magnetization. Let 
HA be the Hamiltonian of a system in a box with periodic boundary condi- 
tions (but with no restriction on the form of the interaction). Let A= be an 
operator at site ~,. Define m(A) by 

m(A) = lim d (lim[A[-1 ln(Tr[exp(--flHa + F E A = ) ] } )  
u~to ~ \A-,oo k L \ 

As an immediate consequence of Corollary 1.2, we have the following 
result: 

Theorem 1.2. Under the above conditions, if Z ~ a  A= commutes with 
Ha,  then 

, 
re(A) >1 lim| [A[ } ~ (14) 
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In particular, if there is a unitary operator leaving HA invariant but taking 
A= to -A=  and if the right side of (14) is nonzero for some k, then there is a 
phase transition in the sense that limA-. ~ l-hi-1 ln{Tr[exp(-flHA + / z  ~ A=)]} 
is nondifferentiable at/x = 0. 

Remark 7. It is well known (41~ that the nondifferentiability of the free 
energy implies multiple "phases"  in the sense of several equilibrium states. 

Remark 2. If Tr[exp(-fiHA +/L Y. A=)] is replaced by Tr[exp(-~HA) 
exp(~ ~ A=)], the commutation condition is not needed; the commutation 
condition is only used to obtain the physically relevant object. The commuta- 
tivity unfortunately fails in several cases of interest, notably the x-y and 
the antiferromagnetic models. In Section 5, after Theorem 5.2, we develop a 
different strategy for proving the existence of a phase transition in the 
noncommutative case, and apply it there to the x-y model. In Section 6 we 
use it again for the antiferromagnet. 

Theorem 1.2 with k = 1 shows that (4) implies there is a phase transition 
in general systems, but one should expect that in the isotropic Heisenberg 
model it yields a lower bound on m(S (a~) which is too small by a factor of 
three. For, in the isotropic model, ((Z S~a)) 2) = �89 S=[ 2) by symmetry, 
but as soon as an external field in the other direction is turned on, the Lee- 
Yang theorem (2) implies that <(IA1-1 y S~,~)2> __> 0 as [A[ ~ oo for i = 1, 2. 
This can be remedied by the use of some angular momentum theory. 

T h e o r e m  1.3. In the isotropic Heisenberg model, the spontaneous 
magnetization m(S (3~) obeys 

m(S(a))2>~ A-~=lim ~ I I A [ - I = ~ A  ~ S =  2)A =3A.~| ( I [ A I - z ~ S ~ 3 ) 2 )  

Remark. The only restriction on the interaction is its isotropy in spin 
space, i.e., that H commutes with simultaneous rotations of all spins. 

ProoL Let J(o = ~=~a S~ ~ and define 

Letting 

IJl = (J~) + J~)  + Ji%) + 1)1/2 _ �89 

t 

a(j,k) = (2j + 1) -1 ~ n ~ 

we have by the isotropy of  H that 

2k (Jia)) = ~ a(j, 2k) prob( lJ  [ = j )  
t 
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For simplicity of notation, consider the case where [A[ is even, so that [J[ 
has integral eigenvalues. For j integral 

a(j, 2k) 1> - -  
2 ~ 2 J 

2j + l ~ n2~ >~ ~.--z--:--r, ( x2k dx 
~=z z j +  IJo 

j2e 2j 2 j2~ 
1> j = 0 , 1 , . . . ;  k~> 1 

2 k +  1 2 j +  1 3 2 k +  1' 

Therefore, for k t> 1, 

2 2 
2~ <[Jl ~k) ~ <lJl~) ~ (15) (Ji3)) /> 3(2k + 1) 3(2k -t- 1) 

Using the definition of I J I, it is not hard to see that 

lim ( I A ] - I ~ S =  2 ) = l i m [ A l - 2 ( [ j l 2  ) 
A---~ oo 

so that the result follows by taking k ~ oo in (15) and applying Theorem 
1.2. �9 

2, T H E  D U H A M E L  T W O - P O I N T  F U N C T I O N  

For quantum systems in finite ~volume with partition function Z = 
Tr(e-BH), we define the Duhamel two-point function (DTF) by 

(A, B) = Z - 1 Tr(e- X~UAe - (1 - x~BHB) dx (16) 

One expression of the naturalness of this object is that it has been introduced 
and discussed by a variety of authors, e.g., Bogoliubov, (5~ Kubo, (24~ 
Hohenberg, (21) Mermin and Wagner, (28~ Mori, (29) Naudts et al., (3~ 
Powers, (36) and Roepstorff. (4~ Fr6hlich (4s~ has independently noted that it is 
likely to be useful in finding quantum generalizations of (10). We warn the 
reader that (16) may differ by factors of/3 and by adjoints from the con- 
ventions of the above authors. 

The name we have chosen comes from the fact that (1/2)/~2(A, A ) Z  is 
the second-order term in a perturbation expansion, first derived by Duhamel, 
for Tr [exp( -~H + ~A)], i.e., 

~2 
(A, B ) Z  = ~ Tr[exp( -~H + ~A + AB)] (17) 

From (17), or from the definition (16), it is obvious that 

(a,  B) = (B, A) (18) 
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so that, in particular, i fA = A~ + iA, with A~* = A~, A** = A~, then 

(A*, A)  = ( A .  A 0 + (A,, AO (19) 

If  (B) .  -= {Tr[exp(-fiH + /~A)]} -1 Tr[B exp( - f iH  +/xA)], then 

3(B)u[0t~ ,=0 = (A, B) - ( A ) ( B )  = (A - ( A ) ,  a - ( B ) )  (20) 

so that, for example, any kind of generalization of Griffiths' second 
inequality (zv) to quantum systems would involve the DTF and not the 
thermal two-point function, ( A B )  = Z -  1 Tr[AB exp(-flH)]. Unlike (A, B), 
<AB) is not symmetric in A and B. If H has a complete set of eigenfunctions 
$i with Hq~ = r and a~j = ($~, ASj), b~j = ((}~, BSj), then 

(A, B) = Z - z ~ ,  a~jbj~e- X~qe -(1-x)e~, dx  
ls3 

= (/3Z)-1 ~ a, jbj,(e-eq _ e-e~,)/(ej - e~) (21) 
I , J  

Up to factors of/3 and Z, the reader will recognize the formula from Ruelle's 
book m) for the inner product he uses in his proof of Bogoliubov's inequality. 
From either (21) or directly from (16) [writing Tr(e-Xe~ZA*e-(1-x)anA) = 
Tr(Cx*Cx), with C:, = e-(1-x)am2Ae-Xam2], one sees that 

(A*, A) /> 0 (22) 

so that we have a Schwarz inequality [using (A*, A) = (A, A*)] 

[(a, B)I ~< (A*, A)~/2(B *, B) ~'~ (22') 

Since the thermal expectation <AB)  is not symmetric in A and B, it is 
not clear which "two-point function" is closest to its classical analog. 
Some insight into this is obtained by looking at harmonic oscillators with 

variable h. Let A = a%/h, with a being the "usua l"  creation operator. Then 
H = coA*A. As can be seen by direct calculation (Appendix B), (A*, A)  is 
independent of h but (1/2)(A*A + A A * )  is not. In this sense, (A*, A) is the 
most classical two-point function that can be constructed, and from this 
point of view it is not surprising that the classical bound (10) also holds for 
the corresponding DTF. 

From knowledge of the DTF for all pairs A, B, one can recover the 
thermal expectations via the trivial identity 

(A) = (A, 1) (23) 

Conversely, one can recover the DTF in finite volume from thermal expecta- 
tions and the action of the group of time automorphisms 

at(A) = e~mAe -~m 
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To do so, one can use the function 

f (z)  = (BazB(A)) (24a) 

which is defined a priori for z real. It has an analytic continuation to the 
strip Im z ~ 1 with 

f ( z  + i) = (Aa_~B(B)) (24b) 

and 

(A, B) = f( ix)  dx (24c) 

This connection between the DTF and the KMS boundary condition is not 
new; see, e.g., Refs. 31, 36, and 40. It leads quite easily (4~ to the bound 

(A*, A) <~ I (A*A + AA*) (25) 

for, since f with B = A* is analytic, the three-line lemma implies that 

[f(ix)l <~ aXb 1-x <~ xa + (1 - x)b (26) 

where a = SUpz~n[f(i + z)l; b = supz~R]f(z)[. But, for z E ~, [f(z + i)l <~ 
I(Aa_zB(A*))[ ~< (AA*)  and If(z) 1 ~< ( A ' A )  by the Schwarz inequality. 
Thus a = (AA*)  and b = (A 'A) ,  whence (25) follows from (26) by integra- 
tion. The connection with the KMS boundary condition is also the key to 
extending many of the above considerations to infinite volume. (31) 

The remainder of this section is not needed for the argument of the 
paper but is included to give the reader a source for all the main lore about 
the DTF. First, we want to prove (following Powers (36)) Bogoliubov's 
inequality ~28> using the representation (16). We will use (22'), (25), and the 
formula 

([A, B]) = ([A,/3H], B) (27) 

Now, (27) follows by noting that 

d Tr(e_X~HAe_(Z_x)BHB) Tr(e- XBH[A, [3H ]e -(1- x)an B) = 

so that (16) can be directly integrated. Thus 

I<[A, B])[ 2 ~< I([A, fill], B)I 2 [by (27)] 

~< (B*, B)([A, fill]*, [A, fill]) [by (22')] 

<~ (�89 + BB*))([A*, /3H], [flH, A]) [by (25)] 

<. �89 + BB*)([A*, [fill, A]]) [by (27)] 



Phase Transitions in Quantum Spin Systems 347 

which is Bogoliubov's inequality, 

I<[A, B]>I 2 ~< <[A*, [/3H, AI]>(�89 + BB*>) (28) 

We would like to note two properties of the thermal expectation of the double 
commutator. First, <[A*, [/3H, A]]> 1> 0. This follows from (27) or by an 
eigenfunction expansion 

<[A*, ~H,  All> = ~ ~ (Ia,~l ~ + [a,d~)( ,, - ~)e -~" 

= �89 Z ([a'J[2 + l as ' l z ) ( "  - v ) ( e - " q  - e" ' , )  /> 0 
1,3 

since (x - y ) ( e  -y - e -x)  >1 0 for all x and y. Second, i fA = Ar + t'A~ with 
A~ and Ai self-adjoint, then 

<[A*, [flH, A]]> = <fAr, [flH, Ar]]> -4- <[z/i, [}3H, A,]]> (29) 

Finally, we want to say a few words about the infinite-volume DTF. 

P ropos i t i on  2.1. If  the finite-volume DTFs converge through some 
sequence of volumes, so do the ordinary thermal expectations. Conversely, 
if the ordinary finite-volume thermal expectations converge and the finite- 
volume time automorphisms converge, so do the DTFs. 

Proof. The proposition is a consequence of formulas (23) and (24) 
relating ordinary thermal expectations and DTFs. [ ]  

Remark  1. In infinite volume, one cannot define the DTF by (16), but 
(24) still holds. From this realization ~al~ follow all the relations we use in the 
proof of the next section, so our results there hold directly in any KMS 
state without reference to proving the result in finite volume and making a 
limiting argument. 

Remark  2. For discussion of the limit of finite-volume time automorph- 
isms for spin systems, see Streater, (44~ Robinson, (3s~ and Lieb and Robinson. (27~ 

Def in i t ion .  We say the (infinite-volume) DTF clusters if and only if 
limlal~(A, ra(B)) = (A>(B>, where ~-, is the space translation. 

Theorem 2.1. The DTF clusters if the ordinary thermal function 
clusters, i.e., limt,l_.~<Ar~(B)> = (A)(B>. 

Proof. Suppose that the thermal function clusters. Let f , ( z ) =  
<ra(B)%e(A)>. Then, by hypotheses, f , ( z )  - <A>(B> ~ 0 as a--~ oo for z 
real or z = i + real. Moreover, for all z and a, rf,(z)l ~< I1,tll IIBll. Thus, by 
a simple complex variable argument,fa(z) ~ (A>(B> for all z, so (.,t, r = 

f~fa(ix) dx --+ <A>(B>. [ ]  
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3. LOWER B O U N D S  ON THE D U H A M E L T W O - P O I N T  F U N C T I O N  

As explained in the introduction, the natural quantum extension of (10) 
involves the DTF, while the sum rule involves the thermal two-point function. 
To put the two together, we need a lower bound on the D T F  in terms of  
the thermal two-point function. We have already seen that the easy bound 
(25) goes in the other direction. The lower bound will involve the function 

f f rom [0, m) to [(3, 1) defined implicitly by the relation 

f ( x  tanh x) = x -  ~ tanh x (30) 

and plotted in Fig. 1 (for which we thank J. F. Barnes). We will need: 

L a m i n a  3.1. The function f given by (30) is convex. 
This lemma is proved in Appendix A. By absorbing ~ into H and adding 

a constant to H so that Tr(e -n)  = 1, we can always deal with thermal 
expectations defined by ( B )  = Tr(Be-n).  We now define 

g(A) = �89 + AA*)  = 1Tr[(A*A + AA*)e -H] (31) 

b(A) = (A*, A) = Tr(A*e-X~Ae -{1-x~) dx (32) 

c(A) = ([A*, [H, A]]) = Tr([A*, [H, A]]e -~)  (33) 

1 . 0  I I I I I I I I - -  

0.9 ~ = ~ tooh y 

0.8 
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"~ 0.5 

0.4. 
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0 . 1  - -  - -  

o I I I I L I I I 
0 I 2 5 4 5 6 7 8 9 

x 

Fig. 1. A graph of the convex function f defined for x >t 0 by f(y tanh y) = y-1 tanh y. 
This function appears in the inequality, Theorem 3.1, between the Duhamel and ordinary 
two-point functions. For x f> 6, f(x) = x-  z to five-place accuracy. (Values computed by 
J, F. Barnes.) 
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The following basic bound is a generalization and improvement  of  a 
bound  of  Roepstorff(4~ shall discuss the precise connection after its 
p roo f2  

T h e o r e m  3.1. 
self-adjoint H 

Then 

ProoL Let  

Let  f be the function given by (30). Then for  any A and 

b(A) ~ g(A)f(c(A)/4g(A)) (34) 

h(x) = Tr (A*e-  XnAe-(1 - ~m) 

fO g(A) = �89 + h(l)], b(A) = h(x) dx, c(A) = 17'(1) - h'(O) 

Moreover ,  if H e .  = E . r  is an eigenfunction expansion of  H,  

h(x) = ~ la, m]2e-~e+X~,-E, ~ (35) 
~pm 

so that h is the Laplace t ransform of  a positive measure. As a result, inequality 
(34) clearly follows from Proposi t ion 3.1 below. 

Proposition 3.1.  L e t f b e  the function given by (30). Let  

h(x) = f e xt dlz (t) 

for  some positive measure /z. Then b >>. gf(c/4g), where b = f~ h(x)dx, 
g = �89 + h(1)], c = h'(1) - h'(0). 

Proof. Let dv be the measure 

dr(t) = �89 t + 1)d~(t) 

Then 

f f 2 t dr(t) b = t - l ( e  ~ -  1 ) d / z ( t ) =  7 t a n h ~  

g = f �89 + 1)dlz(t) = f dr(t) 

c = f t(e t -- l) dl~(t) = 4 / �89 tanh �89 dr(t) 

5 Unfortunately we were unaware that Falk and Bruch (47> had previously proved our 
Theorem 3.1 [middle inequality in their Eq. (8)] and our Theorem A.4 [first inequality 
in their Eq. (8)]. 
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Since d~o(t) = g-1 dr(t) is a probability measure and f is convex (Lemma 
3.1), we have by Jensen's inequality 

gf(c/4g) = gf( f �89 tanh �89 do) 

<<. g f f(�89 tanh �89 d,~ 

= g f (2/t) tanh �89 &o = b [] 

Remark I. The strict convexity o f f  and the above proof  make it clear 
that equality holds in (34) if and only if dtz is a measure concentrated at a 
single point. From (35), this dearly holds if A is a creation operator and H 
is the Hamiltonian of a harmonic oscillator; this also follows from explicit 
calculation (see Appendix B). 

Remark 2. Since one can shift the position of the point mass in Remark 
1 by replacing the harmonic oscillator Hamiltonian H by wH, we can adjust 
~o so that c/4g, the argument o f f ,  has any preassigned positive value. Since 
equality always holds in (34) for the harmonic oscillator, it follows that the 
function f in (34) is the best possible. 

Remark 3. In Ref. 40, Roepstorff proved a bound o f  the form of (34) 
with two changes. First, he required that A = A*, and second, he used the 
function 

fR(x) = x- l (1  - e -x) (36) 

in place o f f .  Since one can prove directly that 

f (x)  >1 f~(x), all x (37) 

(see Appendix A), our inequality is stronger in two ways. Since we wish to 
use the inequality for A's with A # A*, the former change is more significant. 
Roepstorff's inequality, had he proved it for all A, would lead to a phase 
transition in all systems where we prove one, albeit only at a lower transition 
temperature than ours. 

Remark 4. As we will see shortly, there is an abstract method of extending 
inequalities like (34) or Roepstorff's inequality from Hermitian A to all A. 
Given this fact, (37) follows also from the best possible nature of our in- 
equalities. (See Remark 2 above.) 

k e m m a  3.2. Let cl ..... c~, b~ ..... b~, gz ..... g~ be real numbers and let 
c = ~[~=1 c~, b = ~=1  b~, g = ~=1  g,. Assume that g~ >t 0 and g > 0, and 



Phase Transitions in Quantum Spin Systems 351 

g, = 0 ~ bi ~> 0 and c, = O. Let F be any convex function on an interval I 
that includes all cJ4g, where g, > 0 and such that 

b~ >1 g~F(eJ4g~) 

when g~ > 0. Then c/4g lies in the interval I and 

b >>, gF(c/4g) 

Proof. Letp~ -= g~/g >1 O, so that S2=lP~ = 1. Then 

c/4g = ~ '  (cJ4g,)p, 

where Y' means the summation over those i with p~ > 0. Thus c/4g is a 
convex combination of points in I and is therefore in L Moreover, 

F(c/4g) = F(~'p,(c , /4g,))  

<~ ~'p~F(cd4gO (by convexity) 

g-1 ~ '  = g,F(cJ4g 0 <~ big []  

C or o l l a r y  3.1. An estimate of the form (34) need only be proved for 
A self-adjoint (and in particular, Roepstorff's estimate for A = A* implies 
his estimate for all A). 

Remark. Since our estimate is proved directly for all A and is best possible, 
this corollary is of academic interest only. 

Proof. Let A = Ar + iA~ with Ar = At*, A~ = &*. We have already 
seen [Eqs. (19) and (29)] that c(A) = c(A~) + c(A~), and b(A) = b(Ar) + b(AO. 
That g(A) = g(AT) + g(A~) is trivial. [ ]  

C o r o l l a r y  3.2. Let A = (& ..... A,) be an n-tuple of operators, let 
g(A) = ~ g(AO, etc., and l e t f b e  given by (30). Then 

b(A) >1 g(A)f(c(A)/4g(A)) (38) 

Remark. One can also prove this corollary by mimicking the proof  of 
Theorem 3.1, using the fact that the sum of Laplace transforms of positive 
measures is again a positive measure. 

In our applications, we want to go from upper bounds on b and c to one 
on g. Theorem 3.2 is the perfect vehicle for this. 

Theorem 3.2. Suppose thatb /> gf(c/4g), w h e r e f i s  given by (30) and 
b, g, c >/ 0. Suppose that b ~< b0 and c ~< Co. Then g ~< go, where 

go = �89 112 coth xo (39) 

Xo 2 = Co/4bo (40) 
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Proof .  First note that go is just chosen so that g o f ( e o / 4 g o ) =  bo. 

Suppose that g > go. Then c/4g < co/4go and sincefis  monotone decreasing 
(see Appendix A), 

g f ( c / 4 g )  >1 gof(Co/4go) = bo >1 b 

thereby violating the hypothesis that b >1 g f ( e /4g ) .  �9 

The following will not be needed in our applications but we think it of  
sufficient interest to mention it. 

T h e o r e m  3.3. Under the hypothesis of Theorem 3.2, 

1 1 )  
b - g >1 bo - go = 72 (e~176 tan-h xo 

R e m a r k .  In the cases of interest, we emphasize that b - g ~< 0. 

Proof .  The function g ( f ( c / 4 g )  - 1) is seen to be monotone decreasing 
in both g and c (see Appendix A). Since g ~< go and e ~< Co, 

b - g >>. g ( f ( e / 4 g )  - 1) ) go(f(co/4go) - 1) = bo - go �9 

4. G A U S S I A N  D O M I N A T I O N - - T H E  Q U A N T U M  CASE 

Our goal in this section is to prove the quantum analog of (10). We will 
succeed only if all the matrices can be simultaneously chosen to be real. As 
will be shown later, the antiferromagnet can be accommodated, even though 
it is essentially complex. This is discussed further in Ref. 50. We will restrict 
ourselves to nearest neighbor interactions on a simple cubic lattice, but no 
special commutation properties are required. Thus for each e we choose a 
copy ~Y'~ of the same Hilbert space and copies of n + 1 basic operators 
denoted by S(~1),..., o=c(~, ~=. To avoid unnecessary technical complications, we 
suppose dim We'= < o% but it is clear that various unbounded operators on 
infinite-dimensional spaces could be accommodated. The basic Hamiltonian 
in A is 

=~A ,~=l j=l = =+n~] (41a) 

= ~ A [ A = + � 8 9  ~ (S=-S=+sm)  z] (elk) 

where A= = ~ ,  - vS= 2. We define ~p by (5) and set 
= 

the Duhamel two-point function. Ep is given by (6). Then we will prove the 
following result below: 

T h e o r e m  4.1. For Hamiltonians of the form (41) in boxes A of sides 
L1 x �9 �9 - x L, with each an Lj even integer and such that Theorem 4.2 holds, 

b~J)~< (2/3Ep) -~ (42) 
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As in the FSS proof of the classical case, we prove (42) on the basis of 
the following "Gaussian domination" estimate (Theorem 2.1 of Ref. 12). We 
thank J. Fr6hlich for having suggested the following result to us as a 
conjecture: 

T h e o r e m  4.2. Let H be a Hamiltonian of the form (41), in which all the 
matrices are real. Let {h~(e)la E A, i = 1 ..... u} be via i vectors in N". Let 
0jh,(a) _~ h,(= + Sj) - h,(Qt) and or(h) = ~= h(~) �9 S=. Let A be L1 x - . .  x Lv 
with each L, even. Then 

Tr{exp[-/3H + a(~ 0~hi)]} ~< exp [Ihll2 (43) 
Tr(exp - fin) 2fi 

where Uh][ 2 = ~i,= [h~(Qt)] 2. 

Proof of Theorem 4. 7 Given Theorem 4.2. One can follow FSS; we 
provide an essentially equivalent proof for the reader's convenience--since 
the proof below uses no operator theory, it will no doubt be more attractive 
to some, less attractive to others. Taking h~ -+ Ah~ in (43), subtracting 1 from 
both sides, dividing by ,~2, and taking h to zero, we find 

( a ( ~  ~h~), a ( ~  ~h~))~< fi-1 ,~ ]hi(=)l 2 (44) 

This equation has just been proven for h real-valued, but by (19) it extends 
to complex-valued h's. Fix p # 0 and j in {1 .... , n}. Choose now 

[h,(a)]~ = ~y~{exp[ip. (~ - Si)] - exp(ip. 

where the subscript k labels the n components of h. We have 

lh,(")l 2 = ~ lexp(--iP �9 fit) - 112 = 2Ep 

while 

=  jklAl-l,2(2 )exp(ip. =) 

so that (44) becomes 

4Ep2(O~ ', ~,~) ~< (2Ep)fi -~ 

which is (42). �9 

We next turn to the proof of Theorem 4.2. In the FSS proof of (10) a 
critical role was played by the inequality 

{f exp[-�89 2 

~< ( exp[-�89 - y)21 dtz(x) dt~(y) f exp[-�89 - y)2] dr(x) dr(y) 
d J 
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for any measures dtz, dv on R n and any n-tuple of reals a. We begin the proof 
of Theorem 4.2 with a quantum analog of this fact. 

I.emma 4.1. Let ~ be a finite-dimensional vector space and let 
= ~ | Jga. If A, B,... are operators on ~ ,  we use the symbols A, B,... 

for the operators A | 1, B | 1 ..... and the symbols A, B .... for 1 | A, 
1 | B ..... Then for any self-adjoint operators A, B, C1,..., C~ with real matrix 
representations and real numbers hi,..., h, 

Tr exp + B -  (C~-  C ~ - h 0 2  

{[ ]}{I t} ~<Tr exp A + . 4 -  ( C ~ - ~ ) 2  Tr exp B + / ~ -  ( C ~ - ~ ) 2  
i=1 i=1 

(45) 

Proof.  Let ~ denote the quantity being squared on the left-hand side 
of (45). By the Trotter product formula (see, e.g., Section VIII.8 of Ref. 37), 
we have tha t~  = l i m , ~  Cn, where 

~, = Tr({exp(A/n)  exp(B/n) exp[ -  (C1 - ~1 - h~)2/n] "'" }~) 

Using the operator identity 

exp( -  D 2) = (4zr)- 1/2 f exp( ikD)  exp( -  k2/4) dk  

we have that 

a,  = (4~r)-"z/2 f d,~Zk 

x Tr{exp(A/n)  exp(B/n) exp[ikl(C1 - C1)/n 1121 . . .  } 

x exp( -  k2/4) exp( -  ik lhl  + . . .  ) (46) 

The operators A, B, etc., can be thought of as matrices. We have assumed 
that they are all real. Then 

Tr{exp(A/n)  exp(/~/n) exp[ikl(  C1 - ~1)/n112] . . .} 

= Tr[exp(A/n)  exp(iklC1/nll2) . . . ]  Tr[exp(B/n)  exp(iklC1/nll2) . . . ]  (47) 

where we have used the reality of the matrices A, B, etc., to take the complex 
conjugate without reversing the order of the factors. We have also used the 
fact that /~ and F commute for any two operators D and F. Using the 
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Schwarz inequality on the dk integration in (46) and then using (47) with 
B = A, we obtain 

~< ((4w)-"~12f d~lk Tr{exp(A/n)exp(_4/n) 

x exp[ik~(C1- ~)/n~12] .. .} exp(-k2/4))  

((4rr)-"ll2 f d"Zk Tr{exp(B/n) exp(B/n) X 

x exp[ik(C~ - C1)/n112] .. -} exp(-k2/4))  

Reversing the steps at the start of the proof, we obtain (45). [ ]  

Remark. In our original announcement ~5~ we claimed that we could 
prove a phase transition for the ferromagnet. At the time we believed that 
Theorem 4.2 held for complex matrices by virtue of the following stratagem: 
Complex matrices can be made real by doubling the size of the representation. 
Unfortunately, if one doubles y~o then the reflection structure is destroyed. 
If  one doubles ~ then the trace can be changed in a nontrivial way. An 
illustration of what can happen is provided by the fact that 

T r ( ( ~ .  A~.4~) 3} > 0  

for real Ai, whereas for spin matrices, 

Tr(cr-~)3 < 0 

Proof of Theorem 4.2. Define 

+ ~  Z({h,(~,)}) = T r [ e x p ( -  ,~A (/~A= ~ ~--1 [ S = -  S=+~= +/3-1hm(~)]2})] 

Then (43) is easily seen to be equivalent to 

Z({h,(~)}) ~< Z({O}) (48) 

for all real {11 ~(~)}. Since Z is continuous in the h's and goes to zero as any 
h~(=) --> 0% it takes its maximum value Zo at some set of h's, say h~(~). If this 
maximum value is taken at more than one point, choose a point with the 
largest number of h's equal to zero. Thus, we must show h~(~) = 0 for all 
~, i. If not, by relabeling we can suppose that h~(,,) # 0 for i = 1 and ~ = 
(L1 - 1, 0 ..... 0). Let ~ be the tensor product of all the ~ such that 
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~' = (Ta,..., 7~) with 0 ~< 7x ~ �89 - 1 and 72,..., 7~ arbitrary. Then ~ = 
|  in such a way that S v =  S~, where ~2 = 7 2  .... ,7~ = ~ , ~ 1  = 

L1 - 1 - 71. With this representation 

([ 1} Z({h~(=)}) = Tr exp D + /3 - ~ (C~ - ~ - y~)2 

where D is all " interact ions"  between d - s p i n s ,  the C~ represent the spins 
at sites (0, 72,..., 7v) and (�89 - 1, 72 ..... 7~), and they ' s  are the corresponding 
h's up to factors of/3. 

By Lemma 4.1, we conclude that 

where h ~1~ (resp. h ~2~) is a set of h's invariant under the y ~ ~ reflection and 

equal to the h's on the ~ (resp. ~ )  spins and zero on the bonds between 

and 
Now, on the one hand either {h~l~(~)} or {h~2~(=)} must contain strictly 

more zero elements than {h~(~)} and on the other hand since Z({h~(=)}) = Zo 
and Z({h~(~)}) ~< Zo, we must have Z({h~(~)}) = Zo. This contradicts the 
fact that the/~ has a maximal number of zeros, so it must be that all/~'s 
are zero. �9 

We conclude this section with a few remarks on the restrictions we 
have placed on the interaction. It is our belief that the basic bound (48), 
suitably generalized to allow h's on each bond, holds for any ferromagnetic 
interaction, but we are in the unhappy situation of not being able to prove 
it (or phase transitions) even for face-centered or body-centered cubic lattices. 
Our proof  is restricted to lattices with the following property:  The per- 
pendicular bisector of  any bond contains no sites and the lattice is reflection 
symmetric about that bisector. For example, the two-dimensional honeycomb 
(hexagonal) lattice can be handled. 

5. PHASE T R A N S I T I O N S :  THE F E R R O M A G N E T I C  CASE 

In this section we want to put the results of Sections 3 and 4 together 
with explicit calculations of  the double commutator  to prove that phase 
transitions occur in the spin 1/2 x - y  model, where the matrices can be chosen 
simultaneously real, namely 

This is Example 4 below. We also present the consequences, in terms of phase 
transitions, that would follow if Theorem 4.2 held for the ferromagnet; these 
are contained in Examples 1, 2, and 3. 
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We first rephrase the abstract result, Theorem 3.2. Suppose that we have 
a lattice system on 7z, (with no a priori restriction on the kind of interactions) 
with operators S(j ) at each site. Define S~) in the usual way and 

d(S) = .,~=<" ~(s)~(s),,>.~,/, d = ~ d (s) 
.# 

bg'= (~,/,, g~,.); b~ = ~ bg' 
J 

g ( . 0 =  < N O ' ) ~ ) ) ,  gp = Egg)  
J 

4" = <[X~;), [r X,_,;]]>/> 0; ~ = ~ 4" 
J 

(No~e that ~(pn and ,~s) commute for any p and q.) 
From the sum rule (Plancherel) 

1 g(pn dCJ 
IA--r E = 

p~A* 

and Theorem 3.2, one immediately concludes that: 

Theorem 5.1. Suppose that there exist fixed measurable functions 
B(p j~, C(/"~ of p and a function D(n(fi) such that for every finite system L~ �9 �9 �9 L, 
with L, even, one has the bounds 

(a) d ( j ) )  DU')(fi) and limB~ ~o D(n(/3) t> D(~. 
(b) b~ ) ~</3-ZBg); Bp < O0 for p # 0. 
(c) & ~/3cg'. 

Further assume that 

lim I A] -1 ~, Bp = f Bp d'p/(27r) ~ 
I A I ' +  c~ p-~O 

p~A* 

Then there is long-range order at some finite/3 whenever (49) and (50) hold 
for some j :  

D(L ) > (2~r)-' fly 2k~pl/R(J)(~(J)hl/2"~P j d'p (49) 

f B(p s) dVp < oo; D~ ) < m (50) 

There is long-range order for any/~ such that 

[ ' ) ~ -  v f ![R(j)t~(..4)]1/2 o.,.~fh[l lT~[fw(j)/R(])'~l]21 1) [f~]U')kf~, > k----, ] 2 t ~ p  "~"p , . . . . .  L2~kVp 1--p ] I AVn~/~ ( 5 1 )  
Jtlotl~n 
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In particular, if D(J)~) is monotone nondecreasing in fl and (49) and (50) 
hold, then there is a long-range order for/3 > tic, where flo is the unique 
solution of 

P P 1 (.i) (J) 112 D(J)(~c) = (2zr)-v ( �89 coth[~f~(Cp/Bp ) ] dVp (52) 
']lPd ~<n 

ProoL Theorem 3.2 and the stated sum rule yield (4) whenever (51) 
holds. When (49) and (50) hold, (51) must hold for/3 large. To prove this, 
(50) is used together with the bound (see Appendix A) 

c o t h x ~ < x  - 1 +  1, x > f 0  

and the dominated convergence theorem to obtain (49) as the 13 ~ oo limit 
of  (51). Equation (52) has a unique solution since the right side of (51) 
decreases strictly monotonically from oo to 

~ p  ._,p j dVp as 
Jlaatl~n 

Remark. If all superscripts j are replaced by dot products (i.e., ~]=1 in 
the usual Heisenberg case), the result still holds. 

Example 1. Usual [isotropic, 0(3)] Heisenberg model of spin S. 
This is the model described in Section 1. For nearest neighbor simple cubic 
coupling, we consider the consequence of supposing that we may take 
Bp = 3/(2Ep). By a simple calculation (see below), we can take Cp = 4SE~. 
Finally, D(fl) = S(S + 1) can obviously be taken. Thus (50) holds as long as 
v i> 3 and (49) becomes 

s ( s  + 1) > 

which holds for S = 1/2, 1, 3/2, etc. In order to solve (52), one needs the 
function (in v = 3 dimensions) 

Ha(x) = (2~r) -a f coth(xEp) dap 
JIPtl ~x 

which is tabulated in Table I and graphed in Fig. 2 (we owe these to J. F. 
Barnes). The solutions of 

S(S + 1) = SV'~H3OSV'~) (52H) 

are shown in Table II (also due to J. F. Barnes). 
For use below, we do the double commutator calculation in the general 

case. Let H be given by (41) and define 

ia~ = [S~ ), S(-P], iP~ :'t = [S(,, k), Q~], R~ = [S(-. ~ [A=, SO)]] 
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Fig. 2. Graph of the integral appearing in (52H) for three dimensions. The large-x 
asymptotic form of H~(x) in v dimensions is given by t t ,(x) ~ 1 + B,,x -'1~ and 
B, = 2-~+~r-'J2~(v/2), with ~ being the Riemann zeta function. Ba = 0.117. (Values 
computed by J. F. Barnes.) 

Then ,  by  a direct  ca lcu la t ion ,  

m = l  J = l  

(Y) DiiJ ~y ~Y + S~ r ~ + 8 ~  + 2 cos (p  �9 6m) Q~,Q~+~] 
J 

(53) 
In the  case  o f  E x a m p l e  1, R = 0,  Q~S = e~tkS(k) ' ~ p ~ J  = _2S(J) ,  f r o m  

w h i c h  o n e  c o n c l u d e s  that  

2 ~ ~x~;, w ,  x~'JJ -- N ,o~2; tool 4(1 - cos p .  Sm)S,So+~~ 

In part icular,  as an operator ,  

[S~)p, [H, ,~"11 ~< 4Ep $2 (54)  
t 
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Table I. A Table of Values of the  
Funct ion Shown in Fig. 2 

y Ha(y) y Ha(y) 

0.01 50.5562 0.75 1.2182 
0.05 10.1591 0.80 1.1956 
0.10 5.1537 0.85 1.1766 
0.15 3.5168 0.90 1.1604 
0.20 2.7206 0.95 1.1465 
0.25 2.2591 1.00 1.1345 
0.30 1.9637 1.50 1.0693 
0.35 1.7621 2.00 1.0439 
0.40 1.6180 2.50 1.0310 
0.45 1.5114 3.00 1.0234 
0.50 1.4305 4.00 1.0150 
0.55 1.3676 5.00 1.0107 
0.60 1.3178 6.00 1.0081 
0.65 1.2778 8.00 1.0052 
0.70 1.2451 10.00 1.0037 

since S ,  �9 S~ ~< SL  In  any state such that  (S= �9 S,+n~) is independent o f  
~, and m, 

~ [S~'p, [H, S ~ ~  I A I - l v - I ( H ~  (55) 

The fact that  the P �9 S and Q �9 Q terms combine so nicely is coincidental 
(see Examples 3 and 4 below). 

Example 2. O(n) Heisenbergmodel .  Instead o f  three spin operators 
S~= ~ (i = 1, 2, 3) obeying the 0(3) commuta t ion  relations, we have n(n - 1)/2 
spin operators  obeying the O(n) commuta t ion  relations with the same 
irreducible representation R at each point. 

The commuta t ion  relations have each spin operator  commut ing  with 
(n - 2)(n - 3)/2 other spin operators. The other 2(n - 2) spin operators 

Table II. Lower Bounds on the  Crit ical  ~ in 
Three Dimensions [Solut ions of (52H) ]  

S fl~(S)S(S + 1) S ~o(S)S(S + i) 

�89 1.354 �89 0.788 
1 0.965 4 0.783 

0.872 9 0.778 
2 0.832 5 0.775 
{ 0.810 Qo 0.758 
3 0.797 
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break into n - 2 pairs, which, along with the given spin, form n - 2 copies 
of 0(3). Using these facts, one quickly computes as above that one can take 
as a bound on the double commutator 

Cp = 4(n - 2)/~Ep 

where/~, depending on the representation R, is the maximum eigenvatue of  
S=. Sp (for e -r [3). The putative Duhamel function bound Bp is n(n - 1) [4Ep ] - 1. 
Finally, let K be the value, depending on R, of 7. (S<~) 2. Then the condition 
for a phase transition in v >i 3 dimensions would be 

K > Kll2[�88 - 1)(n - 2)1 lj2 (56) 

if one could extend Theorem 4.2. We consider the following examples. 
(i) Ident i ty  representation. The "na tu ra l "  representation of O(n) on C ~ 

by real rotations (spin 1 for n = 3) has K = n - 1 [each S (~ obeys Tr(S(~)) ~ 
= 2]. Moreover , /~  = 1--because the theory of weights (~2~ implies that the 
maximum value of S= + Sp occurs in a space including a vector of the form 
u | v, so that the maximum value is of the form (u, S~u) �9 (v, S~v) and since 
Tr(S~ �9 a) = 0, Tr[(S~ �9 a) ~] = 2[a[ 2 for any �89 - 1)-vector a, (u, S=u) is 
always a vector of norm less than or equal to 1. The condition (56) holds for 
n =  3, 4, 5 but not for n /> 6. 

(ii) n = 4. It is well known (42) that as a Lie algebra 0(4) = 0(3) @ 0(3). 
Thus representations R are labeled by pairs (j, k) of half-integers. By direct 
computation, K = 2[ j ( j  + 1) + k ( k  + 1)] and /7 = 2[j  2 + k2]. One can 
see that (56) holds for all values of (j, k) except for the values (j, k) = (0, 0) 
and (0, 1/2). 

The moral of these computations is the following: When putting together 
the bounds of Sections 3 and 4, detailed estimates on algebraic properties 
are needed, which one can sometimes prove and sometimes not. It is fortunate 
that for the usual ferromagnetic 0(3) model one can always verify the 
algebraic conditions. We should emphasize that we believe phase transitions 
occur in any quantum system of the type discussed in Section 4 (with not all 
the S= constant); it is our method that has limitations. 

Example 3. Anisotropic Heisenberg model. The anisotropic model 
is like the isotropic model of Section 1, except that 

) (i) (D H = - S= S~+nm 
~6A m=l\l=l / 

We want to consider the prolate case J3 = 1, J~ = Jz smaller than 1 (but 
positive). This is a.generalization of the case treated by Ginibre ~I3) and 
Robinson <39~ and if v /> 3, we would, modulo the proof  of Theorem 4.2, 
recover their results. In fact, our method is ideal for discussing quantum 
models of the sort that are small perturbations of classical models. For, if we 
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try to prove (49) with S (s) being the "classical" spin about which one is 
perturbing, in this case j = 3, then the left side of (49) will have a nonzero 
limit as the perturbation parameter goes to zero, and the right side will go to 
zero. In the case at hand, we first argue that 

lira D(8)(fl) = S 2 (57) 

and that (in infinite volume) 

lim \~,=/e(~ = S%~3 (58) 

Clearly, (57) follows from (58) and the Schwarz inequality 

in translation-invariant states. To prove (58), note that S= �9 Sp ~< S z and 
S(~3)S~ 3) <<. S = imply that (H)/IA[ ~< uS 2, while the bound Za /> exp(/3vS =) 
(from the all-spin-up state) plus a standard convexity argument implies that 

lim ~ [JI(S= S=+,=) + (1 (a) (a) �9 -- J z ) (S= S ~ + s , n ) ]  = v S  2 
B ~ c ~  m = l  

From this it follows that (S(~8)S(-~n~) and (S,  �9 S~+6~) both go to S 2, which 
implies (58). 

Now, suppose we can take B~ 8) = 1/2E o. Using (58) and (53), 

lira ([~(_a)p, [H, ~(pa,]]) = 0 
B,-~ Qo 

Thus, a simple modification of (49) (allowing Cp to be/3 dependent) clearly 
holds. We conclude that in v = 3 dimensions the prolate anisotropic model 
(-/3 > Jz = J2) would have a phase transition for arbitrary spin if Theorem 
4.2 extends to this case. 

Example 4.  The x-y  model. This is the highly oblate anisotropic 
case (Jz = J2 = 1, J8 = 0). We will verify (49) in ithis case without the 
superscripts, i.e., sum over j = 1 and 2. Clearly D(/3) = �89 can be taken for 
all fl and Bp = 1/Ep. Thus, if v >1 3, (50) holds. By the Schwarz inequality, 
(49) then holds if v >t 3 and 

[ f Cp d~p (2~r)~]G~(O) < l (59) 

where G~(0) = (27r)-~ f Ey ~ d~p. By (53), 

(2 . ) -"  d~p = \ ~ =  o=+ .~  0= - - = + . . .  
i=1 m = l  Y=I 

= ~ E / C ( x ) ~ ( x )  + or = + 7 8 m /  \ ' - ' =  ~ =  + ~'Ora S(u)S(~)  \ 
m=l 7 =  • 

~< �89 + 1)1 ~ 
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where the last inequality follows from a bound in Appendix C on the ground- 
state energy in the x-y  model. Thus (59) follows from 

�89 + v-l)  1/2 < 1 (60) 

We will prove in Section 7 that vG~(O) is monotone decreasing in v, so the 
largest value of  (60) with v /> 3 occurs when v = 3, where (60) is seen to be 
true using Watson's value (45) of Gs(0) = 0.505 - . . .  We conclude that (49) 
holds in the x-y  model in any dimension v /> 3. 

We have thus verified (49) and therefore (4) for the x-y  model. By what 
we have done so far this does not imply a phase transition. Theorem 1.2 is 
not applicable because ~ A  S~ 1) does not commute with H. Fortunately, the 
following alternative argument leading to a phase transition is available. 
Instead of proving that 

we will in essence prove that 

which directly implies nonclustering of the infinite-volume state and thus the 
existence of multiple phases. To prove this last result requires us to transfer 
our bound on gp to infinite volume, which we will do by some standard 
manipulations of smearing spins with nice x-space functions. 

L e t f b e  a function of compact support on Z ~. Define gA(f) by 

(I L gA(f) = ~ S(1)f(g) 

= 

= ~ p~.  Ij2ca)(p)12g(~ A) (61) 

where g~A) = ( ~ 1 ) ~ )  A and 

f(A,(p) = ~ f ( . )  exp(+ip  �9 . )  

Now, for p # 0 

g(pa) ~< Gp = • a (1) (1) 112 2~--p ,~p J coth[�89 /Bp ) ] 

so that, picking a subsequence of  A for which the state ( . .  �9 } converges, 

lim gA(f) ~< (2~r)-~[ [f(p)]2Gp d~p 
A--* oo v lp~] < ~  
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whenever f(p = 0) = 0. [The sum converges to the integral because f has 
compact support, so lf(p)l Clpl if f(0) --- 0.] Let F b e  defined by 

F(Gt  - -  [~) = / . ~ 1 ) ~ , 1 ) \  

and let ff be the measure given by the Fourier transform of F, i.e., formally 

if(p) = ~ [exp(ip �9 =)]F(,,) 

Thus, since the sum in (61) is finite 

f if(p)l t(p) = ~ f ( a ) f ( f ~ ) F ( =  - 

= ô~olim gA(f) ~< f [f(p)12Gp dVp 

whenever f(0) = 0. It follows by letting f approach a 8-function at p ~ 0 
that 

if(p) = C 8(p) + absolutely continuous in p 

with IF(P)I ~ Gp for p • 0. By the Plancherel relation, 

r 
lim C >/ D ~  ) - (2~r)- v | ~'-'pl ro(z),'~(1)~l/2,.,p ) d~p 

so that (49) implies that ( �9 - �9 )~ does not cluster and there is a multiplicity 
of phasesJ 41) 

We summarize Example 4 in a theorem: 

T h e o r e m  5.2. The spin 1/2x-ymodel with nearest neighbor interactions 
on a simple cubic lattice in v/> 3 dimensions possesses a phase transition at 
sufficiently low temperatures. 

As a final remark, we note that even if we could complete the proof of the 
existence of the phase transition in the isotropic model, we presumably do not 
get the correct value for the spontaneous magnetization as T-+  0. For, we 
would obtain (from Theorem 1.3) 

lim m(S(a~) 2 t> S(S + 1 - V~) 
T - * 0  

while the correct value as T---~ 0 is presumably S 2. 
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6. PHASE TRANSIT IONS:  THE A N T I F E R R O M A G N E T I C  CASE 

In the classical case, once one proves phase transitions for simple cubic, 
nearest neighbor ferromagnets, one automatically has them also for the 
antiferromagnets since the symmetry S=-~ (-1)~=~s=(l=l = ~ = 1  ~,) takes 
one Hamiltonian into the other. A similar argument works for certain 
quantum systems, e.g., the x-y model, since there is a unitary operator that 
takes S~2 ) ~ ( -  1)l=tS~ ) for i = 1, 2 (namely rotation by rr about the z axis 
of those a with let] odd). However, for the isotropic quantum Heisenberg 
model no such symmetry exists: Even for two spins, the smallest eigenvalue 
of - S;, �9 S~ (= ~ 13) (which is - S 2) is different from the smallest eigenvalue 
ofS~ �9 Sp (et r (3) [which is - S ( S  + 1)]. In this section we shall prove that 
the antiferromagnet has phase transitions if either S or v is not very small. 

We still use Theorem 5.1 (with some obvious modifications). To complete 
the proof, we need a modified version of the argument of  Example 4 of  
Section 5, since the staggered magnetization does not commute with H. We 
have already computed ~ [S~ ~, [S(~ ~), H]] since the ferromagnetic and anti- 
ferromagnetic Hamiltonians differ only by a sign. Knowing this, we will 
turn below to estimating Cp. Obviously we can take D = S(S + 1). Thus 
our main problem will be to estimate Bp, to which we turn first. Theorem 4.2, 
suitably modified, can be extended to the case of ferromagnetically coupled 
real matrices and antiferromagnetically coupled imaginary matrices. By a 
local rotation, the quantum antiferromagnet can be brought into this form. 

T h e o r e m  6.3. Let H be the Hamiltonian of the simple cubic Heisenberg 
antiferromagnet with nearest neighbor interactions. Then 

3 

b~' <~ 3/2Ep' 
j = l  

where 

gp' = v a t- ~ cospi 
t = 1  

The proof  is similar to that of  Theorem 4.1, so we only sketch the 
details, emphasizing the differences. Instead of  Lemma 4.1, we need the 
following result: 

L e m m a  6.1. Let ~ be a finite-dimensional vector space with a 
distinguished complex conjugation and let ~ = ~ | ~ .  IfA is an operator 
o n ~ ,  we u se A  for A Q 1  a n d . ~ f o r  1 |  If  A, B, C1 .... ,C~arereal 
self-adjoint operators and D1 .... , D~ are imaginary self-adjoint operators and 
hi .... , hz are real numbers, then 

{Tr[exp(X)]} 2 ~< Tr[exp(Y)] Tr[exp(Z)] 
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where 
/c 

x = A + ~ - ~ (c,  - c, - h,)~ + ~ (D, -/33.)~ 
i = 1  j = l  

I k 

r = ~ + X -  ~ (c ,  - C,)~ + ~ (D3. -/3j)~ 
t = 1  3 . = 1  

l /C 

z = B + ~ - ~ (c,  - c,)~ + ~ (Dj - / 3 3  ~ 
i ~ l  3"=1 

Proof. This follows the proof  of Lemma 4.1, except that we use 

exp(F 2) = (4~r)- 1/2 f e x p ( -  lk2 + kF) dk 

to "l inearize" the exp(D - /3) 2 factors. �9 

Proof of Theorem 6.1. Let p' be given by p~ '=  r r - p ~  so that 
E, '  = Ep,. Define S=' by 

(S.') <~ = ( -  1)l=lS~); i = 1, 3 

There is a local unitary operator taking the S= into the S, '  (rotations by 
about the y axis for [,,1 odd). Moreover, the Hamiltonian for the S '  system 
is ferromagnetic in the 1 and 3 variables, which have real representatives, 
and antiferromagnetic in the 2 variable, which has an imaginary representa- 
tive. Using Lemma 6.1 and the method of the proof of Theorems 4.1 and 
4.2, we see that 

(bp')<~ ~< 1/2Ep 

for i = 1, 3. But (bp') <~> = b~? for i = 1, 3, so we have that 

By symmetry 

b~ 8' ~< 1/2E a' 

b~'~< 3/2Ep' I I  
t 

To estimate Cp, we introduce a basic constant pv as follows. Let HA be 
the Hamiltonian of the antiferromagnet with periodic boundary conditions. 
We define 

pv = - lira(v[ A[)- 1 inf spec(H^) 

where one can show the limit exists as A -+ oo in a suitable (e.g., van Hove) 
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sense by mimicking the standard arguments on the existence of the thermo- 
dynamic limit for the free energyJ 41~ By (55) we have that 

Cp ~< 4Epp, 

Thus (49) becomes 

S(S + 1) > "V~(p~)l/2(2rr)-~ ( (Ep/E,') ~'2 d~p (62) 
JI 

If v t> 3 [so that (50) holds] and (62) holds, then a lower bound on the 
critical/3 is given by the solution of  

S(S  + 1) = (2~r)-~( (E,/E,')II=(3p~/2) ~'= coth[fl(2pvEpEp'/3) lie] 
Ji. IPtl<s~ 

(63) 

We conclude this section by demonstrating that (62) holds for v t> 3, 
S/> 1; and when S = 1/2, for v sufficiently large. To do this we use the 
bound of  Anderson (~ (reproduced in Appendix C): 

p~ <~ S[S + (2v)-1] (64) 

Moreover, by the Schwarz inequality 

vKv = ( 2 7 r ) - ' (  (Ep/Ep') ~`z d~p <<. [vG,(O)] ~/2 (65) 
~ 1 ~  

[where G~(0) is given by (11)], so that (62) certainly holds if 

S(S + 1) 2 > ~[S + (2v)-~]vGv(O) (66) 

Using the fact that vG,(O) is monotone decreasing in v (see the next section) 
and that G3(0) = 0.505..., r we see that (66) certainly holds if S >1 1 and 
v i> 3. Moreover, since vG,(O) --+ 1 as u ~ ~ ,  even for S = 1/2, (66) holds 
for  v sufficiently large--in fact, (62) is so close to holding for v = 3, S = 1/2 
when (64) is used that we expect that numerical analysis of vK, for v >/ 4 
would show that, using (64) to bound p~, (62} holds for v/> 4, S = 1/2. It is 
also true that vK~ is monotone decreasing in v by the method of  Theorem 7.1, 
becausef(x)  = [(1 + x)/(1 - x)] 1/2 is convex in [0, 1). 

M. L. Glasser has kindly evaluated the integral in (62) for us and found 
that 

3K3 = 1.157 

[to be compared with the bound 1.23 of  (65)]. Thus for (62) to hold with 
S = 1/2, v = 3 one needs that p3 < 0.28. The best rigorous bounds [from 
(64) and the trivial p, >/ SgJ are 0.25 < p3 < 0.33. The best numerical 
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estimate on Pa we can find is 03 ~ 0.3, ~22) but there is a need for better 
rigorous bounds to be certain that (62) fails for v = 3, S = 1/2 and to check 
the v for which (62) holds when S = 1/2. We summarize with: 

Theorem 6.2. The nearest neighbor, simple cubic antiferromagnet has 
a phase transition at sufficiently low temperature if v >i 3, S = 1, 3/2,.. or 
if S = 1/2 and v is sufficiently large. 

7. D I M E N S I O N A L  DEPENDENCE OF THE CRITICAL 
TEMPERATURE 

It is a well-known element of folklore that as v -+ ~ ,  transition tem- 
peratures approach those of the mean field approximation. Our goal in this 
final section is to note the extent to which this piece of folklore is proven by 
the upper bounds on the transition/3 of FSS for the classical N-vector model 
and our putative bounds for the spin-S quantum Heisenberg ferromagnet. For 
the classical case the results are summarized in Table III. In the third column 
we give Griffiths '~8) rigorous lower bound for the Ising-model critical t3 and 
in the fourth column we give the lower bound obtained by applying the 
method of Brascamp and Lieb ~6~ to the case at hand (see Appendix D). The 
table should be supplemented with the following result: 

Theorem 7.1. uGh(O) is monotone decreasing and approaches 1 as 
V -->- O0. 

Proof. By the convexity of the function g(x) = x -  ~ for x t> 0, we have 
that for fz .... , f ,  >t 0 and F = Z~= l f j  

F -~ <~ ~ n-2(n - 1)(F _ f j . ) - i  
j = l  

since 

F =  ~ 1  n ( F - f j )  
j=~nn  1 

Table III. Transition [3 in N-Vector  Model  

F S S  u p p e r  G r i t t i t h s '  l o w e r  

N b o u n d  b o u n d  B L  l o w e r  b o u n d  M e a n  f ie ld  

1 �89 t a n h  - ~(2v) - ~ 1 ]4v 1 [2v 
>i 2 �89 - -  N/4v N/2v 



Phase Transitions in Quantum Spin Systems 365 

Takingfi. = 1 - cos pj and integrating, we obtain 

G,~(O) < n- l (n  - 1)G,_I(0) 

proving the required monotonicity. 
That  the limit is 1 follows from the lemma below. �9 

k e m m a 7 . 1 .  Suppose that f l  ..... f ,  .... are identically distributed, 
independent, nonnegative random variables and that F is a function on 
(0, ~ )  such that:  

(i) IF(x + E) - F(x)I ~< Cc/x ~, all x > 0, and 0 < ~ < 1, for some 
C , k > O .  

(ii) Exp[(~l"=lf) -~] < oo for some m, where Exp = "expectat ion."  

Then 

lira Exp F = F(Exp(f))  
~--*  co 

Proof. By the convexity of  1/x ~ and the argument above, Exp{[1/n 
~l~=if] -k} is monotone decreasing in n. Thus, for n 1> rn and 0 < e < 1 

Moreover, by the usual strong law of large numbers (7) 

These two formulas and the continuity of  F imply the result. �9 

Given this theorem, we see that the ratio of  the FSS bound to the mean 
field theory bound approaches 1. Since the Griffiths bound also approaches 
mean field theory, we have the following theorem: 

Theorem 7.2. Let Tc ~ be the true transition temperature of  the 
simple cubic, u-dimensional Ising model. Then 

T~'/2u-+ 1 

as u---> oo. 
Unfortunately (for reasons we explain in Appendix D), the Brascamp- 

Lieb bound appears to be off by a factor of  two in the nearest neighbor case, 
so for N i> 2, where the only upper bound we have on Tc is theirs, we cannot 
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prove that NTc~/2v converges to 1. We do know, however, that its lira is >/1 

and its lim is ~< 2, so that the FSS bound certainly has the right v dependence 
and if mean field theory is asymptotically correct, then FSS is asymptotically 
correct. 

To discuss the v dependence of our presumed upper bound on the critical 
fl in the spin-S quantum Heisenberg model, we abstract the argument of  
Theorem 7.1 : 

Theorem 7.3. Let f l  ..... f~ .... be identically distributed, independent 
random variables. Let F be a nonnegative convex (respectively concave) 
function on the convex hull of  Ran f l .  Then Exp[F((1 In) ~ =  1 f ) ]  is mono- 
tone decreasing (respectively increasing) in n. 

ProoL Use the convexity and 

' 2 (  1 1 f = n  n - 1  �9 f n t= ~-=1 

Theorem 7.4. Let fl~(S, v) be the solution of (52H) and ~(S, v) = 
vflc(S , v). Let ~(S, oo) be the solution of the equation 

S + 1 = x/~ coth[V~S~(S, ~ ) ]  (67) 

(tabulated in Table IV). Then ~(S, v) is monotone decreasing to ~(S, ~ )  as 
v ---~ oo. 

ProoL Let f (i = 1, 2,...) be the function 1 - cos p~ on [-zr ,  rr]~ with 
the natural product probability measure X dpd2r:. Let F be the function 

F(x) = a /g  c o t h ( ~ x )  

Table  IV. Values of a ~(S, oo) = 

I i m w =  V~c(S, v) 

S S2~(S, oo) s ( s  + 1)r ~)  

�89 0.702 2.11 
1 0.873 1.75 

0.985 1.64 
2 1.06 1.59 

1.12 1.57 
3 1.16 1.55 
�89 1.20 1.54 
4 1.22 1.53 

15 1.41 1.50 
50 1.47 1.50 
oo 1.50 1.50 

a v is the lattice dimension; S is the spin. 
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Then ~(S, v) solves 

S + 1 = Exp F S~(S, v)v -~ (68) 

Now F is convex and strictly monotone decreasing (see Appendix A). So, 
using Theorem 7.3, 

E x p [ F ( S ~ ( S , v - 1 ) v - 1  =~lf) ] 

I . ' -  -- 1 iv-1 \] 

= S +  1 = Exp F St(S,v)v-  

By the monotonicity of F, ~(S, v - 1) /> ~(S, v). Thus ~ approaches a limit 
~ .  By a simple extension of Lemma 7.1, ~ solves (67) and so equals 
C(S, co). []  

Mean field theory gives the same transition temperature for the spin-S 
Heisenberg model and the spin-S Ising model. Thus the ~(S, oo) result does 
not agree with mean field theory, but at least the gross (i.e., v-1) structure of 
mean field theory and our bound agree. 

A P P E N D I X  A. A GARDEN OF COTH A N D  T A N H  

In this appendix, we collect some basic properties of the functions 
coth x and f given by f ( x  tanh x) = x -  1 tanh x. 

Theorem A.1. The function 

g(x) = coth x 

is strictly monotone decreasing and convex on [0, oe). The function 

h ( x )  = g ( x )  - x - 1  

is strictly monotone increasing and concave on [0, oo) with h(0) = 0. The 
function g(x) obeys 

x -1 <g(x )  < 1 + x  -1, x > 0 (A1) 

I g(x + E) - g(x)l <~ ~/x 2, 0 < ,, 0 < x (A2) 

Proof. By direct calculation, g'(x) = - (sinh x)-  2 and g"(x) = 2(cosh x) 
(sinh x)-a. The first sentence is then obvious. The bound sinh x > x (which 
comes from the power series for sinh) then yields 0 1> g'(x) > - x  -2, from 
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which (A2) follows, as does h' > 0. Now limx~o h(x) = 0 is obvious from 
the power series expansion of coth and sinh. Condition (A1) just says 
h(O) < h(x) < h(oo). This leaves the concavity of h. Given g" above, we need 
that 

or equivalently that 

o r  

x 3 cosh x ~< sinh 8 x 

sinh 2x ( ~ ) 4  
2 ~  ~ (A3) 

] .~ [1 + (2x/nzr) 2] <<. ] . [  [1 + (x/nrr)2] 4 (A4) 
n=l n=l 

which is obvious. �9 

Remark. The convexity of g and concavity of h are useful in obtaining 
quick (i.e., hand calculator !) estimates on the function 

H,(x) = (2rr) - '  ~ coth(xEp) d~p 
.11 

For example, they lead to the bounds 

coth(vx) <~ H~(x) <~ coth(vx) + (vx)-l[vG,(0) - 1] (A5) 

via Jensen's inequality and the fact that (2~r)-' flp, l~,~ Ep d'p = v. 
Now we turn to the study of the function given by 

f ( x  tanh x) = x -  1 tanh x (A6) 

Theorem A.2. f i s  a well-defined, strictly monotone-decreasing, convex 
function of (0, oo) to (0, 1) with limx_.of(x) = 1 and limx_~of(x) = 0. 

Proof. Let a ( x ) =  x tanh x. Since a is strictly monotone increasing 
from (0, oo) to (0, oo), it has an inverse function/3(x) which is also strictly 
monotone increasing. Let 7(x) = x -  ~ tanh x. Then y'(x) = x-~(cosh x)-2 _ 
x -2 tanh x = (x cosh x)- l[(cosh x) -1 - x -1 sinh x] < 0 since (cosh x) -1 
< 1 and x -~ sinh x > 1. Thus f - -  7 o fl is strictly monotone decreasing. 
Since fl(0) = 0, fl(oo) = oo and 7(0) = 1, 7(oo) = 0, we have the limiting 
statements. 

This leaves the proof  of the convexity o f f  Our original proof  involved 
a straightforward but rather brutal computation. V. Bargmann provided 
us with the following proof, which, while not free of complexity, is a con- 
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siderable improvement. We first note that for a function G on (0, oo) to be 
convex, it is necessary and sufficient that for any 0 < x < y < z 

I 
1 x C(x) 

det 1 y G(y) >>. 0 (A7) 

1 z G(z) 

for, if H is the linear function with H(x)  = G(x), H(z)  = G(z), the determin- 
ant in (A7) is [H(y)  - G(y)](z - x) and convexity is that G(y) < H(y) .  
Thus convexity o f f  is equivalent to 

det y t a n h y  y - l t a n h y  >I0 (A8) 

z t a n h z  z - l t a n h z  

for x ~< y ~< z, where we have used the monotonicity of  c~. Multiplying by 
xyz(coth x)(coth y)(coth z) and interchanging columns, we find that (A8) is 
equivalent to 

1 x 2 x c o t h x [  

det 1 y2 y c o t h y  ~<0 (A9) 

1 z 2 z coth z 

Again using the criterion (A7), we see that (A9) is equivalent to the con- 
cavity of  the function P(x)  = x ~/2 coth(xlJ2). 

We have therefore shown the convexity of  f is equivalent to the concavity 
of  P. By a straightforward calculation, 

4yS(sinh ~ y)p,,(y2) = 2y2 cosh y - cosh y sinh 2 y - y sinh y 

= y (y  cosh y - sinh y) + (cosh y)(y2 _ sinh 2 y) 

<~ y ( ycos h  y - sinh y) + (cosh y ) ( -  ~ )  

= Y ( 2 . + l ) ( 2 n + 3 ) -  
n = 0  

In the third step, we used 

_ (y2 _ sinh2y) = (y + sinh y)(sinh y - y) >~ (2y)(ya/6). [ ]  

Theorem A.3. Let F be any convex function on [0, oe). The function 
H(y ,  c) = y[F(cy -1) - 1] for y, c > 0 is jointly convex in (y, c). I f  F is 
monotone decreasing, then H is monotone decreasing in both y and c. 
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ProoL The second derivative matrix 

l ,,iqi c2y-8 -cy-2i 
\ y ]  \ _ c y - 2  y -1  ] 

is positive semidefinite. For y fixed, H is monotone decreasing as c increases 
since F is monotone decreasing. For c fixed, OH/Oy = F(cy -1) - 1 - 
cy -1F ' (cy -1)  is negative by the convexity of  F [which implies that (0, F(0)) 
must lie above the tangent to F at the point (cy-1, F(cy-1))]. [ ]  

Theorem A.4. 6 

f ( x )  >>. x- l (1  - e -x) (A10) 

Remark.  As we explained in Section 3, this can also be proved by 
appealing to the best possible nature of  our bound there and to the bound 
of Roepstorff. 

Proof. In (A10) replace x by (x/2) tanh(x/2) = (x/2)(e x - 1)/(e x + 1). 
Then (A10) is equivalent to 

2 e X - 1  2 e X +  1 [  ( x e X - ~ ) ]  
x e  x+----~ ~> - -  1 - e x p  x e  x -  1 2eX T 

o r  

o r  

o r  

x e x ~ { )  
4eX(e x + 1) -2 ~< exp 2 e x 

_ e X + l  
x - 2 l n - - - x - -  ~< 

Z 

x e  x - 1 
2 e X +  1 

3e x + 1 
Q ( x ) -  x 

e'~ + 1 

Now, by a simple computation, Q(0) = 0 and 

a ' ( x )  = 2eX(e x + 1)-2(x - sinh x) < 0 

so (Al l )  holds. [ ]  

, e X + l  
- 4 m ~  ~< 0 ( A l l )  

A P P E N D I X  B. C O M P U T A T I O N S  W I T H  H A R M O N I C  
OSCILLATORS 

Let H = ~oA*A with [A, A*] = s, where s > 0 is the c-number com- 
mutator,  in a space where there is a vector fie with A~o = 0 and {(A*)"~bo} 
a spanning set. Then there is an orthonormal basis ~,  with H ~ ,  = no~s~, 

6 See footnote  5, p. 349. 
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and (@m, A@~) = 8 . . . .  l(ns) 112. Thus, using (21) when fl = 1, it is easy to 
verify that 

(A*, A) = ,o-1 (B1) 

Moreover, 

�89 + AA*)) = (A*A + �89 = �89 + co-l(g) = {s coth(�89 (B2) 

Finally, 

[[,4*, H], A] = oJs 2 (c-number) (B3) 

so, in particular, 

([[A*,H],A]) oJs (cos) 
4(�89 + AA*)) = -2-tanh -~- (B3') 

There are three important things to notice about the formulas (B1)--(B3'): 

(i) Of the various quantities, only the Duhamel two-point function is 
independent of the commutator parameter s. This adds to the evidence 
elsewhere in this paper that the DTF is "closer" to the classical two-point 
function than the usual thermal two-point function. 

(ii) The inequality of Section 3 

(A*, A) >~ �89 + AA*)f(([[A*, HI, A])/(4 �9 �89 + AA*))) 

is saturated in the case at hand, and, as oJ and/or s vary, the argument o f f  
runs through all values from 0 to oo. This implies that f is the best possible 
function. 

(iii) The Bogoliubov inequality in its strong form (/3 = 1) 

[([A, C]>I ~ < (A*, A)([C*, [H, e l ] )  

is saturated in the example at hand if C is chosen to be A*. 

Not only are the inequalities of Section 3 saturated by a single harmonic 
oscillator, but those of Section 4 are saturated by a system of coupled 
harmonic oscillators. This is not surprising since the classical analogs of these 
inequalities a2~ are saturated by classical harmonic oscillators. For, in a 
v-dimensional box A, let 

H = � 8 9  ~ x=xp 
=cA 1= - Pl = l 

on L2(R IAI) with p= = (1/i) O/Ox=. By using normal modes (which are just 
Fourier series), it is easy to see that for H to be positive one needs 

2Jr < 1 (B4) 

[for the frequencies obey/z(k) = 1 - 2J Y~= z cos k~] and 

(~(k)*, ~(k)) = [/3t,(k)] -1 (B5) 
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As J approaches (2v)- 1 [the largest value allowed by (B4)], the inequality of 
Section 4 [in which the right side of (B5) is replaced by (2JE k) - 1] is saturated. 

The saturation of the inequalities from Sections 3 and 4 means the pre- 
sumed lower bound on the transition temperature given by (52H) will agree 
with the transition temperature in a spin wave theory (which is essentially a 
harmonic approximation) with three degrees of freedom at each site instead 
of  the usual two. 

APPENDIX  C. LOWER B O U N D S  ON THE G R O U N D - S T A T E  
ENERGIES OF S O M E  Q U A N T U M  SPIN 
H A M I L T O N I A N S  

In this appendix, we wish to derive lower bounds on the ground-state 
energy of  the Hamiltonian of the x-y  model and of the isotropic Heisenberg 
antiferromagnet. These bounds are needed, respectively, in Sections 5 and 6 
to obtain upper bounds on [ A [ - l ( - n ^ ) .  At first sight one might expect the 
x -y  model to look more like the Heisenberg ferromagnet, which has an 
exactly calculable ground state, rather than the antiferromagnet. This 
expectation is wrong, as can be understood by making a 180 ~ rotation about 
the z axis at each site in one of  the natural sublattices of the x-y  ferromagnet. 

We shall prove the following result: 

Theorem C,1. For n + 1 independent spin-l/2 spins So .... , S~ the 
maximum eigenvalue of  

A.+I = S<o ~' ~ S}~>+ S~o y) ~ S} ~' 
f = 1  t = 1  

is �89  = 2l - 1 and �89 + 1)] l/2 i fn  = 2L 

Theorem C.2 (Anderson(l~) .  For n + 1 independent spin-S spins 
So ..... S~, the maximum eigenvalue of 

B.+I = - S o  " ~ S~ 
t = Z  

is S(nS  + 1). 

Theorem C.2 and the proof we give here for the reader's convenience 
are due to Anderson. (1) Both lead directly to upper bounds on I A 1 -1<_ HA) 
since --HA can be written as a sum of [A[ operators unitarily equivalent to 
�89 + 1 (resp. �89 + 1) where n = 2v. 

Proof of Theorem C. 1. We first note that for two spins, with the usual 
up-down notation, 

A21+ +> = 0, A 2 I - - )  = 0 

A 2 I + - )  = � 8 9  A 2 I - + )  = � 8 9  
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Since A, is a sum of pair operators equivalent to A2, A,  is also a matrix 
with nonnegative elements. By the Perron-Frobenius theorem, the largest 
eigenvalue has an associated eigenvector with nonnegative coefficients in the 
up-down basis (see Lieb and Mattis(28,26)). Moreover, if we decompose the 
Hilbert space into n + 2 pieces ~ corresponding to j up spins, A, leaves 
each piece invariant and the matrix is ergodic on each ~ .  Thus, on ~ the 
largest eigenvalue is simple and has strictly positive coefficients. In ~ ,  
there are (j-~l) basis vectors with S~ a) = +�89 (call their sum ~) and (~) with 
S(o a} = - �89  (call their sum ~b). By the above remarks, the eigenvector cor- 
responding to the maximum eigenvalue hj is of the form ~ = a~ + b~. 

Now, given the action of A2, A,  applied to a basis vector summand in 
yields �89 times the sum of n - j + 1 vectors, which are summands in ~b. By 

symmetry it follows that 

A.~ = ~ j -  1 j ~J~ 

and similarly 

A . ~ = ~ j  J j - 1  = ~ ( n + l - j ) ~  

The equation An~/ = Aj~/thus becomes �89 = hib and �89 + 1 - j ) b  = hja, 
so that hj 2 = �88 + 1 - j ) j .  The maximum value of hj clearly occurs for 
j = l w h e n n = 2 l o r 2 l -  1. [ ]  

Proof of rheorom C.2 (following Anderson(Z)). This is an exercise in 
addition of angular momentum since B,+I = - S o  �9 J with J = ~I~=1S~. If 
j is the eigenvalue of J and ~ = min(S, j) ,  then the maximum value of 
Bn+l is 

- ~ [ I s  - j [ ( l s  - j I  + 1) - s ( s  + 1) - j ( j  + I)1 = j s  + 

Among the values j = O,...,nS, the maximum value of this occurs when 
j = n S .  []  

A P P E N D I X  D. ON THE B R A S C A M P - L I E B  UPPER B O U N D  

In Ref. 6, Brascamp and Lieb applied a basic theorem on log concave 
function to give upper bounds on transition temperatures in pair interacting 
Ising models (with no restriction that the interaction be either ferromagnetic 
or nearest neighbor). In this appendix, we extend this result to the classical 
N-vector model. We begin with an abstraction of the Brascamp-Lieb 
argument: 
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Theorem D.1. Let  dtz be a measure on EN with support  on {s I Is I = 1}. 
Define the convex f u n c t i o n f  on R ~ by 

f ( x )  = log f exp(x �9 s) d~(s) 

Let a = max~(~2f/Ox~ ~xj)| where (&i)oo for a matrix A~j indicates its 
largest eigenvalue. Hence - l a x 2  + f ( x )  is concave in ~N. Let  F be a lattice 
in R ~ (i.e., discrete subgroup of  ~ ' )  and let 3' be a function on P with 
~ v  [J(a)] < co and 3 ' ( - a )  = J(a) .  Let  J~a~ (resp. 3'~n) denote  the largest 
(resp. smallest) point  of  the spectrum of  the operator  

( j x ) ~  = ~,  J~_t;xll (D1) 
P 

on 12(P). Then,  if 

/3(Jr~ax -Jn~ln) < a -1 (D2) 

there is no long-range order in the model  with finite-volume part i t ion 
function:  

ZA = f ,eAI--I d~(s,)exp(�89 J~ps~. Sl~) 
~,peA 

ProoL Without  loss, we can take t3 = 1 by absorbing it into J. Let  
J A  denote the opera tor  on /2 (A)  obtained f rom (D1) by restricting the sum 
to A. Choose e small and A large so that  

, + JmAax -- JmA,n < a -1 (D3) 

Let 

which is positive definite on /2(A). Moreover ,  e x p [ - � 8 9  2 + f (x) ]  is a log 
concave function, so, by the argument  in Ref. 6, 

z~z,(s~sp)A <~ ~ z . z ,Q. , ,  Q = a(1 - aAA) -1 
~,lleA ~,11 

for  any z [by (D3), 1 - aA A is strictly positive definite]. Taking A--> co, 
we conclude the absence of  long-range order.  �9 

Remark 1. By taking an Ising model with Jr = 1 if [~t - 131 ~< n and 
taking n --> co ( " m e a n  field mode l" ) ,  one sees that  (D2) is best possible in 
that  [3(Jn~x -- Jmln) = (1 + e)a -~ occurs with long-range order.  However,  
for  ferromagnetic Ising systems where a = l,  /3 ~ , o J ~  < 1 has no long- 
range order  by a result of  Griffiths. 18 If  3" is normalized so that  J(0)  = 0, 
then ~ , o  [3"~1 = J n ~  in the ferromagnet ic  case. For  the nearest  neighbor,  
simple cubic case, Jm~x - 3'mln = 4V while ~ o  [J~[ = 2v. As a result, (D2) 
is off  by a factor of  2 at least in the Ising model,  and we presume in general 
models, in this nearest neighbor case. 
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Remark  2. The restriction that d/z have support on the sphere is easily 

removed by replacing f by log j" exp(x �9 s + flJmaxs 2) d/z(s). 

Theorem D.2. Let 

f(h) = log 

Then maxn (02f/~h~ Ohj)~o = 1IN. 

f exp(h �9 s) dD.~ 
[ s [ = l  
s ~  N 

ProoL When h = 0, (?2f/Oh, Ohj)= = 1 /N by inspection. By symmetry, 
f(h) = F(h) is spherically symmetric. For h # 0, it is easily seen that 
02f/Oh, Ohj has eigenvalue F"(h) once and F'(h)/h, N -  1 times. Clearly 
F'(0) = 0 by symmetry, so F'(h)/h <~ maxo~<=,<~ F"(x)  and thus 

max (02f/Oh, 0hj)~o = max F"(h) 
h h 

We will prove that F"(h) <~ 0 for h t> 0 so that max F"(h) = F"(O) = 1 /N 
[see, e.g., (D5) below]. We remark that the concavity of F '  for N 1> 3 
follows (32~ from general criteria of Ellis et al. ~ for GHS inequalities [the 
distribution for sl is a limit of distributions of the form exp( -V)  with 
V = a2x 2 + a4x 4 + . . . ,  with a4, a6 .... 1> 0]. 

In terms of the obvious probability measure, 

02f/Oh, Oh I = <s, sj> - <s,><sr Of/Oh, = <s,> 

Picking h = (h, 0,...), 

<s12> = d2F/dh 2 + (dF/dh) 2, <s,2> = h -~ dF/dh, i >1 2 

We conclude from <~ s,2> = 1 that g(h) =- dF/dh obeys the differential 
equation 

g'(h) + g(h) z + ( N  - 1)h-lg(h)  = 1 (D4) 

From (D4) and the fact that g is odd we see that 

g(h) = N - ~ h  - N - 2 ( N  + 2)-~h 8 + O(h 5) (D5) 

so that g"(h) < 0 for h small. If g"(h) < 0 is not true for all h > 0, let ho 
be the first positive zero of g". Now g' is positive ( f  is convex by Jensen's 
inequality) and g is thus positive for all h > 0. Multiplying (D4) by h and 
taking two derivatives and using the fact that g, g'  t> 0, we get 

hg" + [(N + 1) + 2hg]g" < 0 

Since hg is monotone and g" < 0 on (0, ho), we have 

h g ' + a g "  < 0 ,  O < h  < h o ;  a = N +  1 +2hog(ho) 

o r  

(h~g") ' <. O, 0 < h < ho 
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It follows that 

g"(ho) <~ ho~hJg"(hz) < 0 

where hi is chosen so small that g"(h~) < O, h~ < ho. This contradiction 
proves that F"(h) < O, so that max F"(h) = F"(O) = 1/N. �9 

C o r o l l a r y  D.1. In the nearest-neighbor, N-vector, v-dimensional ferro- 
magnet, there is no long-range order in the two-point function if/~ ~< N/4v. 

A P P E N D I X  E. T R A N S F E R  M A T R I C E S  IN Q U A N T U M  SPIN 
S Y S T E M S  

The transfer matrix is a useful technique in classical spin systems, both 
as a calculational tool in one-dimensional systems and in the Onsager 
solution, (aa'4a~ and as a general theoretical tool (e.g., the appendix of Ref. 12). 
It is a well-known folk theorem that quantum spin systems do not possess 
transfer matrices. In this appendix, we want to show that this folk theorem is 
wrong, although the definition of our transfer matrix is sufficiently abstract 
that it is unlikely to be a useful calculational tool; it may turn out to be a 
useful theoretical tool. Our construction is borrowed from axiomatic and 
constructive quantum field theory, where a particular positivity condition 
has been emphasized by Osterwalder and Schrader (8~ in recovering the 
Hamiltonian semigroup from the Euclidean Green's functions. Klein (2a~ has 
emphasized the idea of exploiting the notion of Osterwalder-Schrader posi- 
tivity in more general contexts. 

It should be emphasized that our transfer matrix differs from the usual 
one in an important way: Our basic inner product will have a lattice spacing 
built into it; that is, if A, B are operators at a single site and T is the transfer 
matrix, then the matrix element (A, T~(B)) will involve a thermal expectation 
of operators at sites a distance n + 1 from each other. 

We shall consider general Hamiltonians of the form (41) with real mat- 
rices. Consider avolume AwithL1 = 2rnl, c~t = - m l  + 1, -rn~ + 2 ..... m~. 
Define an automorphism R from operators on the sites with c~ >/ 1 to the 
operators on the sites with c~1 ~< 0 by reflecting about the plane ~ = 1/2, 
e.g., 

R(S=) = S=, 

with ~1' = 1 - al ,  r = c~2,..., Cv' = ~v. Thus Ha has the form 

k 

Ha = B + R(B) - ~ C,R(C,) (El) 
t = 1  

where B, C1,..., Ck are operators on the sites with ~1 >/ 1. The first (resp. 
second) term represents the interactions to the right (resp. left) of ~ = 1/2, 
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while the third term is the interaction across the plane c~ = 1/2. The minus 
sign in (El), which restricts us to ferromagnets, will be crucial. 

Theorem F.1. Suppose all matrices are real. For any operator D on the 
sites with ~ _> 1, 

Proof 

(R(D)D) >. 0 (E2) 

(R(D)D) = [Tr(e-~) ] - I  lira Tr{R(D)D e x p ( -  e/n) 
n--e. oo 

x exp[-R(B/n)] exp[C1R(C~)/n] . . .  } 

by the Trotter product formula. Now expand each factor exp[C~R(CO/n] in 
a power series. Then (R(D)D) is a sum of terms of the form Tr[R(Q1)Q1 " '"  
R(Q~)Q,] = Tr[R(Q1 . . .  Q,)I Tr(Q~ . - .  Q,) = Tr(Q~ . . .  Q~)2 >/0 since 
Q~ . . .  Q,  are real matrices. �9 

Now let ( - �9 �9 )= denote an infinite-volume state obtained as a limit point 
of  the states in volumes with L1 even. The state ( . . . ) ~  is automatically 
translation invariant since each finite-volume state is. Let R be defined as 
above, and define an inner product ((., .)) on the operators on the sites with 
cq /> 1 by ((A, B)) = (R(A*)B). Let ~ be the Hilbert space obtained by 
completing in this inner product. Following the idea of Osterwalder and 
Schrader, (34) we have the result: 

Theorem E.2. Let r ,  be the automorphism on the infinite-volume quasi- 
local algebra obtained by translating n units to the right. Then, there is a 
self-adjoint contraction T on ~ such that for any operators A, B on the sites 
with a 1 t> 1 

((/t, r~(B))) = ((A, T~(B))) (E3) 

Romark. Tis an abstract version of the transfer matrix with the important 
difference of n + 1 spacing mentioned above. 

ProoL We begin by proving that 

[((A, ~-I(B)))[ ~< ((A, A))I/2((B, B)) 1/2 (E4) 

for A, B bounded. Clearly, I((A, r~(B)))l ~< HAIl IIBtl. Moreover, 

((A, ~'I(B))) ~< ((A, A))lt2((~-I(B), rl(B))) 1/~ = ((A, A))I/2((B, r2(B))) I/2 

~<((A, A))I~2((B, B))I~'((B, ~(B))) ~ . - .  

((A, A))~((B,  ~))(~-~-")/2((B, T~.+ 1(B)))2-~ 
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Taking  n to oo, (E4) results. Thus,  there is a contract ion T such that  
((A, ~-I(B))) = ((A, T(B)) .  Since ((zl(A), B)) = ((A, rl(B))), T is self-adjoint. 
Moreover ,  since r ,  = (r l )  ", we have (E3). �9 

C o r o l l a r y  E.1. Fix a2,..., a~ and an opera tor  B at a single site. Let  
* B g(~l) = (Bco,=2 ..... =v~ <~1,-2 ..... -v~) for  ~1 /> 1. Then there is a positive 

measure  d/zB on [-- 1, 1] such that  

f g(c~) = ~,~-1 d/zB(~), ~ = 1, 2,... (E5) 
1 

Proof. Since g ( r  ((B<1.~2 ..... =~), T=l-lB(1,= 2 ..... =,))), (ES) follows by 
the spectral theorem. 1 

There is at this point  one impor tan t  difference f rom the Euclidean field 
theory case. A semigroup indexed by • o f  self-adjoint operators  is auto-  
matical ly a semigroup of  positive operators .  This is not  au tomat ic  in the 
discrete case. I t  is natural  to ask if this is so, i.e., if d/zB in (E5) is suppor ted  
on [0, 1]. 
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