Skip to main content

Physiology, Biochemistry and Molecular Biology of Plant Root Systems Subjected to Flooding of the Soil

  • Chapter
Book cover Root Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 168))

Abstract

Despite the fact that water uptake is a prime function of roots, excess water in soil seriously damages root growth and function and can prove fatal. Certain physical properties of water that prevent adequate gas exchange at the root surface are primarily responsible. Not only is the direct entry of oxygen by gas diffusion largely prevented, but, in addition, the normal disposal of physiologically active gases and volatiles is equally hampered. Oxygen shortage, resulting from low diffusion coefficients in flooded soils, is exacerbated by competition for oxygen from aerobic microorganisms that inhabit soil and rhizosphere. Oxygen depletion also favors growth of certain bacteria that can diminish nitrate availability to roots and, over longer time periods, produce highly soluble and toxic Mn2+and Fe2+and eventually even convert SO4 2+to the respiratory poison H2S (see Chap. 13). In the longer term, increased incidence of soil-borne fungal and bacterial diseases can be additional problems in saturated soils. This chapter reviews morphological, physiological, metabolic and molecular responses to flooding. It largely ignores the impact on germination and of total plant submergence. The focus is on effects of oxygen shortage and mechanisms of avoiding internal anoxia. Since oxygen-deficient roots influence shoot adaptation by long-distance signalling (Jackson 2002), this aspect is also considered briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews DL, MacAlpine DM, Cobb BG, Johnson JR, Drew MR (1994) Differential induction of mRNAs for the glycolytic and ethanolic fermentative pathways by hypoxia and anoxia in maize seedlings. Plant Physiol 106:1575–1582

    Article  PubMed  CAS  Google Scholar 

  • Appleby CA, Bogusz D, Dennis ES, Trinick MJ, Peacock WJ (1988) A role for haemoglobin in all plant roots? Plant Cell Environ 11:359–367

    Article  CAS  Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. In: Woolhouse HW (ed) Advances in botanical research, vol 7. Academic Press, London, pp 225–332

    Google Scholar 

  • Armstrong J, Armstrong W (1994) A physical model involving nucleopore membranes to investigate the mechanism of humidity-induced convection in Phragmites australis. Proc R Soc Edinb 102B:529–540

    Google Scholar 

  • Armstrong W, Beckett PM, Justin SHFW, Lythe S (1991) Modelling, and other aspects of root aeration by diffusion. In: Jackson MB, Lambers H, Davies DD (eds) Plant life under oxygen deprivation. Ecology, physiology and biochemistry. SPB Academic, The Hague, pp 267–282

    Google Scholar 

  • Armstrong J, Armstrong W, Beckett PM, Halder JE, Lythe S, Holt R, Sinclair A (1996) Pathways of aeration and the mechanisms and beneficial effects of humidity- and Venturi-induced convections in Phragmites australls. Aquat Bot 54:177–198

    Article  Google Scholar 

  • Arredondo-Peter R, Hargrove MS, Sarth G, Moran JF, Lohrman J, Olson JS, Klucas RV (1997) Rice hemoglobins: gene cloning, analysis, and O2-binding kinetics of a recombinant protein synthesized in Escherichia coli. Plant Physiol 115:159–1266

    Google Scholar 

  • Ashford AE, Allaway WG (1995) There is a continuum of gas space in young plants of Avi-cennia marina. Hydrobiologia 295:1–3

    Article  Google Scholar 

  • Bailey-Serres J, Dawe K (1996) Both 5’ and 3’ sequences of maize adhlmRNA are required for enhanced translation under low-oxygen conditions. Plant Physiol 112:685–695

    Article  PubMed  CAS  Google Scholar 

  • Berry LJ, Norris WE Jr (1949) Studies of onion root respiration. I. Velocity of oxygen consumption in different segments of root at different temperatures as a function of partial pressure of oxygen. Biochim Biophy Acta 3:593–606

    Article  CAS  Google Scholar 

  • Biemelt S, Keetman U, Albrecht G (1998) Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings. Plant Physiol 116:651–658

    Article  PubMed  CAS  Google Scholar 

  • Birner TP, Steudle E (1993) Effects of anaerobic conditions on water and solute relations, and on active-transport in roots of maize (Zea-maysL.) Planta 190:474–483

    Article  CAS  Google Scholar 

  • Bouny M, Saglio P (1996) Glycolytic flux and hexokinase activities in anoxic maize root tips acclimated by hypoxic pretreatment. Plant Physiol 111:187–194

    PubMed  CAS  Google Scholar 

  • Bradford KJ, Yang SF (1980) Xylem transport of 1-aminocyclopropane-l-carboxylic acid, an ethylene precursor, in waterlogged plants. Plant Physiol 65:322–326

    Article  PubMed  CAS  Google Scholar 

  • Brailsford RW, Voesenek LAC J, Blom CWPM, Smith AR, Hall MA, Jackson MB (1993) Enhanced ethylene production by primary roots of Zea maysL. in response to sub-ambient partial pressures of oxygen. Plant Cell Environ 16:1071–1080

    Article  CAS  Google Scholar 

  • Bûcher M, Brander KA, Sbicego S, Mandel T; Kuhlemeier C (1995) Aerobic fermentation in tobacco pollen. Plant Mol Biol 28:739–750

    Article  PubMed  Google Scholar 

  • Chang WPP, Huang L, Shen M, Webster C, Burlingame AL, Roberts JKM (2000) Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low oxygen environment, and identification of proteins by mass spectrometry. Plant Physiol 122:295–317

    Article  PubMed  CAS  Google Scholar 

  • Clarkson DTC, Carvajal M, Henzler T, Waterhouse RN, Smyth AJ, Cooke DT, Steudle E (2000) Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J Exp Bot 51:61–70

    Article  PubMed  CAS  Google Scholar 

  • Conley TR, Peng H-P, Shih M-C (1999) Mutations affecting induction of glycolytic and fermentative genes during germination and environmental stresses in Arabidopsis. Plant Physiol 119:599–607

    Article  PubMed  CAS  Google Scholar 

  • Davies DD, Grego S, Kenworthy P (1974) The control of the production of lactate and ethanol by higher plants. Planta 118:297–310

    Article  CAS  Google Scholar 

  • deVetten NC, Feri RJ (1995) Characterization of a maize G-box binding factor that is induced by hypoxia. Plant J 7:589–601

    Article  CAS  Google Scholar 

  • deVetten NC, Lu G, Feri RJ (1992) A maize protein associated with the G-box binding complex has homology to brain regulatory proteins. Plant Cell 4:1295–1307

    CAS  Google Scholar 

  • Dolferus R, Jacobs M, Peacock WJ, Dennis ES (1994) Differential interactions of promoter elements in stress responses of Arabidopsis Adhgene. Plant Physiol 105:1075–1087

    Article  PubMed  CAS  Google Scholar 

  • Drew MC, Jackson MB, Giffard S (1979) Ethylene promoted adventitious rooting and development of cortical air spaces (aerenchyma) maybe adaptive responses to flooding in Zea maysL. Planta 147:83–88

    Article  CAS  Google Scholar 

  • Duff SMG, Wittenberg JB, Hill RD (1997) Expression, purification, and properties of recombinant barley (Hordeumsp.) hemoglobin: optical spectra and reactions with gaseous ligands. J Biol Chem 272:16746–16752

    Article  PubMed  CAS  Google Scholar 

  • Ellis MH, Setter TL (1999) Hypoxia induces anoxia tolerance in completely submerged rice seedlings. J Plant Physiol 154:219–230

    Article  CAS  Google Scholar 

  • Ellrnore GS (1981) Root dimorphism in Ludwigia peploides(Onagraceae): structure and gas content of mature roots. Am J Bot 68:557–568

    Article  Google Scholar 

  • Else MA, Jackson MB (1998) Transport of 1-aminocyclopropane-l-carboxylic acid (ACC) in the transpiration stream of tomato (Lycopersicon esculentum)in relation to foliar ethylene production and petiole epinasty. Aust J Plant Physiol 25:453–458

    Article  CAS  Google Scholar 

  • Else MA, Tiekstra AE, Croker SJ, Davies WJ, Jackson MB (1996) Stomatal closure in flooded tomato plants involves abscisic acid and a chemically unidentified anti-transpirant in xylem sap. Plant Physiol 112:239–247

    PubMed  CAS  Google Scholar 

  • Else MA, Coupland D, Dutton L, Jackson MB (2001) Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis)despite diminished delivery of ABA from the roots in xylem sap. Physiol Plant 111:46–54

    Article  CAS  Google Scholar 

  • English PJ, Lycett, GW, Roberts JA, Jackson MB (1995) Increased 1-aminocyclopropane-1-carboxylic acid oxidase activity in shoots of flooded tomato plants raises ethylene production to physiologically active levels. Plant Physiol 109:1435–1440

    PubMed  CAS  Google Scholar 

  • Fan TWM, Higashi RM, Frenkiel TA, Lane AN (1997) Anaerobic nitrate and ammonium metabolism in flood-tolerant rice coleoptiles. J Exp Bot 48:1655–1666

    CAS  Google Scholar 

  • Fennoy SL, Bailey-Serres J (1995) Posttranscriptional regulation of gene expression in oxygen-deprived roots of maize. Plant J 7:287–295

    Article  CAS  Google Scholar 

  • Fennoy SL, Jayachandran S, Bailey-Serres J (1997) RNase activities are reduced concomitantly with conservation of total cellular RNA and ribosomes in 02-deprived seedling roots of maize. Plant Physiol 115:1109–1117

    PubMed  CAS  Google Scholar 

  • Ford YY, Ratcliffe RG, Robins RJ (1996) Phytohormone induced GABA production in transformed root cultures of Datura stramonium: an in vivo 15N NMR study. J Exp Bot 47:811–818

    Article  CAS  Google Scholar 

  • Fox GG, McCallan NR, Ratcliffe RG (1995) Manipulating cytoplasmic pH under anoxia: a critical test of the role of pH in the switch from aerobic to anaerobic metabolism. Planta 195:324–330

    Article  CAS  Google Scholar 

  • Fox TC, Green BJ, Drew MC, Kennedy RA, Rumpho ME (1996). Anaerobic expression of hexokinase in shoots of Echinochloa phyllopoganand Echinochloa crus-pavonia. Plant Physiol 111S:254 (Abstr.)

    Google Scholar 

  • Franklin Bunn H, Poyton RO (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76:839–885

    Google Scholar 

  • Good AG, Crosby WL (1989) Anaerobic induction of alanine aminotransferase in barley root tissue. Plant Physiol 90:1305–1309

    Article  PubMed  CAS  Google Scholar 

  • Goodlass G, Smith KA (1979) Effects of ethylene on root extension and nodulation of pea (Pisum sativumL.) and white clover (Trifolium repensL.). Plant Soil 51:387–395

    Article  CAS  Google Scholar 

  • Grimoldi AA, Insausti P, Roitman GG, Soriano A (1999) Responses to flooding intensity in Leontodon taraxacoides. New Phytol 141:119–128

    Article  Google Scholar 

  • Grineva GM, Bragina TV (1993) Formation of adaptations to flooding in corn — structural and functional parameters. Russ J Plant Physiol 40:583–587

    Google Scholar 

  • Grineva GM, Bragina TV, Platonov AV (2000) Ethylene-induced activation of hydrolytic enzymes in adventitious maize roots under conditions of advancing flooding. Dok Bot Sci 373–375:23–25 (Russian version — Dok Akad Nauk. 374:393–396)

    Google Scholar 

  • Gunawardena HLAN, Pearce DME, Jackson MB, Hawes CR Evans DE (2001a) Characterization of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea maysL.). Planta 212:205–214

    Article  PubMed  CAS  Google Scholar 

  • Gunawardena HLAN, Pearce DMS, Jackson MB, Hawes CR, Evans DE (2001b) Rapid changes in cell wall pectic polysaccharides are closely associated with early stages of aerenchyma formation, a spatially localised form of programmed cell death in roots of maize (Zea maysL.) promoted by ethylene. Plant Cell Environ 24:1369–1375

    Article  CAS  Google Scholar 

  • He C-J, Drew MC, Morgan PW (1994) Induction of enzymes associated with lysigenous aerenchyma formation in roots of Zea maysL. during hypoxia or nitrogen starvation. Plant Physiol 105:861–865

    PubMed  CAS  Google Scholar 

  • He C-J, Finlayson SA, Drew MC, Jordan WR, Morgan PW (1996) Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia. Plant Physiol 112:1679–1685

    PubMed  CAS  Google Scholar 

  • Hoeren FU, Dolferus R, Wu Y, Peacock WJ, Dennis ES (1998) Evidence for a role of atMYB2 in the induction of the Arabidopsisalcohol dehydrogenase gene (ADH1)by low oxygen. Genetics 149:479–490

    PubMed  CAS  Google Scholar 

  • Huq E, Hodges TK (1999) An anaerobically inducible early (aie)gene family from rice. Plant Mol Biol 40:91–601

    Article  Google Scholar 

  • Hwang SY, VanToai TT (1991) Abscisic acid induces anaerobiosis tolerance in corn. Plant Physiol 97:593–597

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB (1997) Hormones from roots as signals for the shoots of stressed plants. Trends Plant Sci 2:22–28

    Article  Google Scholar 

  • Jackson MB (2002) Long-distance signalling from roots to shoots assessed: the flooding story. J Exp Bot 53:175–181

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB, Attwood PA (1996) Roots of willow (Salix viminalisL.) show marked tolerance to oxygen shortage in flooded soils and in solution culture. Plant Soil 187:37–45

    Article  CAS  Google Scholar 

  • Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287

    Article  CAS  Google Scholar 

  • Jackson MB, Gales K, Campbell DJ (1978) Effect of waterlogged soil conditions on the production of ethylene and on water relationships of tomato plants. J Exp Bot 29:183–193

    Article  CAS  Google Scholar 

  • Jackson MB, Drew MC, Giffard SC (1981) Effects of applying ethylene to the root system of Zea maysL. on growth and nutrient concentration in relation to flooding. Physiol Plant 52:23–28

    Article  CAS  Google Scholar 

  • Jackson MB, Dobson CM, Herman B, Merryweather A (1984) Modification of 3,5-diiodo-4-hydroxybenzoic acid (DIHB) activity and stimulation of ethylene production by small concentrations of oxygen in the environment. Plant Growth Regul 2:251–262

    Article  CAS  Google Scholar 

  • Jackson MB, Fenning TM, Drew MC, Saker LR (1985) Stimulation of ethylene production and gas space (aerenchyma) formation in adventitious roots of Zea maysby small partial pressures of oxygen. Planta 165:486–492

    Article  CAS  Google Scholar 

  • Johnson JR, Cobb G, Drew MC (1994) Hypoxic induction of anoxia tolerance in roots of Adhlnull Zea maysL. Plant Physiol 105:61–67

    Article  PubMed  CAS  Google Scholar 

  • Justin SHFW, Armstrong W (1987) Anatomical characteristics of roots and plant response to soil flooding. New Phytol 105:465–495

    Article  Google Scholar 

  • Kawai M, Samarajeewa PK, Barrero RA, Nishiguchi M, Uchimiya H (1998) Cellular dissection of the degradation pattern of cortical cell death during aerenchyma formation of rice roots. Planta 204:277–287

    Article  CAS  Google Scholar 

  • Kawase M (1974) Role of ethylene in induction of flooding damage in sunflower. Physiol Plant 31:29–38

    Article  CAS  Google Scholar 

  • Konings H, Jackson MB (1979) A relationship between rates of ethylene production by roots and the promoting or inhibiting effects of exogenous ethylene and water on root elongation. Z Pflanzenphysiol 92:385–397

    CAS  Google Scholar 

  • Konings H, Verschuren G (1980) Formation of aerenchyma in roots of Zea maysin aerated solutions, and its relation to nutrient supply. Physiol Plant 49:265–270

    Article  CAS  Google Scholar 

  • Kühn C, Barker L, Bürkle L, Frommer W-B (1999) Update on sucrose transport in higher plants. J Exp Bot 50:935–953

    Google Scholar 

  • Laan P, Berrevoets M J, Lythe S, Armstrong W, Blom CWPM (1989) Root morphology and aerenchyma formation as indicators for the flood-tolerance of Rumex crispus. J Ecol 77:693–703

    Article  Google Scholar 

  • Lu G, DeLisle AJ, deVetten NC, Ferl RJ (1992) Brain proteins in plants: an Arabidopsishomolog to neurotransmitter pathway activators is part of a DNA binding complex. Proc Natl Acad Sci USA 9:11390–11494

    Google Scholar 

  • Magaraggia F, Solinas G, Valle G, Giovinazzo G, Coraggio I (1997) Maturation and translation mechanisms involved in the expression of a myb gene of rice. Plant Mol Biol 35:1003–1008

    Article  PubMed  CAS  Google Scholar 

  • Manjunath S, Williams AJ, Bailey-Serres J (1999) Oxygen deprivation stimulates Ca2+-mediated phosphorylation of mRNA cap-binding protein elF4E in maize roots. Plant J 19:21–30

    Article  PubMed  CAS  Google Scholar 

  • Matsumura H, Nirasawa S, Terauchi R (1999) Transcript profiling in rice (Oryza sativaL.) seedlings using serial analysis of gene expression (SAGE). Plant J 20:719–726

    Article  PubMed  CAS  Google Scholar 

  • Monk LS, Fagerstedt KV, Crawford RMM (1987) Superoxide dismutase as an anaerobic polypeptide. A key factor in recovery from oxygen deprivation in Iris pseudacorusìPlant Physiol 85:1016–1020

    Article  PubMed  CAS  Google Scholar 

  • Nunez-Elisea R, Schaffer B, Fisher JB, Colls AM, Crane JH (1999) Influence of flooding on net CO2assimilation, growth and stem anatomy of Annonaspecies. Ann Bot 84:771–780

    Article  Google Scholar 

  • Olive MR, Peacock WJ, Dennis ES (1991) The anaerobic responsive element contains two GC-rich sequences essential for binding nuclear protein and hypoxic activation of the maize Adhpromoter. Nucleic Acids Res 19:7053–7060

    Article  PubMed  CAS  Google Scholar 

  • Perata P, Guglieminetti L, Alpi A (1997) Mobilization of endosperm reserves in cereal seeds under anoxia. Ann Bot 79:49–56

    Article  CAS  Google Scholar 

  • Pereira JS, Kozlowski TT (1977) Variations among woody angiosperms in response to flooding. Physiol Plant 41:184–192

    Article  Google Scholar 

  • Pickard BG, Ding JP (1992) Gravity sensing in higher plants. Adv Compart Environ Physiol 10:81–110

    Article  Google Scholar 

  • Quimio CA, Torrizo LB, Setter TL, Ellis M, Grover A, Abrigo EM, Oliva NP, Ella ES, Carpena AL, Ito O, Peacock WJ, Dennis E, Datta SK (2000) Enhancement of submergence tolerance in transgenic rice overproducing pyruvate decarboxylase. J Plant Physiol 156:516–521

    Article  CAS  Google Scholar 

  • Ratcliffe RG (1995) Metabolic aspects of the anoxic response in plant tissue. In: Smirnoff N (ed) Environment and plant metabolism: flexibility and acclimation. Bios Scientific Publishers, Oxford, pp 111–127

    Google Scholar 

  • Ratcliffe RG (1999) Intracellular pH regulation in plants under anoxia. In: Egginton S, Taylor EW, Raven JA (eds) Regulation of tissue pH in plants and animals, a reappraisal of current techniques. Cambridge University Press, Cambridge, pp 193–213

    Chapter  Google Scholar 

  • Ricard B, VanToai T, Chourey P, Saglio P (1998) Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using a double mutant. Plant Physiol 116:1323–1331

    Article  PubMed  CAS  Google Scholar 

  • Rivoal J, Hanson AD (1993) Evidence for a large and sustained glycolytic flux to lactate in anoxic roots of some members of the halophytic genus Limonium. Plant Physiol 101:553–560

    PubMed  CAS  Google Scholar 

  • Rivoal J, Thind S, Pradet A, Ricard B (1997) Differential induction of pyruvate decarboxylase subunits and transcripts in anoxic rice seedlings. Plant Physiol 114:1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Roberts, JKM, Wemmer D, Ray PM, Jardetsky O (1982) Regulation of cytoplasmic and vacuolar pH in maize root tips under different experimental conditions. Plant Physiol 69:1344–1347

    Article  PubMed  CAS  Google Scholar 

  • Roberts JKM, Callis J, Wemmer D, Walbot V, Jardetzky O (1984a) Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc Nat Acad Sci USA 81:3379–3383

    Article  PubMed  CAS  Google Scholar 

  • Roberts JKM, Callis J, Jardetzky O, Walbot V, Freeling M (1984b) Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc Natl Acad Sci USA 81:6029–6033

    Article  PubMed  CAS  Google Scholar 

  • Roberts JKM, Andrade FH, Anderson IC (1985) Further evidence that cytoplasmic acidosis is a determinant of flooding intolerance in plants. Plant Physiol 77:492–494

    Article  PubMed  CAS  Google Scholar 

  • Rowland LJ, Strommer JN (1986) Anaerobic treatment of maize roots affects transcription of Adhland transcript stability. Mol Cell Biol 6:3368–3372

    PubMed  CAS  Google Scholar 

  • Saab IN, Sachs MM (1996) A flooding-induced xyloglucan endo-transglycosylase homo-log in maize is responsive to ethylene and associated with aerenchyma. Plant Physiol 112:385–391

    Article  PubMed  CAS  Google Scholar 

  • Saglio PH (1985) Effect of path or sink anoxia on sugar transport in roots of maize seedlings. Plant Physiol 77:285–290

    Article  PubMed  CAS  Google Scholar 

  • Saglio PH, Drew MC, Pradet, A (1988) Metabolic acclimation to anoxia induced by low (2–4 kPa) partial pressure oxygen pretreatment (hypoxia) in root tips of Zea mays. Plant Physiol 86:61–66

    Article  PubMed  CAS  Google Scholar 

  • Saglio P, Germain V, Ricard B (1999) The response of plants to oxygen deprivation: role of enzyme induction in the improvement of tolerance to anoxia. In: Lerner HR (ed) Plant responses to environmental stresses. Marcel Dekker, New York, pp 373–393

    Google Scholar 

  • Saint-Ges V, Roby C, Bligny R, Pradet A, Douce R (1991) Kinetic studies of the variations of cytoplasmic pH, nucleotide triphosphates (31P NMR) and lactate during normoxic and anoxic transitions in maize root-tips. Eur J Biochem 200:477–482

    Article  PubMed  CAS  Google Scholar 

  • Seago JL Jr, Peterson CA, Kinsley LJ, Broderick J (2000) Development and structure of the root cortex in Caltha palustrisL. and Nymphaea odorataAit. Ann Bot 86:631–640

    Article  Google Scholar 

  • Shiu OY, Oetiker JH, Yip WK, Yang SF (1998) The promoter of LE-ACS7, an early flooding-induced 1-aminocyclopropane-l-carboxylate synthase gene of the tomato, is tagged by a Sol3transposon. Proc Natl Acad Sci USA 95:10334–10339

    Article  PubMed  CAS  Google Scholar 

  • Sojka RE (1985) Soil-oxygen effects on two determinate soybean isolines. Soil Sci 140: 333–343

    Article  CAS  Google Scholar 

  • Subbaiah CC, Zhang J, Sachs MM (1994a) Involvement of intracellular calcium in anaerobic gene expression and survival of maize seedlings. Plant Physiol 105:369–376

    Article  PubMed  CAS  Google Scholar 

  • Subbaiah CC, Bush DS, Sachs MM (1994b) Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension cultured cells. Plant Cell 6:1747–1762

    PubMed  CAS  Google Scholar 

  • Subbaiah CC, Bush DS, Sachs MM (1998) Mitochondrial contribution to the anoxic Ca2+signal in maize suspension-cultured cells. Plant Physiol 118:759–771

    Article  PubMed  CAS  Google Scholar 

  • Tadege M, Brandie R, Kuhlemeier C (1998) Anoxia tolerance in tobacco roots: effect of overexpression of pyruvate decarboxylase. Plant J 14:327–335

    Article  CAS  Google Scholar 

  • Taylor ER, Nie XZ, MacGregor AW, Hill RD (1994) A cereal hemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Mol Biol 24:853–862

    Article  PubMed  CAS  Google Scholar 

  • Thomson CJ, Armstrong W, Waters I, Greenway H (1990) Aerenchyma formation and associated oxygen movement in seminal roots of wheat. Plant Cell Environ 13:395–403

    Article  Google Scholar 

  • Vartapetian BB, Jackson, MB (1997) Plant adaptations to anaerobic stress. Ann Bot 79:(Suppl A)3–20

    Article  CAS  Google Scholar 

  • Vartapetian BB, Andreeva IN, Kozlova GI, Agapova LP (1977) Mitochondrial ultrastructure in roots of mesophyte and hydrophyte at anoxia and after glucose feeding. Protoplasma 91:243–256

    Article  Google Scholar 

  • Vignolio OR, Fernandez ON, Macerira NO (1999) Flooding tolerance in five populations of Lotus glaber Mill (syn. Lotus tenuis Waldst. et. Kit.). Aust J Agric Sci 50:555–559

    Article  Google Scholar 

  • Voesenek LACJ, Blom CWPM (1999) Stimulated shoot elongation: a mechanism of semi-aquatic plants to avoid submergence stress. In: Lerner HR (ed) Plant responses to environmental stresses: from phytohormones to genome reorganization. Marcel Dekker, New York, pp 431–448

    Google Scholar 

  • Voesenek LACJ, Van der Sman AJM, Harren FJM, Blom CWPM (1992) An amalgamation between hormone physiology and plant ecology: a review of flooding resistance and ethylene. J Plant Growth Regul 11:171–188

    Article  CAS  Google Scholar 

  • Walker J, Howard E, Dennis E, Peacock W (1987) DNA sequences required for anaerobic expression of the maize alcohol dehydrogenase Igene. Proc Natl Acad Sci USA 84:6624–6628

    Article  PubMed  CAS  Google Scholar 

  • Wample RL, Reid DM (1979) The role of endogenous auxins and ethylene in the formation of adventitious roots and hypocotyls in flooded sunflower plants (Helianthus annuusL.). Physiol Plant 45:219–226

    Article  CAS  Google Scholar 

  • Waters I, Armstrong W, Thompson CJ, Setter TL, Adkins S, Gibbs J, Greenway H (1989) Diurnal changes in radial oxygen loss and ethanol metabolism in roots of submerged and non-submerged rice seedlings. New Phytol 113:439–451

    Article  CAS  Google Scholar 

  • Webb J, Jackson MB (1986) A transmission and cryo-scanning electron microscope study of the formation of aerenchyma (cortical gas-filled space) in adventitious roots of rice (Oryza sativa). J Exp Bot 37:832–841

    Article  Google Scholar 

  • Webster C, Gaut RL, Browning KS, Ravel JM, Roberts KJM (1991) Hypoxia enhances phosphorylation of eukaryotic initiation factor 4A in maize root tips. J Biol Chem 226:23341–23346

    Google Scholar 

  • Xia J-H, Roberts JKM (1996) Regulation of H+extrusion and cytoplasmic pH in maize root tips acclimated to a low-oxygen environment. Plant Physiol 111:227–233

    PubMed  CAS  Google Scholar 

  • Xia J-H, Saglio PH (1992) Lactic acid efflux as a mechanism of hypoxic acclimation of maize root tips to anoxia. Plant Physiol 100:40–46

    Article  PubMed  CAS  Google Scholar 

  • Xia J-H, Saglio P, Roberts JKM (1995) Nucleotide levels do not critically determine survival of maize root tips acclimated to a low-oxygen environment. Plant Physiol 108:589–595

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jackson, M.B., Ricard, B. (2003). Physiology, Biochemistry and Molecular Biology of Plant Root Systems Subjected to Flooding of the Soil. In: de Kroon, H., Visser, E.J.W. (eds) Root Ecology. Ecological Studies, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09784-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09784-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05520-1

  • Online ISBN: 978-3-662-09784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics